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Abstract

Neurofibromatosis (NF1) represents the most common single gene cause of learning disabilities. NF1 patients have
impairments in frontal lobe based cognitive functions such as attention, working memory, and inhibition. Due to its well–
characterized genetic etiology, investigations of NF1 may shed light on neural mechanisms underlying such difficulties in
the general population or other patient groups. Prior neuroimaging findings indicate global brain volume increases,
consistent with neural over-proliferation. However, little is known about alterations in white matter microstructure in NF1.
We performed diffusion tensor imaging (DTI) analyses using tract-based spatial statistics (TBSS) in 14 young adult NF1
patients and 12 healthy controls. We also examined brain volumetric measures in the same subjects. Consistent with prior
studies, we found significantly increased overall gray and white matter volume in NF1 patients. Relative to healthy controls,
NF1 patients showed widespread reductions in white matter integrity across the entire brain as reflected by decreased
fractional anisotropy (FA) and significantly increased absolute diffusion (ADC). When radial and axial diffusion were
examined we found pronounced differences in radial diffusion in NF1 patients, indicative of either decreased myelination or
increased space between axons. Secondary analyses revealed that FA and radial diffusion effects were of greatest
magnitude in the frontal lobe. Such alterations of white matter tracts connecting frontal regions could contribute to the
observed cognitive deficits. Furthermore, although the cellular basis of these white matter microstructural alterations
remains to be determined, our findings of disproportionately increased radial diffusion against a background of increased
white matter volume suggest the novel hypothesis that one potential alteration contributing to increased cortical white
matter in NF1 may be looser packing of axons, with or without myelination changes. Further, this indicates that axial and
radial diffusivity can uniquely contribute as markers of NF1-associated brain pathology in conjunction with the typically
investigated measures.
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Introduction

Neurofibromatosis Type 1 (NF1) is caused by a mutation in the

neurofibromin gene at locus 17q11.2, and is one of the most

common single-gene genetic disorders (prevalence 1:3000) affect-

ing cognitive function in humans [1]. It is also characterized by

multi-system clinical findings, including including café au lait

spots, neurofibromas, scoliosis, bone dysplasias, optic pathway

gliomas and Lisch nodules [2]. However, the accompanying

cognitive deficits lead to significant difficulties in functioning,

particularly in the school environment, and in fact are often the

most significant cause of lifetime morbidity in this population [3].

The NF1 cognitive profile is characterized by severe impairments

in ‘cognitive control’, or the ability to maintain attentional focus

and resist distraction, which is generally considered to be a key

function of the frontal lobe. These cognitive control deficits are

particularly notable in the areas of working memory, cognitive

flexibility, and inhibitory control [1,4,5,6].

About 65% of children with NF1 have sustained attentional

difficulties and 38–50% meet diagnostic criteria for ADHD, with

the vast majority fulfilling criteria for the inattentive subtype [7,8].

In addition, a substantial proportion of individuals with NF1

demonstrate social deficits similar to those observed in autism

spectrum disorders (ASD) [9,10]. Due to its well-characterized

genetic etiology, investigation of the neural mechanisms un-

derlying these deficits in NF1 could shed light on the pathogenesis

of attentional dysfunction and social deficits in the broader

population.

Neurofibromin, the NF1 gene product, appears early during

embryonic development, with high levels of expression in the

brain, suggesting that it is important for the orderly differentiation

of CNS neurons [11]. Gray and white matter volume increases

relative to healthy individuals have been consistently documented,
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although the origins and significance of these brain changes is

unclear [12,13,14]. Overall macrocephaly (i.e. brain circumfer-

ence greater than the 95th percentile) characterizes about half of

children with NF1 [15]. Corresponding to increased overall white

matter volume, increased corpus callosum area and/or callosal

thickening also appears to be characteristic of NF1 [16,17,18].

Also, two studies have found increased corpus callosum size to be

associated with lower IQ and poorer performance on measures of

academic achievement, abstract concept formation, verbal mem-

ory and visual-spatial and motor skills [13,19], indicating that this

structural change has functional importance.

NF1 mutations are known to impact myelin, as the gene

encoding the oligodendrocyte-myelin glycoprotein (OMgp) is

embedded within an intron of the NF1 gene [20]. This protein

has been the focus of much interest as a potential mechanism

underlying overproliferation of oligodendrocytes, which may

explain structural neuroanatomic findings of enlarged white

matter. However, while increases in oligodendrocyte progenitors

have been demonstrated in the spinal cords of NF1 mutant mice

[21], Lee et al. [22] recently showed that NF1 deletion increases

neuroglial progenitor/stem cells (NSCs) in the brainstem, but not

in the cortex. Consistent with findings that tumors commonly

appear in the optic nerve, hypothalamus, and brain stem but

rarely in the cortex, they also found no increased proliferation or

gliogenesis in cortex. Therefore, the mechanisms underlying the

observed white matter changes still require further investigation.

However, few studies have examined indices of brain myelination

in adult patients with NF1 to determine how these changes are

reflected in vivo. Diffusion tensor imaging (DTI) is the only

currently available non-invasive method for investigating white

matter microstructure and connectivity in vivo, based on patterns

of water diffusion in neural tissue [23]. The fractional anisotropy

(FA; or directional variability) of diffusion is higher in heavily

myelinated fiber tracts, and increases with progressive myelination

during development [24]. While traditional magnetic resonance

imaging (MRI) allows for only a gross overview of white matter,

the current study employs diffusion-based methods to examine the

integrity of white matter microstructure and inter-regional axonal

connectivity.

To date, only a handful of studies have employed DTI measures

in NF1 patients, none of which have taken a whole-brain

approach. Previous studies have noted increased apparent

diffusion coefficient (ADC) values, indicating more diffuse or less

organized cerebral tissue, in both children and adults with NF1

relative to control subjects [25,26,27]. More recently, studies have

begun exploring the FA properties of white matter using a region

of interest (ROI)-based approach. These studies have generally

shown decreases in FA, the primary DTI index of white matter

microstructural integrity, as well as increases in overall diffusivity

[28,29,30]. However, these studies have had a limited focus on

specific brain regions. A major limitation of an ROI-based

approach is that it does not address the possibility that the changes

observed may be widespread. In addition, it is not known to what

extent the observed increases in overall diffusivity (as indexed by

FA and ADC) reflect alterations in radial versus axial diffusion.

Axial and radial diffusion measures of the length of the longest and

shortest axes of the elliptical area of diffusion (see Figure 1), and

are thought to index tract organization or axonal integrity and

myelination, respectively [31,32,33] particularly in the case of

confluent white matter changes [34]. However, it is known that

myelination is not the only factor that contributes to radial

diffusion [35]. In addition, there may be a role for axonal packing

density (amount of space between axons); this measure has been

shown to be positively correlated with ADC and radial diffusion,

and negatively correlated with FA [36,37,38].

Here, we conducted the first study to date to investigate changes

in white matter microstructure across the whole brain using voxel-

wise methods in NF1. Secondly, we examined volumetric

differences in grey and white matter between groups, to determine

whether previously observed global volume alterations were also

present in our sample. Based on findings from prior mouse and

human studies we predicted that individuals with NF1 would have

larger overall grey and white matter volumes, concomitant with

increases in overall diffusivity and decreased FA. Moreover, since

neurofibromin is expressed throughout the brain and not just in

the localized regions that were the focus of prior analyses, we

hypothesized that a voxel-wise approach would reveal more

widespread differences than had been previously reported.

Methods

Participants
14 individuals with NF1 and 12 unaffected, demographically

matched control subjects participated in the study (see Table 1 for

Figure 1. DTI diagram showing radial diffusion, axial diffusion and ADC as related to FA.
doi:10.1371/journal.pone.0047854.g001
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demographics). NF1 participants were recruited via advertisement,

and had been previously diagnosed with NF1 by a physician. All

NF1 participants fulfilled the diagnostic criteria specified by the

National Institutes of Health Consensus Development Conference

[39] as confirmed by clinical interview. Healthy controls were

recruited from a community sample through advertisements for

ongoing research studies at UCLA, and did not have any Axis-I

psychiatric disorders, nor any medical conditions that may affect

cognitive function, as assessed by the Structured Clinical Interview

for DSM-IV [40]. Individuals in NF1 and control groups were

excluded for significant substance use in the last six months,

history of head injury, mental retardation (IQ less than 70) and/or

insufficient fluency in the English language.

Ethics Statement
All participants provided written consent for participation, as

approved by the institutional review board of the University of

California, Los Angeles (UCLA).

Scanning Procedures
Subjects were scanned on a 1.5 T Siemens Sonata scanner

(Siemens, Erlagen, Germany) at the Ahmanson-Lovelace Brain

Mapping Center at UCLA. Head motion was restricted using

foam padding. DTI data were acquired using a 6-direction EPI

sequence with 75 contiguous 2 mm AC-PC aligned interleaved

slices with no gap (TR=9.5 s, TE= 77 ms, flip angle = 90 deg,

matrix = 128696, b-value = 1000, FOV 256 mm x 192 mm

resulting in 2 mm isotropic voxels). Five repetitions of the

sequence were acquired, with a total scan time of 6 minutes 20

seconds. In addition, a high resolution T1-weighted structural

image was acquired (1 mm cubic voxels on 160 slices,

TR=1900 ms, TE= 4.38 ms).

Image Processing
The five image acquisitions for each direction were merged,

aligned with McFlirt (FMRIB Software Library; FSL [41]), and

averaged to create one file each for the 6 directions and the b0

image. Eddy current correction was done using Flirt (FSL), and

images were skull stripped using the Brain Extraction Tool. FA

images were calculated using DTIFit (FMRIB’s Diffusion Tool-

box), which fits a diffusion tensor model at each voxel, and then

were registered to MNI-152 space using a 12-parameter affine

registration with a mutual information cost function implemented

in Flirt (FSL). A group map was created using Tract-Based Spatial

Statistics (TBSS, [42]). An average FA image was created and the

tracts were narrowed to generate an FA ‘‘skeleton’’ representing

the center of all tracts common to the entire group. The area

around the skeleton in each subjects’ aligned FA map was

searched and the highest local FA value was assigned to the

skeleton. These procedures ensure that each subject’s skeleton is in

the group space, yet represents the center of that subject’s own

unique fiber tracts. Apparent diffusion coefficient (ADC) was

utilized as it is implemented in the FDT toolkit. Radial diffusion

was calculated using the value from the primary eigenvector (L1),

and axial diffusion was calculated using the average of the

secondary and tertiary eigenvectors (L2+L3/2). Each measure was

projected on the skeleton and analyzed in TBSS accordingly.

Grey and white matter volumes were assessed using the FSL-

VBM tools, in a voxel-based morphometry style analysis [43,44]

carried out with FSL tools [41]. First, structural images were

brain-extracted using BET [45]. Next, tissue-type segmentation

was carried out using FAST4 [46]. The resulting grey-matter

partial volume images were then aligned to MNI152 standard

space using the affine registration tool FLIRT [47,48], followed

optionally by nonlinear registration using FNIRT [49,50], which

uses a b-spline representation of the registration warp field [51].

The resulting images were averaged to create a study-specific

template, to which the native grey matter images were then non-

linearly re-registered. The registered partial volume images were

then modulated (to correct for local expansion or contraction) by

dividing by the Jacobian of the warp field. The modulated

segmented images were then smoothed with an isotropic Gaussian

kernel with a sigma of 3 mm. Grey and white matter volumes were

determined by counting the number of voxels in each of the

segmented (grey and white matter) images. To create a count of

voxels in the frontal lobe alone, a mask of the frontal lobe (i.e.,

brain tissue in front of the central sulcus) was created and warped

from MNI space to each individual subjects’ space, and then used

as a mask for voxel count extractions.

Region of interest definition. White matter regions of

interest (ROIs) were defined in the anterior thalamic radiation

(ATR), cingulate bundle, hippocampal cingulum, inferior longitu-

dinal fasciculus (ILF), superior longitudinal fasciculus (SLF) and

uncinate fasciculus (UF), corticospinal tract, and inferior fronto-

occipital fasciculus (IFO) based on the John Hopkins University

DTI-based probabilistic tractography atlas [52,53,54]. To ensure

the validity of the tractography-based ROIs for our TBSS

skeleton, all ROIs were overlaid with the skeleton and manually

edited. Each subjects’ FA skeleton was masked using each of the

ROIs, and the average FA was calculated for each region, as

previously described in Karlsgodt et al., 2009 [55].

Statistical analysis. Statistics on the ROI data were

performed in Stata (v8). Independent samples t-tests were

performed on the DTI regions, as well as the structural MRI

regions. Voxel-wise statistics on the DTI data were performed in

FSL’s randomise tool, which performs a permutation analysis. We

performed 5000 permutations using the Threshold Free Cluster

Environment (TFCE), a rigorous approach to cluster analysis that

avoids the need to define and initial cluster-forming threshold or to

perform large amounts of data smoothing. Age and sex (de-

meaned) were included in the model as confound regressors, with

Table 1. Demographics.

Patients Controls Statistics

Age
(yrs 6 stdev)

2464.93 22.6664.54 t(24) = .713, p = .483

Sex (M/F) 6/8 5/7 X2 = .0038, p = .951

Estimated IQ
(avg 6 stdev)

96.7968.68 109.6269.78 t(20) = 2.189, p = .0046*

Yrs Education
(avg 6 stdev)

14.2162.12 15.0062.28 t(24) = -.613, p = .5459

Race/Ethnicity: X2 = .1806, p = .671**

Caucasian 7 5

Hispanic/Latino 5 1

Asian/Pacific
Islander

2 0

African
American

0 3

Other 0 3

*IQ data was only available for 8/12 control subjects.
**Race and ethnicity statistics were calculated for Caucasian vs non-Caucasian
subjects.
doi:10.1371/journal.pone.0047854.t001
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groups modeled separately. Family-wise error rate (FWE) was used

to correct for multiple comparisons.

In order to directly test whether the observed FA effects were

secondary to radial or axial changes, we performed an exploratory

analysis in which we re-ran two additional versions of the FA

randomize analysis (again with demeaned age and sex as

covariates), once with demeaned radial diffusion and once with

demeaned axial diffusion as covariates. Then, the number of

remaining significant voxels were compared to the number of

original significant voxels in the FA analysis.

Results

Structural MRI Results
The structural volume analysis revealed significantly larger

total grey matter volume [t(24) = 2.84, p = .009; effect

size = .987] and white matter volume [t(24) = 3.38, p = .003;

effect size = 1.12] in NF1 patients relative to controls. This

finding remained significant when restricted to an ROI of the

frontal lobe white matter [t(24) = 3.62, p = .0014; effect size

(Cohen’s d) = 1.17], however, frontal lobe grey matter was

significantly larger in controls [t(24) = 3.64,p = .0013; effect

size = 1.174; see Figure 2].

DTI Results
When corrected for multiple comparisons at p,.05, permuta-

tion analysis revealed highly significant reductions in FA in NF1

patients relative to controls, which were spread broadly across the

entire brain (Figure 3). Radial diffusion showed a similar pattern of

global changes (here, NF1 patients were higher than controls)

(Figure 4). However, there were less widespread increases in axial

diffusion in the NF1 group (Figure 5). Finally, NF1 patients

showed overall increases in ADC (Figure 6) across the brain, at

both high and lower thresholds.

Given the widespread nature of the findings at conventional

thresholding levels, we took two approaches to ascertain whether

these effects were more pronounced in any particular region. First,

we performed a secondary voxel-wise analysis at an increased

statistical threshold (p= .005) to look for areas that remained

significant at suprathreshold levels, indicating more robust

differences. We found that the alterations in FA (Figure 3) and

radial diffusion (Figure 4) did show regional effects, with only

voxels in the frontal lobe surviving the more stringent threshold-

ing. However, increased thresholding for axial diffusion (Figure 5)

and ADC maps (Figure 6) did not reveal any suprathreshold

patterns: no voxels survived the higher thresholding for axial

diffusion, and for ADC the affected regions remained significant

throughout the brain. In the exploratory analysis of the relation-

ship between FA and radial and axial diffusion we found that

when axial diffusion was entered as a covariate, it did not impact

the overall FA findings and 98.23% of the voxels remained the

same as in the original FA analysis. However, when radial

diffusion was used as the covariate, only 63.32% of voxels

remained significant, indicating that radial diffusion may specif-

ically contribute to the FA changes more than axial diffusion.

Our second approach to probing regional variation was to

perform a ROI analysis in a set of white major matter association

tracts (ROI definition described above) including those that do and

do not connect to the frontal lobe. When corrected for multiple

comparisons using Bonferroni correction, the significant p-value

threshold was set at.005 (.05/10= .005) (see Table 2). At this

threshold the left and right anterior thalamic radiations (ATR),

which connect the thalamus and frontal lobes, showed significantly

lower FA in NF1 patients, as did the left cingulate bundle. There

Figure 2. Gray and White Matter volumetric differences between groups.
doi:10.1371/journal.pone.0047854.g002
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were trend level effects in the forceps minor, a tract that travels

through the genu of the corpus callosum and connects the two

hemispheres of the frontal lobe, and the inferior fronto-occipital

fasciculus (which projects from the frontal lobe back through the

temporal and occipital lobes) bilaterally. Finding significant results

in tracts that originate in the frontal lobe confirmed the

predominantly frontal nature of the FA alterations (See Figure 2).

To probe the basis of these differences, a post-hoc analysis was

performed within ROIs showing significant differences in FA;

namely, the left and right ATR and the left cingulate bundle (see

Table 3), this time assessing radial and axial diffusion as well as

ADC. We found that while radial diffusion and ADC were

significantly increased in these ROIs, there were no significant

differences between groups in axial diffusion. Given the more

robust effects in radial diffusion in both the voxelwise and ROI

approaches, this convergent evidence supports the hypothesis that

the observed FA changes may be driven by alterations in radial

diffusion.

Discussion

This is the first paper to investigate diffusion tensor imaging

measures in adults with NF1 across the entire brain using

Figure 3. Voxelwise analysis of FA, at a threshold of p,.05 (left) and p,.005 (right). Red colors reflect areas of decreased FA in the NF1
group.
doi:10.1371/journal.pone.0047854.g003
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a rigorous registration approach, tract-based spatial statistics

(TBSS). First, our data replicate and support previous sMRI

findings indicating white matter volumetric enlargement in NF1

patients [12,13,14]. However, our study sheds new light on the

widespread nature of white matter microstructural alterations in

NF1, a pattern that has not been observed in previous studies that

focused on a limited selection of white matter tracts. Furthermore,

by using two approaches (ROI analysis and a suprathreshold

voxel-wise analysis) to probe these widespread effects for regional

specificity, we were able to determine that the alterations are more

pronounced in the frontal lobe. The finding that alterations in

white matter integrity are most pronounced in the frontal lobe in

adults with NF1 is highly consistent with the nature of their

cognitive deficits. We have previously demonstrated deficits in

frontally-mediated working memory processes [1]. Moreover, the

attentional, executive, language, and other academic deficits

characteristic of NF1 may be reliant either in whole or in part

on frontal lobe functions.

By using multiple DTI measures, this study uniquely contributes

to our broader understanding of the previously observed white

matter volume increases. Our finding of increased ADC reflects

a general increase in diffusivity that can arise through a variety of

Figure 4. Voxelwise analysis of radial diffusion, at a threshold of p,.05 and p,.005. Green colors reflect increased radial diffusion in the
NF1 group.
doi:10.1371/journal.pone.0047854.g004
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mechanisms (see Figure 6). One post-mortem study using ADC

alone has proposed that the increase in ADC commonly reported

in NF1 could be result of increased vacuoles in the myelin [56].

This explanation has been used to explain subsequent findings of

ADC increases [57], as has the hypothesis that the ADC difference

reflects demyelination [25,27]. However, while ADC is sensitive to

determining whether there is more global diffusion, it cannot

inform whether diffusion in a particular direction is differentially

impacted, as can be assessed using FA. Our finding of significantly

decreased FA in patients with NF1 indicates that diffusion is not

globally increased, but is specifically less constrained perpendicular

to the tracts (the ellipse describing the diffusion is less eccentric, or

narrow, than in controls). Because of the directionality of this

effect, it is unlikely that an increase in diffusion within circular

vacuoules, which would not be associated with diffusion changes in

any particular direction, could explain the observed differences.

However, the finding of decreased FA may still be driven by either

decreased organization of tracts, which prevents diffusion along

the long (axial) axis of the ellipse, or alternatively by decreased

myelination or increased axonal spacing that allows for more room

between axons for water molecules to move perpendicular to the

tract (radially). Therefore, the separate investigation of radial and

Figure 5. Voxelwise analysis of axial diffusion, at a threshold of p,.05 and p,.005. Brown colors reflect increased axial diffusion in the
NF1 group.
doi:10.1371/journal.pone.0047854.g005

White Matter Alterations in Neurofibromatosis-1

PLOS ONE | www.plosone.org 7 October 2012 | Volume 7 | Issue 10 | e47854



axial diffusivity measures was critical to help elucidate the basis of

the white matter microstructural changes. We demonstrated that

within the tracts showing significant FA alteration the change is

driven by radial diffusion with no significant change in axial

diffusion. Thus, we have evidence indicating that the cause of the

differences in FA and ADC between groups is likely based on

either myelination differences, density of axonal packing, or both.

Further, additional analyses using radial and axial diffusion as

covariates had different effects on the significance of the FA

analysis, further indicating that radial diffusion may play

a particularly important role.

A limitation of DTI methodology is that it is an indirect

measure of the distance between axons, and must remain agnostic

to which factor (myelin or axonal spacing) is driving the results.

However, given that white matter volume is increased in this

sample and in other samples in the literature, a simple finding of

decreased myelination (which would typically result in a decrease

in white matter volume) is not sufficient to explain the larger

pattern of results. Therefore, our data support the novel hypothesis

that while there may be myelination differences in NF1, there are

also likely to be differences in the degree of axonal packing, with

the larger distances between axons contributing to the white

matter volume increase. Given our findings of increased ADC and

Figure 6. Voxelwise analysis of ADC, at a threshold of p,.05 and p,.005. Blue colors reflect increased ADC in the NF1 group.
doi:10.1371/journal.pone.0047854.g006
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radial diffusion in the context of decreased FA, this hypothesis is

consistent with histological findings that axonal packing density

(amount of space between axons) is positively correlated with ADC

and radial diffusion and negatively correlated with FA [36,37,38].

The possibility that the alterations in axial diffusion may be the

result of increased space between axons (less dense tract packing) is

supported by some of the known functions of neurofibromin and

the molecules it interacts with. Developmentally, when white

matter tracts are formed, cellular adhesion molecules play an

Table 2. Differences in Fractional Anisotropy (NF1 Patients vs. Controls).

Region Hemisphere Patients Controls Statistics

Anterior Thalamic Radiation L .4153 (.0155) .4424 (.0182) t(24) = 4.10, p= .0004; effect size = 1.30

Anterior Thalamic Radiation R .4171 (.0140) .4480 (.0233) t(24) = 4.16, p= .0003; effect size = 1.6

Corticospinal Tract L .5567 (.0207) .5654 (.0228) t(24) = 1.01, p = .321;
effect size = .390

Corticospinal Tract R .5391 (.0182) .5433 (.0187) t(24) = 5.74, p = .572;
effect size = .229

Cingulate Bundle L .5253 (.0221) .5639 (.0273) t(24) = 3.99, p= .0005; effect size = 1.24

Cingulate Bundle R .5315 (.0374) .5555 (.0300) t(24) = 1.786, p = .087; effect size = .692

Hippocampal Cingulum L .3305 (.0195) .3379 (.0423) t(24) = .591, p = .2815; effect size = .235

Hippocampal Cingulum R .2968 (.0231) .3093 (.0345) t(24) = 1.10, p = .282;
effect size = .432

Forceps Major L+R .7215 (.0351) .7349 (.0313) t(24) = 1.023, p = .316; effect size = .402

Forceps Minor L+R .5538 (.0186) .5561 (.0278) t(24) = 1.838, p = .078; effect size = .691

Inferior fronto-occipital fasciculus L .4359 (.0184) .4592 (.0215) t(24) = 2.98, p = .0066; effect size = 1.02

Inferior fronto-occipital fasciculus R .4329 (.0203) .4567 (.0204) t(24) = 2.97, p = .0066; effect size = 1.02

Inferior longitudinal fasciculus L .4064 (.0139) .4178 (.0257) t(24) = 1.44, p = .164;
effect size = .553

Inferior longitudinal fasciculus R .4154 (.0175) .4282 (.0203) t(24) = 1.72, p = .098;
effect size = .652

Superior longitudinal fasciculus L .4400 (.0229) .4550 (.0312) t(24) = 1.41, p = .172;
effect size = .543

Superior longitudinal fasciculus R .4538 (.0273) .4568 (.0208) t(24) = .312, p = .754;
effect size = .125

Uncinate fasciculus L .4265 (.0216) .4308 (.0259) t(24) = 4.64, p = .647;
effect size = .185

Uncinate fasciculus R .4072 (.0196) .4239 (.0260) t(24) = 1.87, p = .074;
effect size = .70

Region of interest based FA analysis.
doi:10.1371/journal.pone.0047854.t002

Table 3. Radial and Axial Diffusion and ADC: NF1 Patients vs. Controls.

Tract Measure Patients Controls Statistics

Left ATR Radial .000614 (2.2461025) .000579 (2.1561025) t(24) = 4.097, p= .0004

Axial .001190 (2.6761025) .001180 (2.7461025) t(24) = .9817, p = .3361

ADC .000810 (2.1661025) .000778 (1.9561025) t(24) = 3.31, p= .003

Right ATR Radial .000603 (2.7561025) .000563 (2.5761025) t(24) = 3.79, p= .0009

Axial .001175 (3.0961025) .001162 (3.2561025) t(24) = .996, p = .3292

ADC .000794 (2.7461025) .000763 (2.2261025) t(24) = 3.103, p= .0049

Left Cingulate Radial .00052 (2.0861025) .000470 (2.6161025) t(24) = 5.60, p,.0001

Axial .001260 (4.1161025) .001249 (2.8761025) t(24) = .803, p = .430

ADC .000768 (2.0461025) .000730 (1.7061025) t(24) = 5.10, p,.0001

Right Cingulate Radial .000515 (3.6961025) .000480 (3.5261025) t(24) = .247, p= .021

Axial .001267 (5.4761025) .001252 (3.6561025) t(24) = .808, p = .427

ADC .000766 (2.1861025) .000737 (2.7861025) t(24) = 2.93; p= .0073

Supplementary ROI analysis testing radial diffusion, axial diffusion, and ADC in regions with significant FA findings.
doi:10.1371/journal.pone.0047854.t003
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important role in axon guidance along tracts, and in holding tracts

together. There is some evidence that OMgp has the potential to

function as an adhesion molecule [58,59], and thus may be

affected by NF1 mutation. OMgp expression across development

coincides with the progression of myelination, which moves in

a caudal to rostral direction [59], and it may have a particularly

important effect in thalamocortical tracts (such as the ATR found

to be significantly affected in the current study) [60]. Furthermore,

neurofibromin itself has been shown to regulate not only Ras, but

also Akt and focal adhesion kinase (FAK), which impacts cell

adhesion, migration, and survival [61,62]. While the current data

cannot directly address this issue, the findings are consistent with

a disruption in fasciculation during early development, and future

histological and molecular studies addressing the relationship of

these factors to white matter alterations will be highly informative.

Certain limitations of the current study must be noted. First of

all, the sample size is small, due to limitations in recruiting

individuals with this rare disorder and future studies in larger

populations, as well as prospective longitudinal studies in de-

velopmental samples, will be useful for further probing the etiology

and developmental trajectory of structural brain changes in NF1.

Secondly, our DTI acquisition sequence had a limited number of

directions and thus, we were not able to do tractography analyses.

Further, while an increasing number of studies are beginning to

include measures of radial and axial diffusion, as they provide

more specific information about the nature of white matter

microstructural changes than do FA and ADC, there are

limitations to these measures. One particular issue is related to

the reliability of these measures in areas where there are crossing

fibers. This issue may be intensified in low directional data, as we

have here. While our results indicate widespread changes across

large areas of white matter, regional interpretation of these

measures should be considered with caution. This may be better

addressed in future studies with higher directional data. Finally,

particularly interesting for future studies will be explorations of the

relationship of these changes to clinical symptoms, such as those

associated with ADHD. Although no studies, to our knowledge,

have previously examined the impact of ADHD diagnosis on DTI

indices in NF1, Cutting et al. [12] noted that NF1 children with an

ADHD diagnosis had smaller frontal gray matter volumes relative

to NF1 patients without ADHD. Similarly, it is possible that those

individuals with the greatest deficits in white matter organization

are also those for whom NF1 has resulted in ADHD symptoms.

Based on the literature in idiopathic ADHD showing white matter

deficits in prefrontal regions [63,64,65], we would anticipate that

alterations in these regions in NF1 may also be associated with

attentional symptoms. However, unlike in NF1, such studies have

revealed deficits in axial as well as radial diffusion, Thus, further

longitudinal developmental studies aimed at elucidating the

similarities and differences in frontal lobe white matter de-

velopment in NF1 and ADHD are warranted.

Overall, the current study demonstrates that the finding of white

matter overgrowth, as measured by sMRI, persists into adulthood

in NF1 patients and that white matter microstructural changes, as

measured by DTI, also persist and are more pronounced in the

frontal lobe. Notably, we show a novel pattern of DTI findings

that may indicate that one contributing factor to this increase in

volume may be related to looser fiber packing. Further, our

findings indicate that indices of axial and radial diffusivity have

added utility as markers of NF1-associated brain pathology beyond

the typically investigated measures of diffusion (i.e., fractional

anisotropy and ADC).
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