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Abstract
During the last half-century, incidences of breast cancer have increased globally. Various factors
—genetic and environmental— have been implicated in the initiation and progression of this
disease. One potential environmental risk factor that has not received a lot of attention is the
exposure to heavy metals. While several mechanisms have been put forth describing how high
concentrations of heavy metals play a role in carcinogenesis, it is unclear whether chronic, low-
level exposure to certain heavy metals (i.e. cadmium and nickel), can directly result in the
development and progression of cancer. Cadmium and nickel have been hypothesized to play a
role in breast cancer development by acting as metalloestrogens— metals that bind to estrogen
receptors and mimic the actions of estrogen. Since the lifetime exposure to estrogen is a well-
established risk factor for breast cancer, anything that mimics its activity will likely contribute to
the etiology of the disease. However, heavy metals, depending on their concentration, are capable
of binding to a variety of proteins and may exert their toxicities by disrupting multiple cellular
functions, complicating the analysis of whether heavy metal-induced carcinogenesis is mediated
by the estrogen receptor. The purpose of this review is to discuss the various epidemiological, in
vivo, and in vitro studies that show a link between the heavy metals, cadmium and nickel, and
breast cancer development. We will particularly focus on the studies that test whether or not these
two metals act as metalloestrogens in order to assess the strength of the data supporting this
hypothesis.
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Introduction
Breast cancer is one of the most common malignancies in the United States. Approximately
1 in 8 women in the U.S. will develop invasive breast cancer (1), underscoring the
importance of understanding the factors that may contribute to the development of this
disease. Multiple studies suggest that both genetic and environmental factors contribute to
breast cancer development (2–4). Some of the environmental factors that have been
recognized as suspected risk factors for breast cancer include ionizing radiation, hormone
disruptors such as organohalogens, pesticides and environmental pollutants such as heavy
metals. Regarding the latter, increasing epidemiological evidence suggests a strong
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association between exposure to heavy metals and the initiation, promotion and progression
of breast cancer (5–8).

Heavy metals— which include arsenic, lead, mercury, cadmium, and nickel— are present
naturally in the environment in minute concentrations; however with the increased usage in
certain industrial processes such as smelting and electroplating, heavy metals have emerged
as an environmental contaminant of growing concern. These heavy metals tend to
accumulate in the body— a phenomenon called bioaccumulation (9). Bioaccumulation of
heavy metals in soft tissues interferes with normal physiological functions. Generally, these
heavy metals exert their toxic effects by forming complexes with organic compounds. When
heavy metals bind to nitrogen-, oxygen- or sulfur-containing groups on enzymes, for
example, they disrupt proper protein folding and thus can inactivate enzymes that function
in key metabolic processes (10). Increased exposure to heavy metals is associated with
impaired mitochondrial function, oxidative stress, DNA damage, deregulated cell growth
and cell death (11, 12).

Recent studies have suggested that certain heavy metals such as cadmium and nickel can
function as endocrine disruptors by mimicking the action of estrogens. As a result, these
metals are often referred to as metalloestrogens (11–13). Since estrogen itself plays an
important role in the development and progression of the disease, the ability of
metalloestrogens to bind to and activate the estrogen receptors suggests that these
compounds may also contribute to the development of breast cancer (5, 13). It is
hypothesized that metal-induced estrogen receptor activation is a crucial step in the
carcinogenic process (14). Therefore, the goal of this review is to examine the association
between cadmium and nickel exposure and the development and progression of breast
cancer. Specifically, we wish to determine (1) the carcinogenic potential of chronic, low-
level exposure to these heavy metals and (2) whether or not the carcinogenic potential of
cadmium and nickel is due, at least in part, to their ability to bind to estrogen receptors and
act as metalloestrogens.

The role of estrogen receptor α, β, and GPER in breast cancer progression
Estrogens, produced by the female ovaries, play major roles in regulating the developmental
processes of both normal and neoplastic breast epithelium. Estrogens are primarily
synthesized during a female’s reproductive years to promote the growth and differentiation
of sex tissues and organs in the reproductive system. They also play a role in brain function,
bone maintenance and the accumulation of adipose tissue (15). The effects of estrogen are
mediated by two types of estrogen receptor (ER)-regulated pathways – (1) the nuclear
estrogen receptors (nER), which when activated translocate to the nucleus to function as
transcription factors, and (2) the membrane estrogen receptors (mER), which are located on
the plasma membrane or within the membrane of the endoplasmic reticulum (16). The
deregulation of estrogenic pathways can lead to elevated transcriptional activity that may
contribute to the development of cancer. Removal of both ovaries has been shown to reduce
breast cancer risk, underscoring the importance of estrogen in the development of breast
cancers, especially in cancers that express the estrogen receptor (ER+). The factors that
contribute to increased cell proliferation of ER+ breast cancer include elevated levels of
endogenous estrogen, increased exposure to pharmaceutical and environmental estrogens
(17), and deregulated expression of ERs in the cell, which can lead to abnormal expression
of genes associated with cell growth. Therefore, overexposure to estrogen and the
overexpression of ER can both contribute to the etiology of breast cancer (18).
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More than 70% of primary breast cancers in women are nERα+ and show estrogen receptor-
dependent growth (19–21). ERα and ERβ are nuclear receptors that display considerable
homology in the DNA-binding and ligand-binding domains but vary greatly in the NH2-
terminal transactivation AF-1(activation function-1) domains (Fig. 1) (22, 23). Both
isoforms regulate transcription through classical and nonclassical pathways. Through the
classical mode of ER signaling, AF-1 functions in a cell- and promoter-specific manner to
enhance the overall transcriptional response of ER (24). ERα and/or ERβ then are activated
by their ligand, estradiol, with similar affinities and bind directly to the the same consensus
estrogen response element (ERE) (Fig 2) in promoter or enhancer regions of target genes,
which is followed by recruitment of the coregulators (25). Target genes regulated by this
classical pathway include breast cancer marker gene trefoil factor 1 (TFF1 or pS2),
cathepsin D (CTD), cyclin D1, insulin-like growth factor-binding protein 1 (IGFBP1),
lactoferrin (LTF) and prolactin (PRL). Additionally, ER can also function through a
nonclassical pathway by cross-talking with other transcription factors (26), such as activator
protein-1 (AP-1), Sp1 and NF-κB. This cross-talk allows estrogen receptor to regulate genes
that do not contain an ERE, thereby increasing the number of genes that ER modulates (23,
27–33). Many of these transcription factors regulate expression of genes crucial for cell
cycle progression, migration, proliferation and apoptosis; and therefore all can contribute to
breast carcinogenesis. Examples of target genes studied extensively in breast cancer research
include cyclin D1, c-myc and IGF-1.

ERα and ERβ seem to display similar ligand-dependent transcriptional functions and yet
appear to play different roles in breast cancer progression. Although ERα has long been
established as an important player in promoting the development and progression of breast
cancer (34, 35), the link between ERβ and breast cancer is unclear due to conflicting data
and the complexity of the ERβ isoforms. While some studies have suggested that the
expression of ERβ is indicative of more advanced tumors (36–38), data from other studies
have indicated that ERβ may play a protective role in breast cancer by increasing apoptosis
in the presence of antiestrogens (39–41). Thus, much of what we know about ER-related
breast cancer has focused largely on ERα. In a study performed by Holst et al., 20.6% of
2,000 clinical breast cancer samples showed an amplification of the ERα gene (ESR1) (42).
Of those tumor samples, 99% showed an overexpression of the ERα protein, suggesting the
importance of ERα in breast cancer development. Consequently, reducing estrogen levels or
estrogen receptor activity through the administration of anti-estrogen compounds has been
used to treat breast cancer patients.

In addition to the genomic actions mediated by nuclear estrogen receptors, estrogen also
stimulates nongenomic signaling through the activation of one membrane form of estrogen
receptor, GPR30 (GPER). With mERs, estrogens can act without directly binding onto DNA
or altering gene expression. Filardo et al. was the first to show a function of GPR30 in
estrogen signaling (43); and in 2005, GPR30 was finally identified as a bona fide estogen
receptor (44, 45). GPR30 is a seven-transmembrane-spanning receptor reported to be located
in the plasma membrane (45–47) and the endoplasmic reticulum (44). GPR30 functions by
specifically binding to estrogen and causing rapid intracellular signaling and an activation of
a downstream cascade, which includes epidermal growth factor release (EGFR) activation
and increased intracellular cyclic AMP, leading to activation of transcriptional activities
necessary for proliferation (Fig 2) (43, 47–49). Thus, EGFR plays a criticial role in
regulating normal cell growth and physiology (50). Other cellular responses mediated by
EGFR include activation of mitogen-activate protein kinsases MAPKs (such as extracellular
signal-regulated kinase Erk-1 and Erk-2) which in turn phosphorylate numerous proteins
that alter cell structure and regulate cell cycle checkpoints and gene transcription (51).
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In 2009, Liu et al. showed that GPR30 was expressed in 37 of 74 cases of invasive ductal
breast carcinomas. The binding of estrogen to GPR30 has also been shown to induce breast
cancer cell proliferation and migration in vitro (52, 53). This increased cell proliferation has
been attributed to the rapid activation of Erk-1/2, a downstream effector of growth factor
signaling (54, 55). The dysregulation of the EGFR to MAPK pathway may have particular
significance to breast carcinogenesis. Both Filardo et al. and Sivaraman et al. hypothesized
that MAPKs may provide a mechanism whereby hyperactive growth factor signaling may
activate estrogen-dependent breast tumor growth (56, 57). However, other researchers have
contradicted this hypothesis by implicating GPR30 in apoptosis and cell cycle arrest (58–
60). Although the role of GPR30 in breast cancer remains unclear, the combined effects of
nER and mER activation can possibly lead to increases in cell cycle progression and cell
proliferation that are associated with breast carciogenesis (Fig 2) (61).

Heavy metals— cadmium and nickel
Cadmium exists naturally in the earth’s crust. However, the most common forms of
cadmium found in the environment are salts, comprised of sulfides, chlorides or oxides.
These compounds are found in soil, water, rock sediments and the atmosphere at varying
concentrations. Cadmium is found in ocean waters at 0.1μg/liter or less, in river water
between <1 and 13.5ng/liter, and in the soil of non-polluted areas ranging from 0.2 to 0.4
mg/kg (62, 63). Atmospheric levels of cadmium range up to 5ng/m3 in rural areas, from
0.005 to 0.015 μg/m3 in urban areas and up to 0.06μg/m3in industrial areas (62, 63).
Cadmium is released as a byproduct of various industrial activities, including the mining,
galvanizing, and smelting of other metals like zinc, lead and copper. Cadmium is used to
produce batteries, fertilizers, and paint pigments. Roughly 15,000 tons of cadmium are
produced worldwide (64). Human exposure to cadmium is generally due to consumption of
contaminated water or food or inhalation of cigarette smoke or fumes from smoldering
metal. In 1989 and 1993, the World Health Organization (WHO) set the safe intake limit to
7μg cadmium/week/kg body weight.

Nickel is also a heavy metal and is widely distributed in the environment. It is found in
agricultural soil at concentrations ranging from 3 to 1000 mg/kg and at concentrations of 1.5
to 8.5 mg/kg in forest floor samples collected from the northeastern United States (65). A
small amount of nickel occurs naturally in water at levels of 0.228–0.693 μg/liter in ocean
water and generally less than 2 μg/liter in fresh water (65). Nickel enters the human body
through inhalation, ingestion and absorption. For the general population, the most common
exposure to nickel is through the consumption of certain foods such as cacao products and
nuts, which contain 10 and 3 mg nickel/kg, respectively (66). According to the WHO, the
safe dietary intake of nickel is 4.2 μg Ni/kg/day (67).

Epidemiological studies linking cadmium and nickel exposure to breast
cancer development

The International Agency for Research on Cancer (IARC) and the United States National
Toxicology Program (NTP) designate cadmium as a human carcinogen (68–72). Cadmium
has been associated with cancers of the pulmonary system, prostate, liver, hemapoetic
system, urinary bladder and stomach and is also a multi-tissue animal carcinogen (23, 73–
75). Particularly, cadmium exposure has also been associated with increased incidences of
breast cancer development (13, 76). In a recent study carried out by Julin et al., dietary
cadmium exposure was positively linked to breast cancer development in postmenopausal
women (8). Antila et al. found high concentrations of cadmium (ranging from 3.2 to 86.9
μg/g) in breast tissue from breast cancer patients (6). Additionally, a case study published by
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McElroy and colleagues recorded the cadmium levels in urine samples of 246 women
diagnosed with breast cancer and of 254 controls (7). The study demonstrated a positive
correlation between cadmium urine levels and breast cancer risk. Another case study carried
by Strumylaite and colleagues found significantly higher levels of cadmium in malignant
breast tumor tissue (0.053 μg/g) than in normal breast tissue (0.02 μg/g) (77). Other studies
have confirmed this finding (78, 79). Although these data demonstrate a correlation between
cadmium levels and breast cancer, they fall short at implicating cadmium as the etiological
agent.

Minute amounts of nickel are considered nontoxic. In general, the average nickel
concentration in urine ranges from 1 to 3 μg/g creatinine (80). However, increased exposure
to nickel compounds due to its increased usage in industrial processes has been shown to
negatively impact the development of mammalian cells, leading to increased incidences of
breast cancer development (13, 81). In fact, certain nickel compounds have been deemed
carcinogenic by the IARC since the 1970s (82, 83). A recent study comparing 20 breast
cancer patients with 8 healthy individuals showed higher levels of cadmium, chromium,
lead, and nickel in the 20 breast cancer tissue biopsies than in the 8 healthy biopsies (78).
These data supported an earlier study by Sherif and colleagues that reported a significant
(albeit small) increase in nickel concentration in breast tumor tissue compared to normal
breast tissue (84) indicating a positive correlation between increased nickel levels and breast
cancer development.

Evidence of cadmium and nickel acting as metalloestrogens during breast
cancer development

As mentioned previously, metalloestrogens are defined as a group of heavy metals that
mimic the physiological actions of estrogen. The precise mechanism behind this mimicry is
uncertain. Recent studies have suggested that metalloestrogens may function as endocrine
disruptors, perturbing the normal hormonal cycle and altering the development of the
mammary gland through both the classical and nonclassical ER binding pathways
aforementioned (14, 85). However, most cadmium studies have largely focused on acute
cadmium exposures, and little is known about the effects of chronic, low-level cadmium
exposure on human breast cancer development and/or progression (Table 1). Because the
half-life of cadmium ranges from 12 to 30 years (86–88) and the body does not possess an
active mechanism for cadmium elimination, it remains in the body. Benbrahim-Tallaa and
colleagues have shown that more than 40 weeks of exposure to 2.5μM cadmium
transformed normal human breast epithelial cells MCF-10A into cells displaying a basal-like
phenotype. The cells showed an increase in colony formation and invasive potential, and a
loss of contact inhibition (89). Animal studies (Table 1) have shown that acute cadmium
exposure increases uterine weight, induces changes in the uterine lining, and increases the
density of epithelial cells in the mammary glands, all of which are early signs of breast
tumorigenesis (85, 90–92). Additionally, in vitro experiments have shown that cadmium can
promote ER+ breast cancer cell growth, and this is found to be dependent on ERα (14, 93–
96). According to Stoica et al. cadmium binds to ERα— with a KD of 4.5 × 10−10 M—and
blocks the binding of 17β-estradiol (14). While the presence of cadmium does not alter the
estrogen receptors’ KD for estrogen (~2.9 × 10−10 M), it does decrease the total number of
available estrogen binding sites. Thus, since cadmium does not alter the binding affinity of
estradiol to the receptor, it is thought to interfere with estradiol binding in a noncompetitive
manner. In a study carried out by our lab, concentrations as low as 1μM Cd induced
signficant cell proliferation in three ERα-positive breast cancer cell lines (MCF-7, T-47D
and ZR-75-1) after 2, 4 and 6 days of exposure (96). In this same study, we also deduced
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that the nonclassical ER target genes— CycD1, c-myc and CTD— were up-regulated by Cd.
Subsequent silencing of ERα or blocking the receptor with anti-estrogens mitigated the
stimulatory affect of cadmium on ER+ breast cancer cells, thus showing requirement of
ERα in mediating the cellular effects of cadmium (96). Similarly, several other studies have
demonstrated that cadmium-induced gene expression is also dependent on the estrogen
recpetor (14, 93, 97). Recent evidence also suggests that cadmium can initiate mitogenic
actions through the binding of the membrane-bound form of estrogen receptor, GPR30, via
the Erk-1/-2 cascading pathway (Fig. 2) (98, 99). Yu et al. showed that cadmium induces a
proliferative response at concentrations ranging from 50 to 500nM in ER-negative/GPR30-
positive SKBR3 breast cancer cells, but no such response was observed in a GPR30-mutant
cell line. The lowest exposure of 50nM is comparable to the blood Cd level (140nM)
reported by Fell et al. in occupationally-exposed people (100). These studies provide another
mechanism for how cadmium may promote mammary gland carcinogenesis via an estrogen
receptor.

Although animal studies have revealed that over-exposure to nickel compounds can lead to
tumor formation in multiple tissue sites such studies have failed to link nickel with breast
cancer development in experimental animals (Table 2) (101–103). Inhalation of metallic
nickel (at a concentration of 15 mg/m3 for six hours/day, four to five days per week for 21
months) revealed neoplastic growth within the lungs of Wistar and Behesda black rats (104).
Additionally, Ivankovic et al. observed fibrosacromas, mesotheliomas, and/or
rhabdomyosarcomas in 10% of Syrian golden hamsters exposed to a single high dose of
nickel powder (105). No tumors were found in the negative control group. Such studies
provide evidence that nickel exposure increases the incidence of tumors in several species
and at multiple tissue sites, but not specifically breast tissue.

In spite of the lack of evidence from animal studies, other studies have suggested that nickel
(like cadmium) may function as a metalloestrogen and alter estrogen receptor activity (Table
2) (13, 106–108). In vitro studies have shown the ability of nickel to mimic the effects of
estradiol on cell proliferation and block estradiol binding to ERα (13). MCF-7 cells treated
with either 10−9 M estradiol or 10−6 M Ni shows 2–5 fold increase in cell growth.
Additionally, as with cadmium, the presence of nickel does not affect the receptor’s KD yet
does decrease the number of estradiol binding sites, suggesting that nickel also interferes
with estradiol binding in a noncompetitive manner (13). As with cadmium, the binding of
nickel to the estrogen receptor appears to induce the expression of genes associated with cell
growth (13). Although few studies have analyzed the effects of nickel on gene expression in
mammary cells (Table 2), the effects of nickel has been widely studied in other cell types
(109–113). Data from microarray analysis of nickel-transformed mouse fibroblasts revealed
an overexpression of cyclin D1 (110), a gene that has been shown to play an important role
in breast cancer cell growth (114–116). Furthermore, studies with human pulmonary cells
suggest that nickel has the ability to increase cyclin D1, cyclin E and cyclin B1 expression
(111). Despite the increased expression of cyclin D1 and cyclin E, which has been shown to
promote the G1/S transition, the induction of cyclin B1 resulted in the induction of M-phase
arrest and inhibited cell growth (111). Similarly, Ouyang et al. also demonstrated that nickel
inhibits cell growth, this time by decreasing the expression of cyclin D1. The discrepancy in
these studies may reflect both the different model systems (breast and fibroblast vs. lung)
and concentrations of nickel used in these studies.
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Molecular interactions between estrogen receptors and the heavy metals,
cadmium and nickel

Several researchers have attempted to map out the cadmium interaction domain within the
estrogen receptor in order to better understand how cadmium functions as an estrogen
receptor modulator. However, a consensus of where cadmium binds has not been
determined. The two possibilities are that (1) cadmium binds to the ligand binding domain
(LBD), and (2) cadmium may replace the zinc in the DNA binding domain. In one study,
specific amino acids of the LBD, including C381, C447, E523, H524 and D538, were
identified as possible cadmium interaction sites (14). However, further analysis using
chemical modification and mass spectroscopy identified several other cysteine (C) residues
as having high affinities for the divalent form of cadmium, and these amino acids were not
the same as those previously identified (14, 117). Additionally, Glu (E), His (H) and Asp
(D) residues were not protected from chemical modification when the ER was combined
with cadmium, thus suggesting these residues actually have low affinity for Cd2+, a finding
that has been confirmed in studies of other metallo-proteins (117–119). Much less is known
about the binding between nickel and the estrogen receptors. An analysis by Martin and
colleagues proposed that nickel activates the estrogen receptor through the LBD of ERα
(13). The LBD of ERα includes C381, C417, C447, and C530, and nickel is believed to
interact with C381 and C447 to activate ERα (13).

Another prospective cadmium-binding site is the DNA binding domain, which is logical
since the coordination chemistry of Cd2+ is similar to that Zn2+. Cd2+ has the ability to
replace Zn2+ because they have similar chemical properties (120). In vitro studies have
shown that the replacement of Zn with Cd slightly increases the DNA binding affinity of
ERα (95, 121–123). This may translate to changes in transcriptional activity. However,
further studies are necessary to map the actual cadmium binding site and this will offer
further insights into how cadmium functions as an estrogen receptor modulator. Similar in
vitro studies have indicated that nickel can also replace Zn2+ in the DNA binding domains
of the estrogen receptors (95, 123), but this replacement results in a decreased DNA binding
affinity, likely due to the difference in the coordination chemistry of zinc (tetrahedral) and
nickel (octahedral), which may in turn cause a conformational change that may decrease
DNA binding. This suggests that the mechanisms of how nickel and cadmium function as
metalloestrogens are likely different.

Other mechanisms of cadmium- or nickel-induced carcinogenesis
Chromatin modifications

Attempting to elucidate whether or not certain heavy metals contribute to breast cancer
progression via estrogen receptor binding is complicated by the fact that heavy metals are
capable of binding to a plethora of macromolecules and cellular structures. Above a certain
concentration threshold, many heavy metals, such as copper, mercury, and silver, are very
effective antimicrobial agents, as they bind to and inactivate various proteins and enzymes.
Similarly, heavy metal-induced carcinogenesis can result from the binding of heavy metals
to proteins other than the estrogen receptor. Nickel, for example, plays significant roles in
chromatin remodeling, which is a proposed mechanism for nickel-induced carcinogenicity
(124–130). Specifically, exposure of cells to nickel has been reported to alter the acetylation,
methylation and ubiquitination of histone proteins (124, 125, 131), which in turn affects
transcription. In general, histone acetylation is associated with gene activation and histone
deacetylation results in gene repression (132–134). Methylation at histones H3K4, H3K36,
and H3K79 has been linked to transcription activation, whereas methylation at H3K9,
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H3K27, and H4K20 has been associated with gene repression (94, 134–136). Studies
describing nickel-induced epigenetic changes have reported a global loss of both histone
acetylation and H3K4 methylation and a global increase in H3K9 methylation, all of which
are associated with gene silencing. These findings, however, contradict the observation that
exposure to low concentrations of nickel results in not only gene repression but also gene
activation (124–127, 134). Furthermore, pre-treatment of cells with trichostatin A, a histone
deacetylase inhibitor, significantly reduces nickel-induced cell transformation, suggesting
that histone deacetylation is an important step in nickel-mediated carcinogenesis.

In addition to nickel-induced histone modifications, nickel has been shown to preferentially
bind to heterochromatin by replacing the Mg2+ ions that are naturally found in high
concentrations and thus play an important role in the condensation of heterochromatin (126).
It is surmised that nickel may lead to greater chromatin condensation, perhaps even
promoting heterochromatin formation in critical parts of the DNA, such as those regions
containing tumor suppressor genes (137). The nickel accumulated in the heterochromatin
regions may also induce oxidative damage in the DNA via a Fenton-like reaction, further
disrupting gene expression and perhaps contributing to carcinogenesis (138).

Nickel has also been shown to increase DNA methylation, which is also associated with
gene silencing (126, 139). More specifically, nickel exposure has been shown to alter the
methylation patterns of the p53 and p16 promoters (139). Silencing such key tumor
suppressor genes likely serves as an important mechanism of nickel-induced carcinogenesis
(139, 140). While many of these studies were carried out in other cancer types (i.e. lung),
similar mechanisms of nickel-induced carcinogenesis are expected to be involved in breast
cancer cells (140, 141). Furthermore, some of the mechanisms of nickel-induced chromatin
modification described above (such as histone deacetylation) may actually involve the
estrogen receptor and thus lend further support to the hypothesis that nickel does indeed act
as a metalloestrogen in breast cancer development. Multiple histone acetylases (HATs) and
deacetylases (HDACs) are known to interact with the estrogen receptor (CBP, p300, p/CAF,
p160 SRC family of coactivators, and HDAC 1and 6) (142–144), so it is possible that the
interaction between nickel and ERα mediates the recruitment of chromatin-modifying
proteins to the promoters of nickel-induced/repressed genes.

Unlike nickel, few studies have linked cadmium to epigenetic modifications, and such
modifications are not likely a major mechanism of cadmium-induced carcinogenesis. Only a
few studies have suggested that exposure to cadmium alters the global DNA methylation
patterns (89, 145, 146). More specifically, acute cadmium exposure has been shown to
induce hypomethylation, while chronic cadmium exposure results in hypermethylation
(129). Changes in the methylation patterns of cells exposed to cadmium were mediated by
altering the activity of DNA methyltransferase (145). In support of these observations,
Benbrahim-Tallaa et al. showed that a 10-week exposure to 10μM cadmium was able to
increase global DNA methylation and induce malignant transformation in prostate epithelial
cells. Contrary to these observations, Huang et al. reported that chronic exposure of
cadmium leads to global hypomethylation and cell proliferation in K562 leukemia cells
(146). While these differences may be attributed to different model systems, it does suggest
that further studies on cadmium’s affect on DNA methylation are necessary, especially in
breast cancer cells. Furthermore, there appear to be no studies linking cadmium exposure to
histone modifications, underscoring the need for further studies in this area of metal-induced
carcinogenesis.
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Aneuploidy
Aneuploidy— the phenomenon in which a cell possesses an abnormal number of
chromosomes— is found in most cancerous lesions and is believed to play a significant role
in cancer progression (147–150). In fact, some researchers have found evidence supporting
the contention that aneuploidy is involved in the early stages— if not the actual initiation—
of cancer cell development (151–153). Several studies have demonstrated the aneugenic
potential of heavy metals (154–158). In one particular study carried out by Seoane and
Dulout, cadmium and nickel salts such as CdCl2 (1–4μM), CdSO4 (0.033–0.134μM), NiCl2
(13–54μM), and NiSO4 (200–800μM) all induced aneuploidy in human fibroblast cells
(159). The precise molecular mechanism behind this aneugenic effect, however, has not
been determined.

Interestingly, estrogen itself has been shown to induce aneuploidy. In a study published in
2002 by Li et al., estrogen-induced mammary gland tumors (MGTs) in female ACT rats
were found to have a significantly higher degree of aneuploidy than those MGTs induced by
chemical carcinogens (153). Additionally, this same study revealed that these estrogen-
induced MGTs greatly resembled invasive human ductal carcinoma in situ (DCIS) breast
cancer in terms of degree of aneuploidy and increased amplification of the c-myc gene. An
earlier in vitro study by Epe and colleagues demonstrated that peroxidative estrogen
metabolites could directly interact with the tubulin protein and thus interfere with the
assembly of microtubules, potentially affecting proper mitotic spindle formation (160).
More relevant to this review, however, is a recent study by Hontz et al. which showed that
estrogen (more specifically, estradiol-17β) increased expression of the mitotic kinases
Aurora A and B via an ERα-dependent pathway (161). High levels of Aurora A and B lead
to aneuploidy and consequently are believed to contribute to cancer progression (162–164).
Specifically, Aurora A overexpression and aneuploidy have been found in primary invasive
ductal breast cancer (161). Although more studies need to be done to determine exactly how
cadmium and nickel lead to aneuploidy, the discovery that estrogen can induce aneuploidy
through the estrogen receptor suggests that the aneugenic effect of cadmium and nickel
could at least partially be due to their ability to bind to the estrogen receptor and act as
metalloestrogens.

Conclusion
Breast cancer— like all cancers— is a complex disease, from its initiation to its progression.
No two cases are alike, and the factors that contribute to its development can vary
significantly between patients. Certain risk factors, such as increased exposure to estrogen,
are well-established as integral to the development of most types of breast cancer. However,
the rising incidence of breast cancer cases (currently 25% of all female cancers in the U.S.
are breast cancers) has driven scientists to search for other factors that may explain this
alarming increase.

Environmental contaminants such as heavy metals have emerged as a possible risk factor
due to their increased usage in certain industrial processes, as mentioned previously. There
is actually little debate as to whether or not heavy metals can cause cancer. Certain
cadmium, nickel, and even arsenic compounds have been deemed carcinogenic by the IARC
since the late 1970’s and 1980’s (68, 82, 165, 166). Of these heavy metals, however, we
found that it was cadmium which has the strongest correlation with breast cancer
development. Most of the epidemiological, in vivo, and in vitro studies we analyzed solidly
supported the link between increased cadmium exposure and breast cancer development. For
nickel, the evidence, though supportive, was much smaller. Epidemiological studies linking
nickel to breast cancer were positive but few in number, and there were virtually no animal
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studies testing the effect of increased nickel exposure to breast cancer development. There
were some very compelling in vitro studies involving nickel, particularly those carried out
by Martin and colleagues, which showed that nickel can bind to the estrogen receptor in
breast cancer cells and induce the expression of genes associated with cell growth (13).
However, such studies are also small in number (Table 2). Even sketchier is the evidence
linking arsenic to breast cancer. Although an Australian case study conducted by Hinwood
et al. reported that 40% of the cancers caused by arsenic-contaminated drinking water were
breast cancers (167, 168), in vivo and in vitro studies indicate that arsenic disrupts ER
function and actually suppresses estrogen signaling pathway (169, 170)— findings that, in
our view, effectively argue against arsenic as a potential metalloestrogen.

The main goal of this review was to determine if there is enough evidence to support the
hypothesis that the heavy metals, cadmium and nickel at chronic, low-level concentrations
can induce breast cancer by mimicking estrogen in the estrogen receptor signaling pathway,
thus acting as metalloestrogens. We found that most studies analyzed the effects of acute
heavy metal exposure on breast cancer development and progression (Tables 1 and 2). There
is a general consensus that exposure to cadmium or nickel at levels greatly exceeding the
concentration limits dictated by the World Health Organization (WHO) is exceedingly
dangerous due to the promiscuous protein-binding patterns of heavy metals when they are at
high enough concentrations. Our contention, however, is that chronic exposure to cadmium
and nickel at concentrations well below WHO limits is still dangerous due to
bioaccumulation and the peculiarly high affinity for specific proteins like the estrogen
receptors.

Evidence obtained from in vivo and in vitro studies strongly suggests that cadmium can
behave as a metalloestrogen. Cadmium has been shown to bind to ERα (with a KD nearly
equivalent to that of estradiol), activate it, and induce expression of certain ER target genes.
In addition, cadmium induces other estrogen-like effects which include: increased uterine
weight; changes in uterine lining; increased epithelial cell density in mammary glands;
increased cell proliferation; and increased aneuploidy. As strong as these data are, however,
we feel that more experiments testing chronic, low-level cadmium exposure are needed to
help confirm that cadmium-induced breast carcinogenesis is due, at least in part, to
cadmium’s estrogenic potential. Currently, there are only a few studies on the effects of
prolonged exposure to low levels of cadmium on breast cancer development and progression
(Table 1). An additional weakness in the literature is the fact that the cadmium-binding site
on ERα has not truly been determined yet. Additional structural studies— perhaps involving
NMR or X-ray crystallography combined with protein modeling and computional chemistry
— could potentially aid in the future development of therapeutics that might counteract
cadmium’s effects.

Though we did not find a single study arguing against nickel serving as a metalloestrogen in
breast cancer development, the number of studies providing support for this hypothesis was
scant (Table 2). As with cadmium, nickel has been shown to bind to ERα, promote cell
proliferation, and induce aneuploidy. However, many more studies at the animal, cellular,
and molecular levels need to be carried out to effectively determine if and how low-dose,
chronic nickel exposure can lead to breast cancer. Since much less is known about the
nickel-binding site than the cadmium-binding site on ERα, more structural studies are
required as well to confirm nickel’s role as a metalloestrogen.

Finally, it is also worth noting that both cadmium and nickel were found in various human
samples including urine, hair, blood and breast tumor tissues (Table 3) (79, 84, 171–173).
While healthy individuals had detectable levels of heavy metals, significantly higher levels
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of cadmium and nickel were found in patients with breast cancer (Table 3). The studies
presented in Table 3 further argue the need for additional studies on chronic exposures to
these metals at low concentrations. Also lacking in the literature are any studies evaluating
whether heavy metal exposure during a critical developmental window— e.g. prenatal,
puberty, or postmenopausal— would lead to an increased risk of breast cancer. Many reports
do indicate a positive correlation between certain childhood cancers and prenatal exposure
to endocrine disruptors such as diethylstilbestrol (DES) and 2,3,7,8-tetrachlorodibenzo-p-
dioxin (TCDD) (174, 175). Animal studies have shown that rats exposed to tamoxifen
during late gestation produce offspring with a greater sensitivity to DMBA-induced breast
cancer (176). Epidemiological analyses have reported a positive correlation between
prenatal exposure to elevated levels of natural estrogens and breast cancer (177); and strong
evidence has implicated hormone replacement therapy (HRT) in increasing the breast cancer
risk in peri- and postmenopausal women (178). Although a recently published study by Julin
et al. indicated a correlation between dietary cadmium exposure and breast cancer risk in
postmenopausal women, no other age group was analyzed (8). Thus, until more
comprehensive analyses are carried out, it is not clear that exposure to cadmium or nickel
during certain critical developmental periods increases breast cancer risk. However, despite
the fact that more studies need to be done, there is sufficient evidence to warrant great
concern over the increasing emission of heavy metals like cadmium and nickel into the
environment. Acute exposures aside, the data suggest that even minimal levels of cadmium
and nickel are potentially hazardous and could negatively impact the health of thousands of
people.
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Figure 1. ERα and ERβ are homologous in their functional domains
The two ER isoforms display a high degree of homology in the DNA binding domain
(DBD) and ligand binding domain (LBD), but are highly variable in the NH2-terminal
transactivation AF-1 domain, also referred to as the A/B hypervariable domain. Percentages
indicate percent identity between the two receptors. Figure is adapted from the review by
Gustafsson (179, 180).
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Figure 2. Cross-talking between ERα/ERβ and GPR30 signaling pathways
Estrogen can activate both long-term genomic (left) and rapid nongenomic (right) pathways
leading to the transcription of downstream genes necessary for cell growth and development.
ERα/ERβ activation can lead to both direct transcription activation in the nucleus or via
rapid signaling of mitogen-activated protein kinases (MAPKs). In contrast, GPR30 cannot
directly activate transcription processes but can rapidily activate nongenomic signaling
including the activation of MAPKs resulting in the expression of transcription factors such
as c-fos. cAMP is also produced via GPR30 activation. ERα/ERβ nd GPR30 signaling can
induce both positive and negative effects on one another, depending upon the signaling
components in the cell at a given time. Several other regulatory pathways are possible but
not shown. Figure adapted from Prossnitz 2008 (181). ERE, estrogen response element;
SRE, serum response element; CRE, cAMP response element.
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