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Abstract

Volume-based registration (VBR) is the predominant method used in human neuroimaging to
compensate for individual variability. However, surface-based registration (SBR) techniques have
an inherent advantage over VBR because they respect the topology of the convoluted cortical
sheet. There is evidence that existing SBR methods indeed confer a registration advantage over
affine VBR. Landmark-SBR constrains registration using explicit landmarks to represent
corresponding geographical locations on individual and atlas surfaces. The need for manual
landmark identification has been an impediment to the widespread adoption of Landmark-SBR.
To circumvent this obstacle, we have implemented and evaluated an automated landmark
identification (ALI) algorithm for registration to the human PALS-B12 atlas. We compared ALI
performance with that from two trained human raters and one expert anatomical rater (ENR). We
employed both quantitative and qualitative quality assurance metrics, including a biologically
meaningful analysis of hemispheric asymmetry. ALI performed well across all quality assurance
tests, indicating that it yields robust and largely accurate results that require only modest manual
correction (<10 min per subject). ALI largely circumvents human error and bias and enables high
throughput analysis of large neuroimaging datasets for inter-subject registration to an atlas.
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Introduction

A major challenge in functional and structural neuroimaging is to compensate for variability
across individuals with respect to their underlying neuroanatomy, especially the highly
convoluted cortical mantle (Galaburda et al., 1990; Thompson et al., 1997; Thompson et al.,
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1998). This variability is informative in its own right for understanding disease states
(Csernansky et al., 2008; Van Essen et al., 2006) and normal brain function (Thompson et
al., 1998) but presents a serious obstacle when attempting to make inferences about a
particular cortical location across individuals. Volume-based registration (VBR) approaches,
whether using linear (affine) or nonlinear algorithms, (Anderson et al., 2007a, b; Hellier et
al., 2002; Woods et al., 1998a; Woods et al., 1998b) generally result in less accurate
alignment of corresponding gyri and sulci (Anticevic et al., 2008; Desai et al., 2005). An
alternative approach uses surface-based registration (SBR), which capitalizes on explicit
surface representations of cortical convolutions in individual subjects, derived from standard
structural MR scans (Fischl et al., 2002; Van Essen et al., 2001).

Several software packages provide rapid and robust generation of individual cortical surface
models and offer SBR implementation based on energy minimization approaches [Energy-
SBR, e.g. Freesurfer, Brain VVoyager (Fischl et al., 1999a; Fischl et al., 1999b; Goebel et al.,
2006)] or landmark-based approaches [Landmark-SBR, e.g. Caret (VVan Essen et al., 2001)].
Efforts to quantify and compare registration quality of various SBR methods have revealed
significant differences across methods but with tradeoffs that indicate advantages and
disadvantages of each method (Klein et al., 2010; Pantazis et al., 2010). Along with
differences in alignment quality for different SBR methods, another important
methodological consideration is the desirability of automation — especially given the
increasing emphasis on large datasets in both structural and functional neuroimaging studies
(Biswal et al., 2010; Yarkoni et al., 2011).

Previous studies indicate Landmark-SBR outperforms affine VBR based on inter-subject
alignment of identified sulci and of functional activations (Anticevic et al., 2008; Argall et
al., 2006; Desai et al., 2005; Van Essen, 2005). However, the need for manual delineation of
landmarks in each subject (VVan Essen et al., 2001) constitutes a processing bottleneck and
also a risk of rater bias across individual cases and studies. An automated landmark
identification (ALI) algorithm described here greatly reduces the need for human
intervention in generating the ‘Core 6’ landmarks used to register individual subjects to the
human PALS-B12 atlas (Van Essen, 2005).

To evaluate the accuracy and reliability of the automatically generated landmarks, we
compared the ALI results with those obtained by two newly trained human raters plus an
expert neuroanatomical rater (ENR) responsible for delineating the original PALS-B12
landmarks (VVan Essen, 2005). We evaluated performance differences in terms of: 1) the
distance of generated landmarks (i.e. trajectory of landmark contours) relative to those from
the expert rater measured in subject-specific (pre-SBR) space; 2) qualitative inspection of
the spatial dispersion of landmarks both before and after SBR; 3) the 3D distance between
corresponding points of individual cortical surfaces after registration to PALS-B12 atlas
using expert rater landmarks versus those generated by ALI and the other two human raters;
and 4) hemispheric asymmetries in sulcal depth (Van Essen, 2005; Van Essen et al., 2006)
determined after SBR using different landmark sources.

Materials and Methods

Subjects

Twenty healthy right-handed young adults (7 male and 13 female; mean age, 25 years) were
recruited from the Washington University Community by the Psychology Department
subject coordinator. All subjects gave informed consent as approved by the Washington
University IRB and were paid $25/h for their participation.
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Subjects were scanned on a 3T Allegra scanner at the Washington University Medical
School. Subjects underwent both functional and structural neuroimaging data collection
(Anticevic et al., 2010a; Anticevic et al., 2010b) but only structural data were analyzed here.
All structural images were acquired using a sagittal magnetization-prepared radio-frequency
rapid gradient-echo (MP-RAGE) 3D T1-weighted sequence (TR = 2400 ms, TE = 3.16 ms,
flip = 8°; voxel size = 1 mm3).

Structural Data Preprocessing

Each T1-weighted structural volume was registered to the 711-2B atlas using a 12-parameter
affine transform and re-sampled to 1 mm3 voxels (Buckner et al., 2004; Ojemann et al.,
1997). Automated cortical segmentation and surface generation was carried out using
FreeSurfer (Fischl et al., 2004). All pial and white matter cortical surfaces were visually
inspected for accuracy; no errors were detected. For each subject, pial and white matter
cortical surfaces were converted to Caret format and averaged to obtain a cortical
midthickness surface (Van Essen, 2005) that was aligned to the individual-subject anatomy
in 711-2B space. Surfaces were inflated and mapped to a spherical configuration with
distortions reduced by multi-resolution morphing. Maps of cortical geography (gyral versus
sulcal cortex) and sulcal depth were generated automatically (VVan Essen, 2005).

Automated Landmark Identification (ALI)

Six anatomical landmarks (“Core 6”) originally identified on the basis of high inter-
individual consistency (Van Essen, 2005) were generated using an automated algorithm.
Fig. 1A illustrates these landmarks on an inflated surface of an individual left hemisphere.
This includes landmarks along the fundus of the central (CeS) and calcarine (CaS) sulci and
the Sylvian Fissure (SF), along the superior temporal gyrus (STG), and along dorsal and
ventral portions of the boundary between cortex and the non-cortical ‘medial wall’ (MW-
dors, MW-vent). Fig. 2 illustrates landmark generation framework across raters. The scripts
and associated datasets for running ALI are available in Caret versions 5.62 (February 2011)
and later and can be used in conjunction with the Freesurfer to Caret pipeline scripts and
dataset (http://brainvis.wustl.edu/wiki/index.php/
Caret:Download#Download_Freesurfer_to PALS-B12_Pipeline_Distribution).

The ALI algorithm generates landmark contours using multiple sources of information about
cortical shape in the individual subject, including (i) the corpus callosum (CC) segmentation
extracted from Freesurfer, (ii) the midthickness and inflated surfaces, (iii) maps of mean
curvature (folding) and sulcal depth, and (iv) discrete maps of sulcal vs gyral cortex (Van
Essen, 2005). ALI operates on midthickness surfaces in 711-2B stereotaxic space, but
automatically transforms surfaces in MN1152/305 or Talairach space to 711-2B space (see
http://brainvis.wustl.edu/help/pals_volume_normalization). It also uses population-average
volumetric maps of the extent of 40 cortical sulci derived from the 12 subjects contributing
to the PALS-B12 atlas (Van Essen, 2005).

Hemisphere-specific Sulcal Identification

The initial step in determining the location of major sulci in each individual hemisphere is to
intersect the probabilistic volumes of 40 sulci onto the individual midthickness surface by
assigning each vertex the value (0 to 12) of the voxel it intersects. These values are modified
by multiplying by the sulcal depth at that location (thereby weighting in favor of deeper
folds) and setting the value to zero for vertices not inside the discretized sulcal map.
Customized additional steps are carried out for the hippocampal fissure (HF). The resultant
probabilistic times depth (PTD) map is thresholded at an empirically determined value for
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each sulcus. PTD values are summed for each spatially discrete cluster of vertices (with
customized additional steps for the postcentral sulcus), and the clusters for each sulcus are
sorted based on the summed values (PTDsum). Vertices are assigned a sulcal label if they
belong to the cluster with the highest PTDsum value (or, for specified sulci, if they belong to
the top two or three clusters and meet other empirically determined criteria). After this initial
sulcal labeling, each region is dilated to include all neighboring vertices that are sulcal in the
discretized map (but with additional empirically determined spatial constraints for the HF
and Cas).

The following landmark-specific sections describe geodesic contours, most often along the
midthickness surface, but sometimes on the inflated surface. This method finds the shortest
path along the vertices within the region of interest (ROI), from the starting vertex to the end
vertex, using Dijkstra’s Algorithm (Dijkstra, 1959). The criteria used to constrain the ROI
ensure these vertices lie along the fundus of a sulcus or crown of a gyrus.

Central Sulcus (CeS)

Vertices within the probabilistic atlas mapping of the CeS whose mean curvature on the
inflated surface is less than -0.1 are selected, and the most medial and inferior vertices
within the ROI are found. A more restricted ROI with curvature -0.16 or less is dilated until
these medial and inferior vertices are included, and a geodesic contour is drawn between
them. Ends are trimmed to within 19 mm of the insular operculum at the ventral end as well
as 18 mm from the medial wall at the superior end. The operculum is identified by finding
the most inferior vertex within the CeS ROI, then moving inferiorly along the surface,
limiting coronal movement (i.e., find local minimum along Z). A similar strategy is used to
find the medial wall (move in medial direction from most superior vertex in CeS ROI, limit
coronal movement).

Superior Temporal Gyrus (STG)

Vertices within the probabilistic atlas mapping of the STG are restricted to those anterior to
the most inferior point of the CeS landmark. A geodesic contour is drawn between the most
posterior and the most inferior (temporal pole) of the remaining vertices. Contour points are
adjusted to run along the gyral ridge by displacing them along mesh vertices in a superior
(positive-Z) direction while restricting the displacement in X and Y directions. When the
point cannot move any further in the superior direction, it has reached the crown of the

gyrus.

Sylvian Fissure (SF)

Contiguous vertices within the probabilistic atlas mapping of the SF at least 7 mm deep are
intersected with vertices whose curvature on the inflated surface is less than -0.05. The
inferior branch of the circular sulcus is found by identifying the most inferior of the selected
vertices. For the superior branch, a geodesic contour is drawn between the most posterior
vertex and the deepest vertex anterior to the temporal pole. From there, the contour
continues inferiorly, to the deepest vertex within 10 mm anterior and 12 mm inferior to the
previous point, then inferiorly along the fundus toward the vertex closest to -/+16.0, 12.0,
-19.0 (711-2B space). It is then trimmed to 10 mm superior of this vertex. The intersection
of the inferior and superior branches is found, and the superior branch’s contour is trimmed
to 12 mm posterior of this intersection along the ellipsoid surface. The Sylvian contour uses
a modified version of the geodesic method that gives preference to links whose vertices have
lower mean curvature (aiming for the fundi of branches of the circular sulcus)

Neuroimage. Author manuscript; available in PMC 2013 February 01.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Anticevic et al. Page 5

Calcarine Sulcus (CaS)

The anterior and posterior extents of a probabilistic atlas mapping of the CaS whose inflated
mean curvature is less than or equal to -0.07 are found. The ROI is further restricted to
inflated mean curvature below -0.16 and a geodesic contour is drawn, posterior to anterior,
along vertices in the restricted ROI. This contour is extended posteriorly to the most
posterior vertex in the hemisphere (i.e., occipital pole), using the less stringent ROI; then,
any contour points less than 24 mm anterior to occipital pole are trimmed.

Medial Wall Dorsal

If no CC segmentation was provided, then one is segmented from the anatomical volume.
Although no formal comparison was carried out, following our qualitative inspection the
Freesurfer-generated aseg.mgz generated a more reliable CC segmentation than that
produced by the ALI using the same anatomical volume as input. Any CC segmentation can
be used, provided its filename includes “corpus” and “callosum” (case insensitive), which
will cause the ALI to bypass CC segmentation and use the input volume directly. The
analyses carried out herein extracted the CC from the Freesurfer aseg.mgz. Points (“foci”)
are generated along the top of the CC, and then a geodesic contour is drawn on the
midthickness surface connecting the vertices between these foci, but weighted toward lateral
vertices, in order to draw the contours further laterally into the fundus of the callosal sulcus.
Spikes in the contour are detected by finding the points along the contour closest to the foci
used to draw the contour and by comparing the directions of the links to the points in the
contour before and after that point. If a sharp angle is detected, a new position for that focus
is estimated by searching for the closest surface vertex to a point generated by taking the
current focus coordinates and moving them in the direction of the bisection of that angle.
After repeating this procedure for all foci, if at least one focus changed, the contour is
redrawn and the process is iteratively repeated until no better positions are identified for the
foci.

Medial Wall Ventral

Vertices that intersect with the mapped probabilistic atlas representation of the hippocampal
fissure (HF) on the inflated surface are intersected with vertices having a sulcal depth value
of at least 10 mm. The most inferior (IHFV) and superior (SHFV) vertices are identified.
The shortest path along the midthickness surface from the temporal pole (local anterior
maximum) to the IHFV is found, and a periamygdaloid vertex (PAV) identified 30mm along
that path from the temporal pole. A contour is generated that extends from the more superior
of the SHFV or ventral splenium marker along a trajectory defining the crease of the HF
posteriorly, then 12.5 mm lateral to the medial aspect of the parahippocampal gyrus up to
the PAV, then to the anterior endpoint of the medial wall dorsal contour.

The dorsal and ventral contour are merged and intersected with the calcarine contour and a
template frontal cut. Points are deleted near the frontal junctions, until the gap between the
dorsal and ventral is 19 mm. Points near the calcarine junction are deleted to produce a 16
mm gap between the calcarine, medial wall dorsal, and medial wall ventral contours.

Landmark Evaluation

Landmark contours were resampled so that each landmark contained the same number of
points in all subjects as the corresponding source contour. For each landmark point, the
normal range of variability in its 3D position in individual midthickness surfaces was
determined using the 12 subjects that contributed to the PALS-B12 atlas. Following ALI in
any given subject, each landmark contour was evaluated to determine the percentage of
contour points that lie within two standard deviations of the corresponding PALS-B12
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contour points. An automated script reports the average “overlap percentage” for each
landmark contour. It also generates images of landmark trajectories relative to the
population average, to facilitate inspection of contours whose overlap percentages are low
(less than 95%). All images and metrics were inspected by two trained raters (AA and DD).
Manual edits were made when warranted, based on criteria used for manual landmark
delineation (see below), resulting in a set of ‘ALI-Corrected’ landmarks. All major ALI
errors were reliably flagged by the quality assurance measures (i.e. every instance requiring
major manual correction following ALI). The total time needed to perform manual
evaluation and editing was less than 2 hours total for all 20 subjects (less than 3 min per
hemisphere on average).

Manual Landmark Generation

The trained raters (R1 & R2) were trained concurrently in two 3-hour sessions. All human
raters (R1, R2 and ENR) independently generated ‘Core 6’ landmark for each subject using
the same criteria (http://brainvis.wustl.edu/help/landmarks_core6/landmarks_core6.html/)
(Van Essen, 2005). The two raters (R1, R2) were graduate students who were trained by the
ENR in less than two days. ALI corrections were made by a different rater (AA) than those
who manually drew the landmarks.

Surface-based Registration (SBR)

Landmark-SBR was carried out by projecting landmarks to the individual’s spherical
surface, then deforming the individual sphere so that its landmarks were aligned to the
PALS-B12 atlas target landmarks, coupled with distortion reduction in the regions between
landmarks (Van Essen, 2005) (Fig. 1). Each subject’s midthickness surface was re-sampled
to a standard ‘74k’ mesh containing 73,730 vertices (Saad et al., 2005). An associated
‘deformation map’ file allowed additional datasets (e.g., landmark contours generated by
other raters — see below) to be mapped from the individual to the atlas surface. Surface-
based registration was carried out separately for all five sets of generated landmarks (i.e.
ALl and ALI-Corrected, R1, R2 and ENR).

ALl versus Manual Landmark Comparisons

Five analyses were used to evaluate the quality of cortical landmark delineation for ALI
relative to other raters:

1. Using the resampled landmark contours represented on each individual’s
midthickness surface, the Euclidean distance was computed between each ENR
landmark point and the corresponding point in the ALI, ALI-corrected, R1, and R2
landmarks. These distances were averaged across all points in each landmark
contour, yielding four average distance measures (ENR versus R1, R2, ALI, and
ALI-corrected) for each of six landmarks. The larger the average distance, the
greater the disparity for that landmark relative to that drawn by the ENR.
Differences across raters were analyzed using a factorial ANOVA design (see
bellow).

2. All landmarks were inspected visually for dispersion on the midthickness, inflated
and spherical surface configurations prior to Landmark-SBR. This provided a
qualitative measure of differences between landmark contour trajectories in pre-
SBR format.

3. After Landmark-SBR of each individual to PALS-B12 using the ENR landmarks,
the resultant deformation map was applied to the ALI, ALI-corrected, R1 and R2
landmark contours. This provided a sensitive qualitative measure of residual
differences between landmark contour trajectories. If each rater’s landmarks were

Neuroimage. Author manuscript; available in PMC 2013 February 01.


http://brainvis.wustl.edu/help/landmarks_core6/landmarks_core6.html/

1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Anticevic et al.

Results

Page 7

identical to those of the ENR then the results following SBR would show no
dispersion on visual inspection.

4. Each hemisphere’s midthickness surface was resampled to the PALS 74k standard
mesh after registration using all five sets of landmarks (ALI, ALI-corrected, R1,
R2, and ENR). A map of 3D coordinate differences was computed between
corresponding vertices in the ENR-based midthickness surface and each of the
other four midthickness surfaces. These maps were averaged across all 20
individuals, separately for the left and right hemispheres. This provided spatial
maps of the impact of landmark trajectory differences on the identification of SBR-
based geographic correspondences across the entire hemisphere. This approach is
analogous to the approach in step 3, but captures the deviation in terms of 3D
distances, across subjects, for each rater relative to the ENR across the entire
cortical sheet. That is, we computed the Euclidean distance for a given rater for
each cortical vertex relative to ENR for each subject — an approach that afforded
inspection of the spatial location along the cortical sheet where a given rater
deviated from the ENR.

5.  We analyzed hemisphere asymmetries in sulcal depth for the 20 subjects separately
for all five sets of landmarks in order to assess the impact of rater differences on a
known structural asymmetry (Van Essen et al., 2006). For surfaces registered by
each set of landmarks, a paired t-test of sulcal depth was carried out using surface-
based Threshold-Free Cluster Enhancement (TFCE) (Hill et al., 2010) and 5000
iterations using the hemisphere asymmetry as the dependent measure. Surface area
measurements of the resulting significant clusters were computed on the PALS-
B12 average midthickness surface, then adjusted by the average distortion between
individual and population-average midthickness surfaces (Van Essen, 2005).
Results across raters were compared both qualitatively (i.e. visual inspection) as
well as quantitatively by examining the surface of resulting significant clusters.

Landmark Distance Quantification

Fig. 3 shows the average distance (separation) between ENR landmark points and each
rater’s landmarks, grouped by landmark for the left hemisphere (top) and right hemisphere
(bottom). For the MW-dors and CeS, average distances were only ~1 mm and showed
minimal inter-rater differences. At the other extreme, average differences were larger and
more variable for the MW-vent. To test for statistical significance of these differences, we
computed repeated-measures ANOVA with Rater (4 levels - ALI, ALI-corrected, R1, R2) x
Landmark (6 levels — CeS, CaS, MW-dors, MW-vent, STG, SF) x Hemisphere (left versus
right) as factors for distance from ENR as the dependent measures. The ANOVA results
(Fig. 3A-B) revealed a significant main effect of Landmark [F(5,95)=86.6, p<0.001], main
effect of Rater[F(3,57)=47.5, p<0.001], but no main effect of Hemisphere [F(1,19)= 0.61,
p=0.44, NS]. No term involving Hemisphere reached significance, indicating similar results
across raters and landmarks irrespective of hemisphere. The ANOVA results also revealed a
highly significant Rater x Landmark interaction [F(1,285)=31.5, p<0.001], indicating that
performance relative to ENR differed across raters as a function of landmark location. This
is partly due to the high degree of variability between raters R1 and R2 (Fig. 3). The ALI
and ALI-Corrected results differed minimally from one another and were similar to the
average of the R1 and R2 results for most landmarks, but were slightly worse for the STG
and SF. For three landmarks (CaS, CeS, and MW-dors), ALI performed as well or nearly as
well as raters R1 and R2. For two landmarks (STG and SF), ALI was slightly worse, but the
differences were less than 2 mm on average. For the MW-vent landmark, ALI performed
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worse than R1 by 2 — 3 mm on average, but was better than R2 by 1 — 2 mm on average. The
impact of these differences on overall inter-subject alignment quality is addressed below.

Landmark Dispersion on Spherical Maps

Fig. 4 shows the spherical landmark trajectories for the left hemisphere of all 20 subjects
generated by each of the raters and methods, illustrating the degree of individual variability
in landmark trajectories prior to SBR. Fig. 4A shows the landmarks drawn by the ENR. The
dispersion for each landmark reflects normal individual variability prior to SBR; it is
comparable in magnitude to the landmarks drawn by ENR for the 12 individual subjects
contributing to the PALS-B12 atlas [cf. Fig. 2F, | from (Van Essen, 2005)]. Alignment is
best for the CeS (yellow), reflecting the fact that the CeS was used for rigid-body rotation of
all individual spheres to the ‘spherical standard’ configuration. Figure 4B-E shows results
for landmarks generated by ALI, ALI-corrected, and raters R1 and R2. The dispersion of
landmark trajectories is in general similar to that for the ENR, but for a few landmark/rater
combinations it is modestly greater. Of particular note are occasional outliers, such as an
incorrectly drawn CeS (yellow) by Rater 2 for one subject and an incorrect CaS (orange) for
one subject in ALI (Fig. 4B) that was corrected in ALI-Corrected (Fig. 4C). This qualitative
inspection illustrates that the spatial variability of generated landmarks following ALI and
ALI-Corrected closely match those of the ENR. However, as with the quantitative distance
measure (Fig. 3), there is considerable variability in the dispersion of landmark trajectories
for the two human raters relative to the ENR. Results were similar for the right hemisphere
(not shown).

For the results shown in Fig. 5, each individual hemisphere was registered to the PALS-B12
atlas using the ENR landmarks, resulting in accurate alignment of the ENR landmarks for
each subject (Fig. 5A). The four sets of independently generated landmarks (ALI, ALI-
Corrected, R1 and R2) were then registered to the atlas sphere using the deformation map
generated by the ENR registration (see Methods). As expected, the dispersion of landmark
contours is much smaller than the pre-SBR distribution in the preceding figure. The manual
editing of the ALI landmarks (~2h total for all cases) not only corrected the rare errors that
were large (i.e., the outliner CaS landmark) but also reduced the more modest dispersion in
the SF, MW-dors, and MW-vent landmarks (Fig. 5C versus 5B), indicating consistency with
the ENR landmarks. Because most corrections involved only minor aspects along part of the
landmark, there was little impact on the average distance measures (ALI versus ENR and
ALI-Corrected versus ENR in Fig. 3) but these minor corrections nonetheless achieved a
better match to the ENR.

3D Displacements for SBR Using Different Landmarks

By carrying out SBR to the PALS-B12 atlas for each subject using all five sets of landmarks
(ALI, ALI-corrected, R1, R2, and ENR), we obtained five versions of each individual
midthickness surface represented on the 74k mesh (see Fig. 2). We then computed the 3D
(Euclidean) distance between each surface vertex on the ENR-registered midthickness
surface to the corresponding vertex in each of the other midthickness surfaces. These 3D
distances (absolute values) were then averaged across all subjects in order to generate an
average coordinate-difference map for each landmark source compared to the ENR based
surfaces. Fig. 6 shows the average coordinate-difference across all four raters relative to the
ENR. This provided a cortex-wide assessment of the spatial impact of landmark variability
relative to the ENR. Consistent with the preceding analyses, the greatest difference was
observed between the maps for R1 and R2, particularly in anterior cortical regions for the
left hemisphere (Fig. 6C versus 6D) and right hemisphere (not shown). For R1 the average
deviation from the ENR exceeded 10 mm in some prefrontal locations, indicating that
inconsistencies in human raters can result in substantial variability in SBR even on the same
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dataset. Indeed, although R1 performs well by most of the other measures, the 3D distance
map illustrates the impact of inter-rater biases when comparing the ENR and R1 medial wall
dorsal contours near the frontal junction (also see Fig. 3). In contrast, most notable areas of
deviation for the ALI and ALI-Corrected results are in medial occipital cortex around the
CaS landmark. Inspection of cases where the coordinate difference between ENR and ALI
was large revealed that in some cases, where the occipital pole is offset from the posterior
Cas contour along the x or z-axis, the ENR extended the CaS contour too far caudally. This
was mainly because Euclidean distance was used in lieu of the desired metric of distance
only along the y-axis. In contrast, ALI is more reliable in setting the posterior limit of the
CaS landmark to 24 mm anterior to the occipital pole. In that respect, the differences
between ALI and ENR landmarks in large measure reflect greater fidelity of the ALI
method.

Hemispheric Asymmetry

Human cortex has prominent hemispheric asymmetries in the vicinity of the Sylvian Fissure
and superior temporal sulcus (STS) that can be quantified using maps of sulcal depth in the
two hemispheres (Van Essen et al., 2006). If inter-subject alignment were eroded by biases
or inconsistencies in landmark delineation, it would presumably reduce the sensitivity to
detect consistent and significant sulcal depth asymmetries in a sample of subjects. To
address this issue, a paired t-statistic map for left-versus-right sulcal depth in the 20 subjects
was computed for the five sets of landmark delineated in this study (Fig. 7). Significant
clusters revealed by the Threshold-Free Cluster Estimate (TFCE) method are outlined in
black (see Methods). The total surface area above significance was greater for the ALI and
ALl-corrected (3354.35 and 3152.95 mm2) than for any of the other three methods (2262.89,
1508.95, and 1459.60 respectively for ENR, R1, and R2). Overall, the pattern of asymmetry
was qualitatively similar across ALI, ALI-Corrected, and ENR. The size of the ALI clusters
suggests that the automated process produced results that are at least as sensitive as ENR in
inter-subject alignment in this region. The results for R1 and R2 showed smaller asymmetry
clusters, suggestive of poorer inter-subject alignment.

Discussion

The present study evaluated the consistency of ALI relative to two trained human raters and
an expert neuroanatomical rater using multiple estimates of ALI performance. Our results
indicate robust performance by ALLI, particularly when coupled with manual editing. We
also demonstrate significant inconsistencies across human raters in landmark identification.

AL yielded consistent results in a population of healthy adult subjects, matching ENR
results across multiple measures. In the regions where ALI and ENR differ, an important
question is which set of landmarks produces better inter-subject alignment for biologically
meaningful analyses. Our tests of hemispheric asymmetries in sulcal depth indicate that ALI
performed as sensitively as ENR and perhaps even better in some areas, at least for the
landmarks on the lateral aspect of the hemisphere (of note, greater significant extent does
not guarantee biological significance). In the calcarine sulcus, ALI and ENR landmarks
differ significantly. One aspect of delineating the CaS sulcus landmark involves setting its
posterior termination 24 mm anterior to the occipital pole, and this appears to be executed
more reliably by the ALI method (i.e., find the most posterior node in the hemisphere,
subtract 24 mm along the y axis, and trim the contour beyond that point). This probably also
resulted in ALI outperforming ALI-corrected in this region: If the ENR and corrections rater
chose different reference points on the occipital pole, e.g., with substantial delta along the x
or z axes, it would affect distance measurements used to trim contour points. Thus, unless
the ALI has deviated from the fundus of the CaS, the corrections rater should not second-
guess the ALLI in this region.

Neuroimage. Author manuscript; available in PMC 2013 February 01.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Anticevic et al.

Page 10

A reasonable question is how much ALI differs from ALI-corrected (i.e., is it worth the
effort to correct the contours, particularly for large sample sizes). We have not carried out a
large-scale test comparing ALI versus ALI-corrected, but we have identified cases where a
contour is altogether missing (this happens infrequently using Freesurfer-generated CC
segmentations). In the event this occurs, the alternatives are to draw the contour manually or
to exclude the subject from an analysis. Furthermore, in situations were a contour falls a few
mm short of its proper termination it represents less of a problem than if it falls many mm
short of it. Hence, we advise that the necessary corrections to the ALI landmarks are carried
out, which can be accomplished after a modest training effort. In addition, we would like to
acknowledge that in the present study we used a single ENR. That is, there may be subtle
but important differences even across ENR, which may produce differences in findings of
ALl accuracy. Nevertheless, it is worth noting that ALI compared well relative to more
naive raters.

Some software packages such as FreeSurfer and Brain\VVoyager support high-throughput
processing of surfaces using fully automated segmentation, surface generation, and SBR
(Fischl et al., 2002; Fischl et al., 2004; Goebel et al., 2006). While this is advantageous in
many respects, there are some shortcomings in these situations. Overt misregistration of
sulci and gyri sometimes occurs, even in regions like the central sulcus that are relatively
consistently folded (Pantazis et al., 2010). A straightforward process for identifying and
correcting misregistration errors is currently lacking in these software packages. In contrast,
AL by design is not fully automated. Instead, ALI provides a manual editing stage, which is
designed to be straightforward, quick to carry out and requires only modest neuroanatomical
expertise. Our results indicate substantial inconsistency across human raters in primary
landmark identification. Therefore, it is more efficient to use human raters for editing rather
than primary landmark identification purposes. This can reduce gross landmark
identification errors and is likely to produce more consistent results across studies. These
issues are increasingly important as neuroimaging datasets rapidly expand, analyses across
datasets and centers increasingly become a reality (Biswal et al., 2010), and consistency in
longitudinal and multi-center clinical studies is paramount (Potkin et al., 2008).

An important unresolved issue is which type of SBR methodology (e.g. Landmark-SBR
versus Energy-SBR) achieves maximal inter-subject alignment, especially in regions of high
folding variability. Pantazis et al. (2010) compared FreeSurfer, Brain\Voyager, and their 26-
landmark registration method applied to the same group of subjects, using sulcal landmarks
and geographic regions of interest to assess inter-subject alignment. They found that each
method had advantages and disadvantages, depending on the region and the specific
measure used; FreeSurfer performed better in some respects, but both FreeSurfer and
BrainVVoyager were susceptible to crude registration errors. Van Essen and colleagues (Van
Essen et al., 2011) compared registration of individual hemispheres to a common target
using (i) initial registration to FreeSurfer’s fsaverage atlas (Energy-SBR) vs. (ii) initial
registration to PALS-B12 (Landmark-SBR), in both cases followed by inter-atlas
registration to the ‘fs_LR’ surface-based atlas (using Landmark-SBR). The differences
between registration methods were modest in most regions but were substantial (> 2 cm) in
some regions, but do not reveal which SBR method is more effective in reducing inter-
subject variability. Additional insights could be gained by comparing SBR methods using
data from task-activation fMRI paradigms [e.g., (Anticevic et al., 2008; Sabuncu et al.,
2010)], resting-state fMRI analyses, or alternative modalities such as myelin maps (Glasser
and Van Essen, 2011). Another issue is that alignment consistency for a given algorithm
may differ in the cortex of individuals with brain disease or disorders (Anticevic et al., 2008;
Csernansky et al., 2008). For instance, prior work has demonstrated a clear advantage for
landmark-based SBR when applied to both anatomical and functional MRI data in patients
diagnosed with schizophrenia (Anticevic et al., 2008). However, no study has evaluated
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whether different SBR methods produce similar degree of improvement in different clinical
populations.

In conclusion, our analysis indicates that automated landmark identification coupled with
manual editing is recommended over purely manual delineation of landmark contours when
registering data to the human PALS-B12 atlas. Additional studies are needed to ascertain the
relative strengths and limitations of landmark-based versus energy-based SBR algorithms in
compensating for individual variability in neuroanatomy.
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Figurel.

General framework of PALS-B12 registration procedure. Core 6 landmarks are displayed on
the lateral (top panel) and medial (bottom panel) surface representations. (A) An individual
subject example is shown with all landmarks marked on a moderately inflated surface
representation for ease of visual inspection. Here results from the expert neuroanatomical
rater (ENR) are shown for a single case. (B) As noted in the main text, landmarks for every
subject were generated by: automated landmark identification (ALI), ALI landmark
correction (ALI-Corrected), two trained raters (R1 & R2), and ENR. This yielded a total of
five landmark sets across each subject (i.e. ALI, ALI-corrected, R1, R2 and ENR). This
process was then repeated for all subjects. Results across subjects are shown for all five
landmarks on a spherical representation (ENR results are used an exemplar). (C) All
individual subject surfaces were then registered using a spherical registration algorithm to
the PALS-B12 atlas (Van Essen, 2005). Results following PALS-B12 registration are shown
on a standard spherical 73,730-vertex representation (again ENR results are used as an
exemplar). This figure is extended to illustrate the SBR procedure across all raters (Fig. 2).
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Figure 2.
General framework of PALS-B12 registration procedure is shown across all raters. (A) Core

6 landmarks are displayed on the lateral (left panel) and medial (right panel) surface
representations. Individual subject example is shown with all landmarks marked on a
moderately inflated surface representation for ease of visual inspection. Example landmarks
are shown for: automated landmark identification (ALI), ALI following manual correction
(ALI-C), two trained human raters (R1 & R2), and an expert neuroanatomical rater (ENR).
(B) This process was then repeated for all subjects. Results across subjects are shown for all
five landmarks on a spherical representation for both lateral (left panel) and medial (right
panel) views. (C) All individual subject surfaces were then registered using a spherical
registration algorithm to the PALS-B12 atlas (Van Essen, 2005). Results following PALS-
B12 registration are shown on a standard spherical 73,730-node representation for both
lateral (left panel) and medial (right panel) views.
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Figure 3.

Distances in mm from the expert neuroanatomical rater (ENR) are shown across all raters
(ALI - automated landmark identification, R1 — Rater 1, R2 — Rater 2) and all landmarks
(central suclus — CeS, calcarine sulcus - CaS, dorsal component of the medial wall - MW-
dors, ventral component of the medial wall - MW-vent, superior temporal gyrus - STG, and
sylvian fissure — SF). Results are shown for both (A) left and (B) right hemispheres. All
distances were computed prior to SBR to avoid potentially obscuring differences post
registration to the PALS-B12 atlas.
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Spatial Variability of Landmarks 0ss Raters Prior to SBR

B ALl c D Rater 1

Figure4.

Spatial variability of ‘Core 6° landmarks prior to SBR is shown on a spherical configuration
for the (A) expert neuroanatomical rater (ENR), (B) automated landmark identification
(ALI), (C) ALI-Corrected, (D) Rater 1, and (E) Rater 2. The top panel shows the lateral
view with central sulcus, sylvian fissure and superior temporal gyrus displayed in yellow,
cyan and pink colors respectively. The bottom panel shows the medial view with calcarine
sulcus, medial wall dorsal segment and medial wall ventral segment displayed in orange,
dark and light purple respectively. The ‘clouds’ of variability allow for qualitative inspection
of similarity across raters prior to surface registration to the PALS-B12 atlas.
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Spatial Variability of Landmarks Across Raters Following SBR to ENR
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Figure5.

Spatial variability of ‘Core 6° landmarks following SBR to the PALS-B12 atlas is shown on
a spherical configuration for the (A) expert neuroanatomical rater (ENR), (B) automated
landmark identification (ALI), (C) ALI-Corrected, (D) Rater 1, and (E) Rater 2. The arrows
indicate that all raters were registered to the PALS-B12 atlas using the ENR deformation
parameters. The top panel shows the lateral view with central sulcus, sylvian fissure and
superior temporal gyrus displayed in yellow, cyan and pink colors respectively. The bottom
panel shows the medial view with calcarine sulcus, medial wall dorsal segment and medial
wall ventral segment displayed in orange, dark and light purple respectively. The “clouds’ of
variability allow for qualitative inspection of similarity and differences in landmark drawing
between ENR and each of the other raters. If a given rater achieved perfect precision relative
to the ENR for a given landmark, then the “‘cloud’ of variability would be minimal for that
landmark and would precisely match the ENR results.
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Figure6.

Mean 3D cortical distances following SBR to the PALS-B12 atlas is shown on a flattened
surface configuration relative to the expert neuroanatomical rater (ENR) for: (A) automated
landmark identification (ALI), (B) ALI-Corrected, (C) Rater 1, (D) Rater 2. Brighter colors
mark areas of greater mean 3D distance from the ENR. Critically, results illustrate
deviations for each rater from ENR once SBR was carried out separately for landmarks
generated by each rater (illustrated in Fig. 2).
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Hemisphere Asymmetry Results Across Raters
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Figure7.

Hemisphere asymmetry results are shown as t-statistic maps for (A) automated landmark
identification (ALI), (B) ALI-Corrected, (C) Rater 1, (D) Rater 2, and (E) expert
neuroanatomical rater (ENR). Significant asymmetry clusters are highlighted in black
borders. (F) Results of all raters are shown overlaid on the ENR-generated t-map. As in Fig.
6, results illustrate hemisphere asymmetry results for each rater once SBR was carried out
separately for landmarks generated by each rater (illustrated in Fig. 2).
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