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The ability to generate tailor-made, functionalized polyester
(polyhydroxyalkanoate, PHA) beads in bacteria by harnessing
their natural carbon-storage granule production system is an
exciting recent development. Proteins that naturally attach to
the polyester granule core were rationally engineered to
enable in vivo production of PHA beads which are applicable
in bioseparation, protein purification, enzyme immobilization
and diagnostics and which show advantageous properties
toward the development of safe and efficient particulate
vaccines. These beads are recombinantly produced as fully
functional, insoluble polyester inclusions that can be easily
separated from the cell. This simple one-step production of
functionalized beads provides a tantalizing alternative to
current commercial functional beads, for which proteins must
be expressed, purified and then chemically attached to solid
supports. The recent success in generating antigen-displaying
PHA granules in the food-grade bacterium Lactococcus lactis
capable of mediating protective immunity against Myco-
bacterium tuberculosis infection highlights the promise and
flexibility of this new technology.

Introduction

Bacterial polymer inclusions. Many bacteria and archaea are
capable of producing polymer inclusions, which serve as
stockpiled carbon storage material during periods of nutrient
imbalance.1 These can be made of glycogen (polysaccharide),
polyphosphate (polyanhydride), cyanophycin (polyamide), or
polyhydroxyalkanoate (PHA, polyester).2 Bacterial polyester
granules have generated considerable industrial interest; PHA
produced by bacterial fermentation using renewable and waste
materials are a desirable alternative to petroleum-based plastics.
Additionally, the biodegradability and biocompatibility of PHA
make them attractive for medical applications.2-4 Recently, the
discovery that PHA inclusions can be propagated as stable beads
and can be engineered to show a variety of functionalities has
created significant commercial interest.2-6

PHA synthesis. The key enzyme for PHA biosynthesis is
the PHA synthase, which polymerizes (R)-3-hydroxyacyl-CoA
thioesters into polyester with the concomitant release of coenzyme

A. There are several classes of PHA synthases, which preferentially
utilize different carbon chain length (R)-3-hydroxyacyl-CoA
precursors, thus generating a variety of polyesters with differing
side chain lengths and consequently different material properties.7

The Ralstonia eutropha enzyme PhaC is the most characterized
PHA synthase. It catalyzes the formation of the polyester poly(3-
hydroxybutyrate) (PHB) from (R)-3-hydroxybutyryl-CoA mono-
mers. The (R)-3-hydroxybutyryl-CoA molecule is produced by
two other enzymes encoded in the R. eutropha PHB biosynthesis
operon: PhaA, a β-kethothiolase which condenses two molecules
of acetyl-CoA into acetoacetyl-CoA, and PhaB, an NADPH-
dependent acetoacetyl-CoA reductase which reduces acetoacetyl-
CoA into the (R)-3-hydroxybutyryl-CoA utilized by the synthase
PhaC. Together, these three proteins, PhaA, PhaB and PhaC,
are sufficient for production of PHB granules in the presence of
acetyl-CoA.

PHA granule self-assembly and structure. The PHA granule
consists primarily of an amorphous, hydrophobic polyester core
surrounded by an outer layer of proteins. It has been suggested
that phospholipids might contribute to this outer layer; however,
no discrimination between isolation dependent contamination
and inherent presence has been undertaken. Several models for
particle formation have been described.8,9 The clearest evidence
supports the micelle model, by which the amphipathic nature of
the PHA synthase, once it has begun synthesizing its attached
hydrophobic polyester chain, is sufficient for granule formation
(Fig. 1). Granules readily form in vitro10 in the absence of any
cellular elements involved in other models. In vivo, granule
formation is localized, occurring at cell poles11,12 or at “central
mediation elements.”13

In natural PHA granules, PHA synthases, phasins, depoly-
merases and various regulator proteins coat the bead surface. In
R. eutropha, these include the genetic regulator PhaR and the
granule-coating structural phasin PhaP, which together affect the
number and size of granules.14 In contrast to the other proteins
which are attached to the bead surface via hydrophobic inter-
actions, the PHA synthase PhaC remains covalently attached to
the granule, anchored by its bound polyester chain. This presents
a unique natural cross-link of a protein to a polymeric support
structure.

The stability of the PHA beads outside of the cell, combined
with the covalent attachment of the PHA synthase protein
and/or the tight binding of the phasin proteins to the bead
surface, has recently been exploited for generating functionalized
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nano-/micro-beads. Functional proteins of interest are produced
as genetic fusions to the PhaC synthase and/or PhaP phasin
proteins. When these proteins are expressed in the cell, granules
form with the fusion proteins stably displayed on the granule
surface, resulting in one-step production of functionalized beads.
This process generates engineered biopolyester beads that are
capable of binding IgG,15-17 inorganic substrates18 and biotin,19

displaying target antigens,20-23 catalyzing enzymatic reactions,24-26

acting as vaccines,27-29 enabling production of purified pro-
teins30-32 and diagnostic imaging.11,12,18,21,23 The biobased, bio-
degradable and biocompatible properties of these granules make
them an attractive alternative to chemically manufactured beads.

Recombinant Production of PHB Inclusions

E. coli. Most of the research on recombinantly produced PHB
inclusions as functional beads uses E. coli to express the phaCAB
(PHB biosynthesis) operon from R. eutropha and, if required, the
phaP gene from R. eutropha. For production of most of the
polyester beads described below, the PHB synthase gene (phaC)
from R. eutropha was cloned into the pET14b expression vector
under the control of the T7 promoter,28 and the phaA and phaB
genes mediating synthesis of (R)-3-hydroxybutyryl-CoA were
cloned into a separate vector under the control of the lac pro-
moter.33 Upon IPTG induction and provision with an excess
carbon source (e.g., glucose), recombinant E. coli BL21(DE3)

harboring these plasmids readily formed PHB inclusions, which
were separated from the cell by lysis and gradient centrifugation.18

Granule formation can be conveniently monitored in vivo by
staining cells with the fluorescent lipophilic dye Nile red.34

The extensive understanding of E. coli genetics and metabo-
lism, its long-established use for large-scale recombinant protein
production, and the many strains available for specific recom-
binant protein features make E. coli a very adaptable host for PHA
bead bioengineering, and it has been the primary host for
functionalized recombinant PHB bead production to date.

Lactococcus lactis. However, generating beads for biomedical
applications in E. coli or other Gram-negative bacteria is
problematic, because of the presence of lipopolysaccharide (LPS)
endotoxins, which require extensive purification processes to
remove. To get around this limitation, the generally-regarded-as-
safe, food-grade bacterium Lactococcus lactis has recently been
engineered to produce PHA beads.35 The phaCAB genes from
R. eutropha were synthesized to adapt the codon bias to L. lactis,
cloned into the pNZ8148 vector as an operon under the control
of the nisA promoter and transformed into the L. lactis strain
NZ9000. Induction with nisin in glucose–supplemented M17
media resulted in PHB granule formation. However, the beads
were both smaller in size (100–200 nm) and contributed less
PHB per dried biomass (6% of cellular dry weight by gas
chromatography/mass spectrometry (GC-MS) analysis) than
reported for recombinant E. coli.

Figure 1. Formation of functionalized PHB granules.
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The feasibility of commercial-scale production of function-
alized PHA beads in L. lactis remains hampered by the low PHB
yield obtained in this organism and hence is currently limited to
the production of high-value medical products, such as vaccines.
Initial attempts to adjust media, carbon source and aeration, as
well as supplementation with growth enhancers L-arginine or
hemin, did not improve PHB yield beyond the 6% mark.35

Improvement of yield will likely require more fundamental
measures than modified growth conditions, possibly including re-
engineering metabolic flux to push carbon utilization away from
lactate production and toward the PHB biosynthesis pathway.35

Other bugs and systems. The broad range of bacteria capable
of producing PHA naturally or recombinantly, as well as the
success of producing recombinant PHA granules in a range of
hosts as far-reaching as yeasts36 and plants,37 suggests that many
organisms with desirable host properties could be exploited for
functionalized PHA bead production. Although E. coli remains
the most commercially viable host for large-scale production,
functionalized PHB beads have been also been generated in
R. eutropha31 and Pseudomonas aeruginosa,25 as well as L. lactis.

Additionally, recombinant PHA synthase proteins from other
organisms with preferences for different (R)-3-hydroxyacyl-CoA
precursors can generate polyester granules with varied material
properties.7 Many PHA synthases are also fairly promiscuous in
their use of 3-hydroxyacyl-CoA thioester precursors, and
metabolic engineering to influence precursor composition can
result in tailor-made PHAs (Fig. 2).2,8,13

Applications

Protein purification. Early examples of functionalized PHB beads
exploited the phasin protein PhaP’s affinity for the hydrophobic

bead surface as an affinity tag for protein purification. The
enhanced green fluorescent protein (EGFP) gene was fused to
phaP, separated by an intein encoding sequence. Beads express-
ing the PhaP-intein-EGFP fusion protein were produced in
R. eutropha using the native phaCAB PHB synthesis operon.
After bead isolation and induction of intein self-cleavage, pure,
functional EGFP protein was released from the PHB granules.
This was repeated successfully with maltose-binding protein
(MBP) and β-galactosidase (lacZ) as the fusion partners
(Fig. 3).30,31

Likewise, fusion proteins containing proteolytic cleavage sites
between PhaC/PhaP and a protein of interest have been used to
isolate recombinant proteins. The PhaP-MOG/IL2 diagnostic
beads discussed below (see Diagnostics) contained an enterokinase
cleavage site between the fusion partners; incubation with
enterokinase resulted in complete cleavage of the functional
fusion partner (MOG/IL2).21 However, PhaP is only attached to
the beads by hydrophobic interactions and thus may potentially
contaminate the soluble fraction. Therefore, this method was
recently extended to fusions with the covalently-attached, PhaC
synthase, using HcRed (a fluorescent protein) or scFv (an anti-β-
galactosidase antibody fragment). Incubation of these beads with
enterokinase resulted in release of pure functional HcRed or scFv
proteins.38

Enzymes. Several PHA beads with active immobilized enzymes
have been developed so far. The first proof-of-concept experi-
ment demonstrated that an N-terminal fusion of lacZ to PhaC
expressed in Pseudomonas aeruginosa produced granules with
functional β-galactosidase activity, which were stable in storage
for several months.25

Next, an optimized a-amylase variant (TermamylTM) was
fused to PhaC. The resulting beads exhibited a-amylase activity

consistent with the enzyme kinetics of free a-
amylase.26 These beads were reusable and stable
up to 85°C, demonstrating their suitability for
industrial use.

Recently, enzyme-displaying polyester beads
have been used for bioremediation. The Agro-
bacterium radiobacter organophosphohydrolase
enzyme OpdA, which hydrolyzes neurotoxic
organophosphorous pesticides, was immobilized
on PHA beads by recombinant expression as a
PhaC fusion protein.39 The OpdA-expressing
beads exhibited similar enzymatic properties to
free OpdA protein, were functional up to 65°C,
and retained functionality after storage in tap
water for up to 11 d. The OpdA beads suc-
cessfully detoxified the pesticide coumaphos in
wool scour effluent, a toxic byproduct of the
wool industry, demonstrating their industrial
utility.

Construction of an entire enzymatic pathway
on PHB beads is also possible. Recently, a single
genetic fusion of the PhaA-PhaB-PhaC PHB
synthesis pathway was demonstrated to produce
PHB granules in recombinant E. coli.24Figure 2. Metabolic pathways of PHA formation.
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Bioseparations. The immunoglobulin G (IgG) binding ZZ
domain of Protein A from Staphylococcus aureus has been suc-
cessfully fused to PhaC. The resulting ZZ-PhaC beads, recom-
binantly expressed in E. coli, had similar IgG binding capacity and
purification power to commercial protein-A sepharose.15-17

Recently, functional ZZ-PhaC beads have been expressed recom-
binantly in Lactococcus lactis as well.35 Interestingly, the L. lactis
beads displayed improved IgG-binding capacity, which may be
due to the reduced size (increased protein-domain displaying
surface area per bead mass) and/or higher density of the ZZ-PhaC
fusion protein at the bead surface.

Additionally, a fusion of PhaC and streptavidin has produced
PHB beads capable of binding biotin. These beads were
successfully used to bind biotinylated antibodies and to purify
biotinylated DNA.19

Diagnostics. Antigen-displaying PHB beads can be used in
Fluorescence-Activated Cell Sorting (FACS) to detect the pre-
sence of specific antibodies. Fusions of mouse interleukin-2 (IL2)
or myelin oligodendrocyte glycoprotein (MOG) to PhaP pro-
duced beads recognized by monoclonal anti-IL2 or anti-MOG
antibodies conjugated to a fluorescent dye. FACS analysis showed
clear separation of the beads according to expressed antigen;
furthermore, the beads retained this capability even after one year
in storage.21 Additionally, FACS analysis of MOG-PhaP showed
specific and sensitive detection of anti-MOG serum antibodies
from MOG-immunized mice.

Approaching diagnostics from the other angle, an anti-β-
galactosidase single-chain antibody variable fragment (scFv) has
been successfully expressed on PHB beads as a PhaC fusion. The
PhaC-scFv beads bound β-galactosidase both in vitro and in
vivo.22 This technique has clear implications for diagnostics; beads
containing immobilized diagnostic antibody fragments to detect
specific molecular antigens could be recombinantly produced in

one-step, eliminating the need for separate antibody purification
and crosslinking to supports.

Imaging. Several groups have created fluorescent PHB granules
exhibiting functional fluorescent proteins such as GFP and YFP,
through both PhaC and PhaP fusions.11,12,30,32

Additionally, many of the beads with bioseparation function-
ality can be used for imaging. For example, Protein A beads can
be used in combination with labeled antibodies for ELISA, FACS
or in vivo visualization. PHB beads displaying both the Protein
A antibody-binding ZZ domain and functional binding peptides
for inorganic gold and silica particles have been developed;18 such
granules may prove useful for targeted deposition of inorganic
compounds or medical imaging contrast agents.

Multifunctional beads expressing both specific binding func-
tionality and self-labeling such as GFP expression could also
be used for imaging and diagnostics. One example has already
been produced: co-expressing PhaC-GFP and MOG-PhaP fusion
proteins in recombinant E. coli resulted in fluorescent beads
recognized by anti-MOG and anti-GFP antibodies.23

Vaccines. The suitability of antigen-displaying PHB beads as
particulate vaccines has been demonstrated. PHB beads carrying
the Ag85A-ESAT-6 antigens from Mycobacterium tuberculosis
fused to PhaC induced a mixed Th1/Th2 immune response and
showed no adverse effects in mice.35 However, the potential
presence of LPS endotoxins in the E. coli-produced beads limits
their applicability for medical applications.

To improve the potential for PHB biobeads as viable human
vaccines, the Ag85A-ESAT-6 genes were synthesized to adapt
the codon bias to L. lactis and fused to the phaC gene in the
pNZ8148 vector previously shown to generate PHB beads in
L. lactis.35 Functional beads displaying the mycobacterial antigens
were isolated from both L. lactis and the previously reported
E. coli and used to immunize mice. Bead-based vaccines from
both organisms generated an immune response and protected
against Mycobacterium bovis challenge to a similar degree as the
current human TB vaccine, M. bovis Bacille Calmette-Guérin
(BCG).29 However, the L. lactis—produced beads had a reduced
effect on IL-10 production and less protection against spleen
infection than E. coli—produced beads. Both beads were signifi-
cantly more effective than recombinant protein alone, confirming
previous findings that particulate vaccines are more effective than
soluble antigens.40

Recently, PHB beads in E. coli and L. lactis were engineered to
display the Hepatitis C virus core antigen (HCc).28 As with the
M. tuberculosis Ag85A-ESAT-6-PhaC bead vaccines, the HCc-
PhaC bead vaccines produced significant and specific immune
responses in vaccinated mice. Interestingly, while the L. lactis
beads generated a Th1 specific immune response, the E. coli beads
triggered a more general response; this may be due to an adjuvant-
like effect of contaminating LPS or E. coli host proteins, or to the
larger size of the E. coli-produced beads.

Conclusion and Future Directions

Functionalized PHA biobeads are becoming increasingly recog-
nized for their potential in biotechnological and biomedical

Figure 3. Current applications of functionalized PHA granules.
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applications. The many successes highlighted above indicate the
adaptability of this new technology, by which a variety of func-
tional particles can be designed “to order” by rational engineering
of functional proteins into the bead-forming PHA synthase or
other granule-attached proteins. However, much of this potential
remains untapped. E. coli, while a well-established system for
recombinant protein production, is far from the only suitable
source of tailor-made PHB granules and is especially problematic
for medical applications due to the potential for endotoxin

contamination. The recent production of PHB bead vaccines in
the generally-regarded-as-safe bacterium Lactococcus lactis28,29

exemplifies the potential benefits of further bioengineering and
ongoing efforts to push the boundaries of this new technology.
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