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Markov state models (MSMs)–or discrete-time master equation models–are a powerful way of mod-
eling the structure and function of molecular systems like proteins. Unfortunately, MSMs with suf-
ficiently many states to make a quantitative connection with experiments (often tens of thousands
of states even for small systems) are generally too complicated to understand. Here, I present a
Bayesian agglomerative clustering engine (BACE) for coarse-graining such Markov models, thereby
reducing their complexity and making them more comprehensible. An important feature of this al-
gorithm is its ability to explicitly account for statistical uncertainty in model parameters that arises
from finite sampling. This advance builds on a number of recent works highlighting the importance
of accounting for uncertainty in the analysis of MSMs and provides significant advantages over ex-
isting methods for coarse-graining Markov state models. The closed-form expression I derive here
for determining which states to merge is equivalent to the generalized Jensen-Shannon divergence,
an important measure from information theory that is related to the relative entropy. Therefore, the
method has an appealing information theoretic interpretation in terms of minimizing information
loss. The bottom-up nature of the algorithm likely makes it particularly well suited for constructing
mesoscale models. I also present an extremely efficient expression for Bayesian model comparison
that can be used to identify the most meaningful levels of the hierarchy of models from BACE.
© 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4755751]

I. INTRODUCTION

Markov state models (MSMs) are a powerful means of
understanding dynamic processes on the molecular scale,
such as protein folding and function.1–3 These discrete-time
master equation models consist of a set of states—akin to lo-
cal minima in the system’s free energy landscape—and a ma-
trix of transition probabilities between them, both of which
are generally inferred from molecular dynamics simulations.

Unfortunately, building MSMs and extracting under-
standing from them is still a challenging task. Ideally, MSMs
would be constructed using a purely kinetic clustering of a
simulation data set. Calculating the transition rate between
two conformations is an unsolved problem though, so a num-
ber of alternative methods for building MSMs have been
developed.4–9 Many of these approaches have converged on a
two-stage process. First, the conformations sampled are clus-
tered into microstates based on geometric criteria such that the
degree of geometric similarity between conformations in the
same state implies a kinetic similarity. Such models are excel-
lent for making a quantitative connection with experiments
because of their high temporal and spatial resolution. How-
ever, it is difficult to examine such models to gain an intuition
for a system because the rugged nature of most biomolecule’s
free energy landscapes requires that the initial microstate
model have tens of thousands of states. Therefore, in a sec-
ond stage, the initial state space is coarse-grained by lumping
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rapidly interconverting—or kinetically close—microstates to-
gether into macrostates to obtain a more compact and compre-
hensible model. Reasonable methods are now available for
the first stage of this procedure,4–9 but there is still a need
for more efficient and accurate methods for coarse-graining
MSMs.

A major challenge in coarse-graining MSMs is deal-
ing with uncertainty. The most common methods for
coarse-graining MSMs are Perron cluster cluster analysis
(PCCA)5, 10, 11 and PCCA+,12 though a number of new meth-
ods have recently been published.7, 13–16 Most all of these
methods operate on the maximum-likelihood estimate of the
transition probability matrix and do not account for statistical
uncertainty in these parameters due to finite sampling. For ex-
ample, both PCCA and PCCA+ use the eigenspectrum of the
transition matrix to find the partitioning that best captures the
slowest transitions. Such methods are well suited to data-rich
situations but often fail when poorly sampled transitions are
present.13 For example, Fig. 1 shows a case where PCCA fails
due to a few poorly sampled transitions. Specifically, PCCA
operates by initially assuming that all microstates are in a sin-
gle macrostate and then iteratively splitting the most kineti-
cally diverse macrostate into two smaller states until the de-
sired number of macrostates is reached. The first division is
made by taking the eigenvector corresponding to the second
largest eigenvalue (this is the first eigenvector containing ki-
netic information singe the first eigenvector describes equi-
librium) and separating microstates with positive components
from those with negative components. The next division is
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FIG. 1. A simple model demonstrating that BACE correctly deals with
poorly sampled transitions, whereas PCCA is confounded by them. This
simple model has nine microstates (circles) whose borders are colored
(solid black, gray, or dashed black) according to their assignment to three
macrostates using either BACE or PCCA. Each microstate has 1000 self-
transitions, thick connections represent 100 transitions, medium lines rep-
resent 10 transitions, and thin lines represent 1 transition. Therefore, the
best coarse-graining into three states is to merge states 0-2, 3-5, and 6-8 be-
cause transitions within these groups are fast compared to transitions between
the groups. BACE correctly identifies this optimal coarse-graining into three
macrostates. However, the poorly sampled transitions between states 2-4 and
5-7 cause PCCA to mistakenly assign states 3-4 with states 0-2 instead of
with state 5.

made by identifying the macrostate with the largest spread in
the components of the third eigenvector and again separating
microstates with positive components from those with nega-
tive components. This is then repeated for the fourth eigen-
vector, and so forth. Ideally, states that do not participate in
a given eigenmode will have zero components and will all
be placed in the same macrostate such that they can be dealt
with reasonably when eigenmodes they participate in more
strongly are reached. However, finite sampling (as in this
simple example) can cause microstates that do not strongly
participate in a given eigenmode to have either positive or
negative eigenvector components. As a result, they will be ar-
bitrarily split into different macrostates regardless of the fact
that some may actually be kinetically related, leading to the
sorts of errors seen in Fig. 1. Unfortunately, these errors can-
not be avoided by simply rounding small eigenvector com-
ponents to zero as there is not generally a clear cutoff be-
tween negligibly small components and those that should not
be ignored.12 PCCA+ was developed to avoid such errors by
considering all the relevant eigenvectors simultaneously12 but
can still encounter problems with poorly sampled states. For
example, transitions to a poorly sampled microstate often ap-
pear slow (i.e., have low probability), so PCCA+ will sepa-
rate such a microstate into a single macrostate though manual
inspection would suggest the data are just insufficient to de-
scribe the dynamics of that microstate. PCCA and PCCA+
also have trouble creating mesoscale models–models with a
large number of macrostates that are still quantitatively pre-
dictive yet are significantly more compact than the original
microstate model–due to algorithmic issues like the propagat-
ing error described above and practical issues such as large
memory requirements.

Here, I present a Bayesian agglomerative clustering en-
gine (BACE) for coarse-graining MSMs in a manner that ac-
counts for model uncertainty and can easily create mesoscale
models. Bayesian methods have found wide applications in
the physical sciences, and in MSMs in particular,17–20 for
their ability to deal with uncertainty. Inspired by the hi-
erarchical nature of biomolecules’ free energy landscapes,
BACE performs an agglomerative clustering of microstates
into macrostates by iteratively lumping together the most ki-
netically similar states, i.e., the most rapidly mixing states.
The key equation derived here is a closed-form expression
for a Bayes factor that quantifies how likely two states are
to be kinetically identical. This expression is related to the
relative entropy,21 an information theoretic measure that has
found numerous applications in the physical sciences.22–24 In-
deed, the expression is actually equivalent to the generalized
Jensen-Shannon divergence,25 an important measure from in-
formation theory that will be discussed more in Sec. II. I also
present an approximate expression for model comparison that
can be used to identify the most informative levels of the hier-
archy of models generated with BACE. These methods could
be applied directly to other Markov processes and could also
be extended to other probabilistic models.

Code is available on the web (https://sites.google.com/
site/gregoryrbowman/) and through the MSMBuilder project
(https://simtk.org/home/msmbuilder).6, 26

II. BACE ALGORITHM

The hierarchical structure of biomolecules’ free en-
ergy landscapes naturally suggests a hierarchical approach to
model construction. The free energy landscapes of almost all
biomolecules are extremely rugged, having numerous local
minima separated by barriers of different heights. Put another
way, free energy basins in this landscape can typically be sub-
divided into smaller local minima, giving rise to a hierarchy of
minima. Transitions across low barriers occur exponentially
more often than those across higher barriers. Groups of local
minima separated by low barriers will mix rapidly. Therefore,
they will appear as a single larger state to other minima sepa-
rated from them by larger barriers.

Thus, these groups can satisfy a requirement for coarse-
graining models called lumpability.27 A microstate MSM is
considered lumpable with respect to some set of macrostates
if and only if, for every pair of macrostates M1 and M2 and
any pair of microstates i and j in M1,∑

k∈M2

pik =
∑
k∈M2

pjk, (1)

where pij is the probability that the system will transition to
state j given that it is currently in state i.

We can exploit the concept of lumpability to construct
coarse-grained models by progressively lumping together the
most kinetically similar states, i.e., those with similar transi-
tion probabilities.

Physically, this is equivalent to merging states that mix
rapidly because they are only separated by a low free energy
barrier. One might be tempted to use an L1 or L2 norm be-
tween the transition probabilities out of each pair of states to
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determine which are most similar. However, such an approach
would ignore the fact that some states and transitions are bet-
ter sampled than others and, therefore, would be susceptible
to the same pitfalls as PCCA and PCCA+.

I propose a Bayesian method for determining which
states to lump together. Specifically, I propose to employ
a Bayes factor comparing how likely the data observed
for a pair of states are to have come from either different
(P (different|C)) or the same (P (same|C)) underlying distri-
bution of transition probabilities

P (different|C)

P (same|C)
, (2)

where C is the matrix of transition counts observed be-
tween all pairs of states. Bayes factors compare the evidence
(or marginal likelihood, P (Model|Data)) for two different
models. In calculating these marginal likelihoods, one inte-
grates over all possible parameterizations of a model, thereby
accounting for uncertainty. Therefore, one can construct a
hierarchy of coarse-grained models in a manner that explic-
itly accounts for statistical uncertainty in a model by re-
peatedly calculating the BACE Bayes factor for every pair
of states and then merging the two states with the small-
est Bayes factor (i.e., the states that are most likely to have
come from the same underlying distribution of transition
probabilities).

A number of approximations are useful for making this
approach computationally efficient. For example, a brute
force implementation of this algorithm where we recalcu-
lated every Bayes factor during each iteration of the algorithm
would be quite inefficient, having a computational complex-
ity of O(n4). We can achieve a complexity of O(n3)—which is
equivalent to PCCA and PCCA+—by recognizing that merg-
ing two states has a negligible effect on Bayes factors not in-
volving either of them and only recalculating Bayes factors
including the new merged state. We can also avoid a number
of computations by only computing Bayes factors for con-
nected states, i.e., pairs of states with at least one direct tran-
sition between them. Disconnected states are likely to be sep-
arated by large free energy barriers, so they will necessarily
have large Bayes factors and should not be merged. Finally, it
is valuable to derive an approximate expression for the BACE
Bayes factor. We could evaluate the Bayes factor by sampling
from the posterior distribution for each state. However, doing
so would require a number of calculations for every compar-
ison of a pair of states. A single, closed-form expression—
like the one derived in Sec. III—is significantly more efficient.
The final expression for the BACE Bayes factor is

log
P (different|C)

P (same|C)
≈ ĈiD(pi‖q) + ĈjD(pj‖q), (3)

where C is the transition count matrix, Ĉi is the number of
transitions observed from state i, D(pi‖q) = ∑

k pik log pik

qk

is the relative entropy between probability distribution pi and
q, pi is a vector of maximum likelihood transition probabili-

ties from state i, and q = Ĉipi+Ĉj pj

Ĉi+Ĉj
is the vector of expected

transition probabilities from combining states i and j. Note
that this expression includes a comparison between pij and qj

that helps prevent the merger of disconnected states. For ex-
ample, consider the simple model A ↔ B ↔ C (A and C are
disconnected). If the BACE Bayes factor only compared tran-
sition probabilities to states other than the two being consid-
ered, then one could easily obtain lumpings such as {A, C}
and {B}. However, comparing the self-transition probabilities
and exchange probabilities between the states being compared
helps avoid these pathological situations (e.g., in this case pAA

> 0 while pCA = 0, so these states are unlikely to appear ki-
netically close).

This expression is equivalent to the generalized Jensen-
Shannon divergence.25 Therefore, it has an appealing infor-
mation theoretic interpretation. Given a sample drawn from
one of two probability distributions, the Jensen-Shannon di-
vergence is the average information that sample provides
about the identity of the distribution it was drawn from.28

The result is zero if the two distributions are equivalent
and reaches its maximal value if the distributions are non-
overlapping and a single data point, therefore, uniquely spec-
ifies which distribution it was drawn from. In this case, the
larger the Bayes factor is, the more likely the data for each
state are to have come from different underlying distributions.
By iteratively merging the most kinetically similar states,
BACE retains the most divergent states, which can be in-
terpreted as keeping the states with the most information
content.

The BACE algorithm is

1. starting at the microstate level, calculate the BACE
Bayes factor for every pair of connected states using the
closed-form approximation from Eq. (3).

2. Identify the pair of states with the smallest Bayes factor
(i.e., the states that are most likely to have come from the
same underlying distribution) and merge them by sum-
ming their transition counts.

3. Update the Bayes factors comparing the new merged
state and every other state it is connected to, again using
the approximate expression for the BACE Bayes factor
from Eq. (3).

4. Repeat steps 2 and 3 until only two states remain.

We could also stop the algorithm when the BACE
Bayes factor reaches a certain threshold. For example, a
log10(Bayes factor) of 1 indicates that the model in the numer-
ator is significantly more likely (over ten times more likely)
than the one in the denominator. Therefore, if the minimum
BACE Bayes factor between any pair of states reaches 1, then
one could infer the any further merging of states would greatly
reduce the quantitative accuracy of the model and stop the al-
gorithm. However, if one’s objective is to understand a sys-
tem, then continuing to merge states may be of great value.
The resulting models will only be qualitatively correct, at
best. However, their simplicity may allow more insight. Hy-
potheses generated with these simple, qualitative models can
then be tested with more complex, quantitative models and,
ultimately, with experiments.

A mild improvement to the method can also be obtained
by filtering out states with extremely poor statistics before be-
ginning the lumping process. Specifically, the BACE Bayes
factor can be used to identify any states that are statistically
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indistinguishable from pseudocounts alone. These states can
then be merged into their kinetically nearest neighbor (i.e.,
the state they have the highest transition probability to). Fu-
ture improvements to the algorithm could also be made by
including more complex moves. For example, the current al-
gorithm is greedy. Therefore, it can never recover if two states
are mistakenly merged. One could correct such mistakes by
allowing microstates to move to more appropriate macrostates
or by iteratively breaking macrostates apart and rebuilding
them, as in Ref. 4. Such moves are not undertaken here
as they would reduce the efficiency of the method. Moreover,
the present greedy algorithm performs quite well compared to
other methods, as discussed in Sec. V.

III. BACE BAYES FACTOR

To derive Eq. (3), we first recognize that every possible
set of transition probabilities out of some initial state that sat-
isfies 0 ≤ p̆ij ≤ 1 and

∑
j p̆ij = 1 has some probability of

generating the observed transitions out of that state. From
Bayes rule, the posterior probability of some distribution (p̆i)
being the true underlying distribution given a set of observed
transitions is

P (p̆i |Ci, αi) ∝ P (Ci |p̆i)P (p̆i |αi), (4)

where Ci is a vector of transition counts out of state i and αi

will be discussed shortly.
Assuming that the transition probabilities for each state

are independent, we can use a multinomial distribution for
the likelihood

P (Ci |p̆i) = Ĉi!∏
k Cik!

∏
k

p̆
Cik

ik . (5)

A Dirichlet prior (D) is chosen as it is conjugate to the
multinomial likelihood. That is, if the prior is a Dirichlet, then
the posterior is also a Dirichlet. The prior is then

P (p̆i |αi) = D(αi) = �(
∑

k αik)∏
k �(αik)

∏
k

p̆
αik−1
ik , (6)

where αi is a vector of pseudocounts giving the expected num-
ber of transitions before any data are observed. We choose αik

= 1/n, where n is the number of states because for a state to
exist we must have observed at least one transition originat-
ing from that state and, prior to observing any data, the chance
that transition is to any particular state is equal.17, 23

Combining the expressions for the likelihood and prior,
the posterior distribution from Eq. (4) is

P (p̆i |Ci, αi) = D(Ci + αi). (7)

We can now calculate the log of the evidence for a par-
ticular model (M),

log P (Ci |M) = log
∫

p̆i

P (Ci |p̆i)P (p̆i |αi) (8)

≈ log
�(

∑
k αik)

�(
∑

k [Cik + αik])

∏
k

�(Cik + αik)

�(αik)
(9)

≈
∑

k

Cik log pik − n log n + n (10)

≈ −ĈiH(pi) − n log n + n, (11)

where H(pi) = −∑
k pik log pik is the entropy of pi and we

have made the substitutions Ĉi = ∑
k Cik , pik = Cik/Ĉi (the

maximum likelihood estimate of the transition probability),
�(Cik + 1/n) ≈ �(Cik + 1) = Cik!, �(1/n) ≈ n, and Stir-
ling’s approximation. Note that the approximations made be-
tween Eqs. (9) and (11) breakdown for small sample sizes but
this can be ignored as making this approximation still leads
to excellent results, as discussed below. One could calculate
the evidence more accurately by directly evaluating Eq. (9).
However, this could lead to numerical errors as the � func-
tion tends to diverge for the large inputs one is likely to en-
counter in real-world applications of this method. Moreover,
the closed-form expression for the Bayes factor based on
Eq. (11) performs quite well in practice, as discussed in
Sec. V.

The BACE Bayes factor given in Eq. (3) is then the ratio
of the evidence for the transition counts from states i and j
coming from two different distributions versus a single distri-
bution (log P (different|C)

P (same|C) = log P (C|different)P (different)
P (C|same)P (same) ), where we

assume the prior probabilities for the two models are equal
and drop terms depending only on n as they simply intro-
duce a constant that has no effect on the relative ordering
of Bayes factors comparing various states. The same expres-
sion can also be derived from a maximum-likelihood perspec-
tive that, importantly, still accounts for the fact that some
states/transitions are better sampled than others.

IV. APPROXIMATE BAYESIAN MODEL COMPARISON

Bayesian model comparison is a powerful way to deter-
mine which of two models best explains a set of observations.
Such methods are of great value here as they can be used to
compare the results of BACE to other coarse-graining meth-
ods. Moreover, they can be used to decide which levels of the
hierarchy of models from BACE are most deserving of further
analysis. However, current methods20 are too computationally
demanding for this second task.

Using similar mathematical machinery to that employed
in the derivation of BACE and paralleling the derivation in
Ref. 20, we can also derive a closed-form expression for the
log of the Bayes factor comparing two coarse-grainings—or
lumpings—of a MSM, L1 and L2,

log
P (L1|C)

P (L2|C)
≈

∑
M∈L2

B̂M [H(pM ) + H(�M )] (12)

−
∑

M∈L1

B̂M [H(pM ) + H(�M )], (13)

where B and C are the transition count matrices at the
macrostate and microstate levels, respectively, M is a
macrostate in lumping L, B̂M is the number of transitions orig-
inating from M, pM is a vector of the maximum likelihood
transition probabilities from M, �M is a vector of the max-
imum likelihood probabilities of being in each microstate m
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given that the system is in M, and H is the entropy. Evaluat-
ing this expression is extremely efficient, making it feasible to
compare the merits of each model in the hierarchy generated
by BACE.

To derive the expression for model comparison from
Eq. (13), we need to calculate the evidence for a particular
coarse-graining, L,

log P (C|L) = log
∫

T

∫
�

P (B|T ,L)P (C|B,�,L)P (T ,�),

(14)

where T is the macrostate transition probability matrix. Be-
cause the macrostate trajectory and selection of microstates
are independent, this can be rewritten as

log P (C|L) = log
∫

T

P (B|T ,L)P (T )

+ log
∫

�

P (C|B,�,L)P (�). (15)

Assuming the transition counts from each state come
from independent multinomial distributions and using simi-
lar reasoning to that employed in the derivation of BACE, the
first term in Eq. (15) is

log
∫

T

P (B|T ,L)P (T ) ≈ −
∑
M∈L

B̂MH(pM ). (16)

From Ref. 20, the second term in the expression for model
comparison from Eq. (13) is

log
∫

�

P (C|B,�,L)P (�)

≈ log
∏
M∈L

�(|M|) ∏
m∈M �(Ĉm + 1)

�(B̂M + |M|) , (17)

where m is a microstate in macrostate M, |M| is the number
of microstates in M, and we have assumed a pseudocount of
1 to reflect our prior belief that for a microstate to exist, we
must have observed at least one transition originating from
that state. Using �(Y )

�(X+Y ) ≈ 1
X! and, again, the reasoning from

BACE, this becomes

log
∫

�

P (C|B,�,L)P (�) ≈ −
∑
M∈L

B̂MH(�M ). (18)

V. RESULTS

BACE is much better at dealing with statistical uncer-
tainty in model parameters than PCCA and PCCA+. For ex-
ample, it is able to correctly identify the three macrostates
in the simple model shown in Fig. 1 even in the presence
of the poorly sampled transitions that confound PCCA and
PCCA+. BACE also naturally lumps states with few samples
into larger ones, whereas PCCA and PCCA+ tend to make
such states into singleton macrostates. With BACE, a signif-
icantly better sampled state will dominate the Bayes factor
when compared to a poorly sampled state, leading to a high
likelihood that the poorly sampled state will be absorbed into

TABLE I. Comparison of BACE with PCCA and PCCA+ for a series of
model systems from the simple model shown in Fig. 1 to a full protein, the
villin headpiece. The same number of states is used for each method. The
numbers reported are the log10 of the Bayes factor comparing how likely
the coarse-graining from BACE is to have generated a given data set to how
likely the model from PCCA (or PCCA+) is to have generated the data. Num-
bers greater than one suggest the model from BACE is significantly better at
explaining the observed data than the models from other methods, whereas
numbers less than −1 would suggest the other methods are significantly bet-
ter than BACE. These values were calculated with the model comparison
method from Ref. 20 with 100 bootstrapped samples. Mean and 68% confi-
dence interval are reported. The large numbers are comparable to those found
in Ref. 20 and arise from the products of a large number of small probabilities
in the likelihood function. The zero entry for comparing the performance of
BACE and PCCA+ on the simple model arises from the fact that they give
equivalent results in this case.

Model log10
P (BACE|C)
P (PCCA|C) log10

P (BACE|C)
P (PCCA+|C)

Simplea 1324 (1079, 1548) 0
Alanine dipeptideb 3239 (3152, 3312) 2707 (2573, 2862)
Villinc 11450 (10913, 12038) 16997 (16076, 17856)

aModel with 9 microstates and 3 macrostates from Fig. 1.
bModel with 181 microstates and 6 macrostates from Ref. 26.
cModel with 10 000 microstates and 500 macrostates from Ref. 29.

its better sampled neighbor. Methods like super-level-set hier-
archical clustering13 and the most probable path algorithm16

also deal with poorly sampled states by merging them into
larger states. However, in these methods, a state is considered
poorly sampled if its population is below some user-defined
cutoff. BACE offers the advantage of naturally identifying
poorly sampled states without any reliance on user-defined
input.

Beyond this qualitative improvement, a quantitative mea-
sure of model validity shows that coarse-grainings from
BACE capture both the thermodynamics and kinetics of
molecular systems better than PCCA and PCCA+ (Table I).
To draw this conclusion, I first built models for each model
system using BACE, PCCA, and PCCA+ with the same
number of macrostates. I then employed a Bayesian method
for model comparison to determine which model is most
consistent with the original data. This method calculates
a Bayes factor comparing the evidence for two different
coarse-grainings while taking into account many of the con-
straints on valid MSMs, such as reversibility.20 It should not
be confused with the BACE Bayes factor, which compares
two states. If the values from the Bayesian model compar-
ison algorithm are large (>1), then the model in the nu-
merator is significantly more likely to have generated the
observed data than the model in the denominator, whereas
the model in the denominator is better if these values are
small (<−1). Intermediate values (between 1 and −1) sug-
gest that neither model is strongly preferred over the other.
Both this model comparison method and the approximate
version outlined here quantitatively compare the consistency
of two coarse-grainings with the original microstate trajecto-
ries. This comparison integrates over all possible macrostate
transition probability matrices and all possible microstate
equilibrium probabilities within each macrostate for each
coarse-graining. Therefore, the comparison captures both the
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FIG. 2. The evolution of the Bayes factors as the states from the simple
model in Fig. 1 are progressively merged together indicates the most mean-
ingful levels of the hierarchy of models. The BACE Bayes factor (BACE
BF) is plotted as a dashed line (values on right axis). The means and 68%
confidence intervals of the evidence from the approximate model compari-
son expression (asterisks) and the more exact method enforcing reversibil-
ity (squares) are also plotted (values on left axis). Drastic changes occur in
all three curves when kinetically distinct states are merged (i.e., when go-
ing from 3 to 2 states in this case). Models immediately preceding these
costly mergers are likely good candidates for further analysis as they con-
tain a maximal amount of information with a minimal number of states. A
second important point is that the approximate Bayes factor for model com-
parison derived here tracks well with the more exact expression in this case.
Therefore, the more computationally efficient approximation can be used in
place of the more exact but costly expression.

thermodynamics and kinetics of each model. Table I shows
that BACE is typically many orders of magnitude better than
PCCA and PCCA+ by this metric. Such quantitative compar-
isons are crucial because the complexity of most real-world
MSMs renders a qualitative assessment of a coarse-graining’s
validity impossible.

Another advantage of BACE is that it generates an en-
tire hierarchy of models. Having this hierarchy makes it pos-
sible to look for general properties that are robust to the
degree of coarse-graining and, therefore, may be important
properties of the system being investigated. In addition, hav-
ing this hierarchy allows the user to determine how many
macrostates are appropriate to use. In theory, one could em-
ploy the Bayesian model comparison method accounting for
reversibility from Ref. 20 to decide which levels of the hi-
erarchy are most deserving of further analysis but, in prac-
tice, this would be impractical due to the time requirements
of that method. However, both the BACE Bayes factor and
the approximate model comparison method presented here
correlate well with the reversible method (Fig. 2). There-
fore, either the approximate method or the BACE Bayes fac-
tor can be used to guide which levels of the hierarchy are to
be pursued further. Each Bayes factor changes more rapidly
when more distinct states are lumped together, so models im-
mediately preceding these dramatic jumps are ideal for fur-
ther analysis. The BACE Bayes factor can even be used to
visualize the hierarchical nature of a system’s free energy
landscape and choose appropriate levels for further analysis
(Fig. 3).

FIG. 3. A dendrogram representation of the BACE Bayes factors from the
simple model in Fig. 1 captures the hierarchical nature of the underlying
landscape. The states are numbered from 0 to 8 on the x axis. The brackets
connect states that are being merged and the y-values of the crossbars of these
brackets are the BACE Bayes factors between the states being merged. This
representation highlights that the three kinetically similar microstates within
each macrostate are merged together first (small Bayes factors). Subsequent
merger of the more kinetically dissimilar macrostates has a much greater cost
(larger Bayes factors).

One could also combine the model comparison methods
by using the approximate expression to guide the application
of the reversible method.

VI. CONCLUSIONS

I have presented a BACE for coarse-graining MSMs
that significantly outperforms existing methods in capturing
the thermodynamics and kinetics of molecular systems. The
bottom-up nature of the algorithm likely makes it especially
well suited for constructing mesoscale models.

The method is also directly applicable to other Markov
chains and could easily be extended to other probabilistic
models.

The development of the method was guided by physical
intuition regarding the hierarchical nature of the free energy
landscapes that ultimately govern the structure and dynam-
ics of molecular systems. The final result is equivalent to the
generalized Jensen-Shannon divergence, giving the method
an appealing information theoretic interpretation in terms of
the information content of a measurement. Therefore, BACE
could greatly facilitate a deeper understanding of molecular
systems. In particular, it can provide an entire hierarchy of
models that captures the hierarchical nature of a molecule’s
free energy landscape. The Bayes factors derived here can be
used to guide which levels of the hierarchy are used for anal-
ysis and a fast, approximate expression for model comparison
derived here may prove valuable in situations where more ex-
act expressions are too expensive.

VII. SIMULATION DETAILS

The alanine dipeptide data used for Table I were taken
from Ref. 26. One hundred simulations were performed with
GROMACS 4.530 using the AMBER96 force field31 and the
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OBC GBSA implicit solvent.32 Each trajectory is 500 ps long,
with conformations stored every 1 ps.

The villin data used for Table I were taken from
Ref. 33 and the macrostate definitions were taken from
Ref. 29. Five hundred simulations were performed with
GROMACS deployed on the Folding@home distributed com-
puting environment.33, 34 The AMBER03 force field35 and
Tip3p explicit solvent were used. Each trajectory is up to 2 μs
long, with conformations stored every 50 ps.
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