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Ishizaka and Flanagan’s classic two-mass model of vocal fold motion is applied to small oscillations

where the equations become linear and the aerodynamic driving force is described by an effective

stiffness. The solution of these equations includes an analytic formula for the two eigenfrequencies;

this shows that conjugate imaginary parts of the frequencies emerge beyond eigenvalue synchroniza-

tion and that one of the imaginary parts becomes zero at a pressure signaling the instability associated

with the onset of threshold. Using recent measurements by Fulcher et al. of intraglottal pressure distri-

butions [J. Acoust. Soc. Am. 129, 1548–1553 (2011).] to inform the behavior of the entrance loss

coefficients, an analytic formula for threshold pressure is derived. It fits most of the measurements

Chan and Titze reported for their 2006 physical model of the vocal fold mucosa. Two sectors of the

mass-stiffness parameter space are used to produce these fits. One is based on a rescaling of the typi-

cal glottal parameters of the original Ishizaka and Flanagan work. The second requires setting two of

the spring constants equal and should be closer to the experimental conditions. In both cases, values

of the elastic shear modulus are calculated from the spring constants.
VC 2012 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4747618]
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I. INTRODUCTION

Introducing a wave that propagated along the medial

surface of the vocal fold and examining the motion of its

center of mass in the approximation of small amplitudes,

Titze1 derived an analytic formula for the threshold pressure

of the rectangular glottis, namely,

Pth ¼
kt B c n0

Lg T2
; (1)

where kt is the transglottal pressure coefficient,2,3 B is the

damping factor for motion of the vocal fold, c is the speed of

the mucosal wave, Lg is the glottal length (anterior-posterior

direction), T is the glottal thickness (inferior-superior length

of the glottal duct), and n0 is the prephonatory glottal half-

width. During the 1990s and earlier in this century, physical

models of the vocal fold mucosa were constructed to test the

predictions of this formula.4–6 Experiments found a range of

glottal half-widths for which the threshold data were consist-

ent with the linear trend of Eq. (1) and qualitative behavior

consistent with the direct dependence on the viscous damp-

ing of the vocal folds and the inverse dependence on the

vocal fold thickness. However, the observed values for

threshold pressure did not approach zero for any of the

experiments with small glottal widths4,6 as required by the

formula of Eq. (1).

A recent study7 showed that the key to resolving this dis-

crepancy lies in recognizing that the entrance loss coeffi-

cient8–11 is not constant at small half-widths but becomes

large as the half-width becomes small. There it was also

shown that a reasonable parameterization of this coefficient is

kent ¼
E

n0

þ F; (2)

where the coefficients E and F are to be determined from the

experiment under consideration. If the exit coefficient is

assumed to be small,12 then kt � kent when the viscosity in

the glottis is neglected, and Eq. (1) may be put into the form

Pth �
Bc

Lg T2
ðEþ F n0Þ; (3)

which does not approach zero as the half-width approaches

zero and which produces much better fits7 to the data col-

lected by Chan and Titze6 in 2006 than Eq. (1) with a con-

stant value for kt.

The purpose of this paper is to show that the classic

two-mass model of Ishizaka and Flanagan can produce a for-

mula similar to Eq. (3) that is equally effective in reproduc-

ing the phonation threshold data collected by Chan and

Titze.6 These fits are achieved using two distinct sectors of

the parameter space for oscillator stiffnesses and masses.
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One sector includes values of the stiffness and mass ratios

that are the same as those of the original set Ishizaka and

Flanagan10 spoke of as typical glottal parameters. Thus it is

similar in spirit to a recent approach based on a scaling fac-

tor to account for the fundamental frequency differences

between men and women’s voices.13

The second sector is defined by choosing two of the

spring constants equal with the aim of more closely approxi-

mating a homogeneous vocal fold cover. For both sectors of

the parameter space, the connections between spring con-

stants and the elastic shear modulus derived by Titze and

Story14 are used to calculate elastic shear moduli. The fre-

quencies of the oscillations at phonation threshold were not

given by Chan and Titze, but it was stated that these were

between 100 and 150 Hz. For all of the calculations pre-

sented in the following text, it is assumed that the fundamen-

tal frequencies are 100 Hz. Thus it is possible to compare the

shear moduli derived from the 2006 experiments with recent

rheometer measurements of the shear moduli of vocal fold

tissue15 at this frequency.

II. ESSENTIALS OF THE TWO-MASS MODEL

The geometry of the two-mass model is shown in Fig. 1,

where the masses m1 and m2 and the spring constants k1, k2,

and kc are identified. Thus the oscillator coordinates x1 and

x2 obey the coupled equations of motion,

m1

d2x1

dt2
þ r1

dx1

dt
þ k1x1 þ kcðx1 � x2Þ ¼ F1; (4)

m2

d2x2

dt2
þ r2

dx2

dt
þ k2x2 þ kcðx2 � x1Þ ¼ F2; (5)

where r1 and r2 are the damping constants for the two oscil-

lators, and F1¼P1 Lg d1 and F2¼P2 Lg d2, the aerodynamic

forces driving the oscillators.

A. Glottal aerodynamics

The pressure at the glottal entrance P1 is related to the

subglottal pressure Psub by

Psub ¼ P1 þ kent q U2
g=ð2 A2

1Þ; (6)

where q is the density of air, Ug is the glottal flow rate or

volume velocity, A1 is the area at the glottal entrance, and

kent is the entrance loss coefficient.8–11 The pressure at the

glottal entrance is connected with the pressure at the glottal

exit P2 by the Bernoulli equation,

P1 þ q U2
g=ð2 A2

1Þ ¼ P2 þ q U2
g=ð2 A2

2Þ; (7)

where A2 is the area of the glottal exit because viscous forces

within the glottis are neglected here. In many circumstan-

ces,8,10,11,16 an exit coefficient is used to describe pressure

recovery, which occurs between the glottal exit and the en-

trance to the vocal tract. Results presented in Table II of Ref.

8, which were based on pressure distributions17,18 taken with

the physical model M5, showed that the exit coefficients

were small in comparison with the entrance loss coeffi-

cients,12 and thus we set the exit coefficient kex¼ 0. If no

vocal tract is present, then the pressure at the glottal exit P2

is equal to atmospheric pressure (taken to be zero). Adding

Eqs. (6) and (7) leads to the equation that determines the

glottal flow rate from the subglottal pressure, the entrance

loss coefficient, and the areas at the glottal entrance and the

glottal exit:

Psub ¼
qU2

g

2

kent � 1

A2
1ðtÞ

þ 1

A2
2ðtÞ

� �
; (8)

where the time dependence of the areas has been made

explicit. Using Eq. (8) to eliminate the factor q U2
g in Eq. (7)

yields an expression for the pressure acting on the first oscil-

lator, viz.,

P1ðtÞ ¼
Psub

1þ ðkent � 1ÞA2
2ðtÞ=A2

1ðtÞ
½1� A2

2ðtÞ=A2
1ðtÞ�:

(9)

One noteworthy feature of Eq. (9) is that it depends only on

the ratio of areas, and these are the same for an experiment

done with a hemilarynx6 as for one done with a full lar-

ynx.17,18 Thus the equations presented in the following text

pertain to either a hemilarynx or a full larynx, provided that

kent is taken from the appropriate experimental source. As

stated in the preceding text, the driving pressure P2¼ 0

because the exit coefficient is set equal to zero. The areas in

Eq. (9) are connected with the glottal length Lg, the prepho-

natory half-width n0, and the oscillator coordinates x1 and x2,

namely,

A1ðtÞ ¼ Lg½n0 þ x1ðtÞ�; A2ðtÞ ¼ Lg½n0 þ x2ðtÞ�; (10)

for the hemilaryngeal geometry of the experiments in Ref. 6.

Substituting Eqs. (10) into Eq. (9) gives the following

expression for the driving pressure P1:

P1ðtÞ ¼ Psub
ðn0 þ x1Þ2 � ðn0 þ x2Þ2

ðn0 þ x1Þ2 þ ðkent � 1Þðn0 þ x2Þ2
; (11)

where the time dependence of the oscillator coordinates has

been suppressed.
FIG. 1. Schematic diagram of the two-mass model. The quantity n0 denotes

the prephonatory glottal half-width.
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B. Small amplitude approximation

Because our interest is confined to phonation threshold,

we follow Titze’s lead and assume that the oscillator coordi-

nates x1 and x2 are small in comparison with the prephona-

tory half-width n0. Then one can carry out an expansion of

Eq. (11) in powers of x1=n0 and x2=n0. Retaining only the

lowest order terms yields

P1ðtÞ ¼
2 Psubðx1 � x2Þ

kentn0

: (12)

Substituting this into Eq. (4) and setting P2¼ 0 in Eq. (5)

results in the following linear forms for the equations of

motion:

m1

d2x1

dt2
þ r1

dx1

dt
þ k1x1 þ kcðx1 � x2Þ ¼ /ðx1 � x2Þ;

(13)

m2

d2x2

dt2
þ r2

dx2

dt
þ k2x2 þ kcðx2 � x1Þ ¼ 0; (14)

where

/ ¼ 2Lgd1Psub=ðkentn0Þ (15)

is the flow-induced stiffness19–22 of the fluid structure

interaction. The effect of the flow induced stiffness is to

produce linear forces that act opposite to those associated

with the resoring forces of Eq. (13), and they destabilize

the solutions of Eqs. (13) and (14) when they become large

enough. If Eqs. (13) and (14) are divided by the masses

that appear in their respective first terms, it affords an

opportunity to introduce the angular frequencies, x2
1

¼ (k1þ kc)=m1, x2
2¼ (k2þ kc)=m2, C2

1¼ kc=m1, and

C2
2¼ kc=m2, and the damping constants c1¼ r1=(2m1) and

c2¼ r2=(2m2). Searching for solutions of the form

x1(t)¼ a1eixt and x2(t)¼ a2eixt yields a set of coupled

equations for the amplitudes a1 and a2 that may be

expressed in matrix form,

x2
1þ2ic1x�x2�/=m1 /=m1�C2

1

�C2
2 x2

2þ2ic2x�x2

0
@

1
A a1

a2

 !
¼0:

(16)

The requirement for a nontrivial solution of Eq. (16) is that

the determinant of coefficients be equal to zero. This leads to

a fourth degree algebraic equation with complex coefficients

that determines the eigenfrequencies x, that is,

ðx2 � 2 i c1xþ /=m1 � x2
1Þðx2 � 2 i c2x� x2

2Þ
þ C2

2ð/=m1 � C2
1Þ ¼ 0: (17)

It will be convenient to separate x into real and imaginary

parts so that x2¼ (xrþ i xi)
2¼x2

r �x2
i þ 2 i xr xi. Then

Eq. (17) can be separated into real and imaginary parts, and

the equations determining xr and xi take the forms,

ðx2
r �x2

i þ 2cxiþ/=m1�x2
1Þðx2

r �x2
i þ 2cxi�x2

2Þ
� 4x2

r ðxi� cÞ2þC2
2ð/=m1�C2

1Þ ¼ 0;

(18)

2 xrðxi � cÞð2 x2
r � 2 x2

i þ 4cxi � x2
1

� x2
2 þ /=m1Þ ¼ 0; (19)

where the damping parameters have been restricted so that

c¼ c1¼ c2. The ratio of the amplitudes for the two oscilla-

tors may be determined from the bottom row of Eq. (16),

which may be expressed

a1 ¼ ðx2
2 þ 2 i c x� x2Þa2=C

2
2 (20)

for each value of the complex eigenfrequency x the real and

imaginary parts of which satisfy Eqs. (18) and (19).

C. Below threshold

If the values of the subglottal pressure are small enough,

then one can find a solution of Eq. (19) by setting the first

factor in parenthesis there equal to zero so that xi¼ c. Then

Eq. (18) simplifies to

ðx2
r þ c2 þ /=m1 � x2

1Þðx2
r þ c2 � x2

2Þ
þ C2

2ð/=m1 � C2
1Þ ¼ 0; (21)

the solutions of which are determined by the two sets of fre-

quencies, 6xrþ;6xr�, where

x2
rþ=� ¼fx2

1 þ x2
2 � /=m1 � 2 c2

6½ðx2
1 � x2

2Þ
2 þ 4C2

1C
2
2 þ /2=m2

1

þ2/ðx2
2 � x2

1 � 2C2
2Þ=m1�1=2g=2; (22)

and the relationship between the amplitudes of the two oscil-

lators is given by a real factor because

a1þ=� ¼ ðx2
2 � x2

rþ=� � c2Þa2=C
2
2; (23)

from Eq. (20).

To illustrate the properties of the solutions of Eqs. (21)

and (22), the mass and stiffness parameters are taken to be

those of the typical glottal set of Ishizaka and Flana-

gan.10,13,23–25 The glottal length Lg¼ 1.2 cm, the thickness

associated with the lower oscillator d1¼ 0.25 cm,

n0¼ 0.04 cm, and kent¼ 1.37, a value9 frequently used for

the entrance loss coefficient. The dimensionless damping pa-

rameter f¼ 0.3 defines the damping parameter c by the rela-

tion c¼ f (k1=m1)1/2. The solutions of Eq. (22) as functions

of subglottal pressure are shown in Fig. 2. There the real

parts of the two solutions approach each other as the subglot-

tal pressure is increased from zero while the imaginary part

retains its constant value. These two real parts become equal

when the expression in the square brackets of Eq. (22)

becomes equal to zero. This point determines a quadratic

equation for the effective stiffness of the fluid-structure

interaction /, the solutions of which are given by
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/6 ¼ m1½x2
1 � x2

2 þ 2C2
2

6 2C2
2½1� C2

1=C
2
2 þ ðx2

1 � x2
2Þ=C2

2�
1=2�: (24)

The pressure at which the real parts of the frequencies in

Fig. 2 become equal is determined from the smaller of the

solutions of Eq. (24), and the frequencies become equal, or

synchronized,22 because both of the imaginary parts are

equal to c. This pressure is 444 Pa and is indicated by two

arrows in Fig. 2. However, synchronization does not signify

the onset of the threshold because each of the identical fre-

quencies has a positive imaginary part c, which leads to

damped solutions.

Increasing the subglottal pressure above the synchroniza-

tion point requires a change of strategy for the solution of Eqs.

(18) and (19) because the argument of the square brackets in

Eq. (22) becomes negative, and thus the square root there gives

a pair of conjugate imaginary values. This is not consistent

with the original strategy of separating the frequency x into

real and imaginary parts. To deal with pressures in this region,

we require the second factor in parentheses of Eq. (19) to be

zero. This requirement leads to two solutions for the imaginary

part of the frequency that can be expressed in terms of the real

part and other parameters, namely,

xi ¼ c 6½c2 þ x2
r þ /=ð2m1Þ � ðx2

1 þ x2
2Þ=2�1=2: (25)

As shown in Fig. 2, pressures above the synchronization

point give rise to a pair of conjugate imaginary roots. Substi-

tuting Eq. (25) into Eq. (18) leads to a quartic equation for

xr, the four solutions of which occur in pairs that may be

determined from

x2
rþ=� ¼ ðx2

1 þ x2
2 � /=m1 � 2 c2Þ=4

6
1

2
½c4 þ x2

1x
2
2 � c2ðx2

1 þ x2
2Þ � C2

1C
2
2

þ/ðc2 þ C2
2 � x2

2Þ=m1�1=2: (26)

Only the real roots 6xrþ determined from Eq. (26) are phys-

ical because the value for x2
r� there is negative. The value of

xrþ decreases with increasing pressure. Of more physical

significance is the behavior of the conjugate imaginary parts

of the roots. One of these roots increases monotonically with

increasing subglottal pressure, and the other decreases

monotonically. This root becomes zero at the point marked

threshold pressure in Fig. 2. Increasing the pressure beyond

this value causes the imaginary part of the frequency to

become negative, the signal of an exponentially growing so-

lution, instead of a damped solution. The point at which the

imaginary part of the frequency changes sign has been stud-

ied in detail by Lucero and Koenig,13,23,26 who showed that

it represents a Hopf bifurcation. The instability associated

with this Hopf bifurcation announces the arrival of phona-

tion threshold. This instability of the linearized equations of

motion [Eqs. (13) and (14)] is absorbed by nonlinear terms

in more general treatments of phonation that lead to stable

oscillations and limit cycles. These nonlinear terms arise

from the nonlinear factors in the pressure expression of Eq.

(11), nonlinear additions to the spring forces, and the forces

associated with vocal fold collisions.

D. Determination of threshold pressure

The threshold pressure is determined from Eqs. (18) and

(19) by setting xi¼ 0. Then Eq. (19) requires the real part of

the frequency and the flow-induced stiffness /� to be con-

nected by the equation,

x2
r ¼ ðx2

1 þ x2
2 � /�=m1Þ=2: (27)

Substituting this expression into Eq. (18) gives a quadratic

equation for the flow-induced stiffness at which xi¼ 0, that

is, the flow-induced stiffness that determines the phonation

threshold pressure. The threshold pressure is determined

from the smaller solution of the flow-induced stiffness equa-

tion, which takes the form,

/� ¼ ½x2
1 � x2

2 þ 2 C2
2 þ 4c2 � 2 ½C2

2ðC2
2 � C2

1

þx2
1 � x2

2Þ þ 4c2ðc2 þ C2
2 � x2

2Þ�
1=2�m1: (28)

Equation (28) yields a value /-¼ 91 400 g/s2 for the parame-

ters used in Fig. 2. Using Eq. (15) to express the threshold

pressure in terms of /� gives

Pth ¼
kent/�n0

2Lgd1

; (29)

which yields Pth¼ 835 Pa for the parameters of Fig. 2.

It is interesting to note the behavior of the threshold

pressure as the damping parameter f is decreased from its

value used in Fig. 2. This lowers the height of the ximagþ/�
line there above zero. It has no effect on the location of the

synchronization pressure because the expression for the

effective stiffness of the fluid-structure interaction in Eq.

(24) makes no reference to c. However, lowering the value

of c does move the point of intersection of the curve ximag�
with the horizontal axis closer to the synchronization

FIG. 2. (Color online) The eigenfrequencies as functions of the subglottal

pressure. Eigenvalue synchronization occurs when the real parts of the two

eigenfrequencies are equal. Threshold occurs at a higher pressure where

the imaginary part of one of the eigenfrequencies becomes zero. In Ref.

10, the stiffness units are dynes/cm, which we express in the equivalent

form of g/s2.
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pressure; this means that the threshold pressure decreases. If

there is no damping (c¼ 0), then the threshold occurs at the

synchronization pressure because the ximagþ/� line for pres-

sures below synchronization becomes the horizontal axis in

this case, and the curve for ximag� gives a negative value for

any pressure above the synchronization pressure.

Results for the oscillator coordinates as functions of

time are presented in Fig. 3. These were obtained from the

numerical solution of Eqs. (13) and (14). It is straightforward

to verify that the results of Fig. 3 agree with the analytic for-

mulas presented in the preceding text. For example, substi-

tuting the value of /� obtained from Eq. (28) into Eq. (27)

gives xr¼ 845.1 rad/s. This value agrees with that deter-

mined from the time difference between the third and the

eighth peak for x2(t) in Fig. 3 to a precision of better than

0.1%. According to Eq. (20), the two amplitudes of the oscil-

lators are related by

a1 ¼ ðx2
2 þ 2 i cxr � x2

r Þa2=C
2
2; (30)

when xi¼ 0, and thus the phase shift between the two oscil-

lators is given by

tan b ¼ 2 cxr

x2
2 � x2

r

: (31)

Equation (31) yields b¼ 0.590 for the parameters used in

Fig. 3, and the ratio of a1 to a2 can be expressed as the com-

plex number 0.606þ 0.406 i¼ 0.729 e0.590i. The positive

value of b means that the phase of the lower oscillator leads

that of the upper oscillator by about 34�. Equation (30) pre-

dicts the ratio of the magnitude of the two maxima in Fig. 3

to be 0.729. Both the phase and the magnitude of the ratio of

the two amplitudes a1 and a2 agree with those inferred from

the numerical results presented in Fig. 3.

III. RESULTS FOR THRESHOLD PRESSSURES

Substituting the parameterization of Eq. (2) for the en-

trance loss coefficient into Eq. (29) yields

Pth ¼
E/� þ Fn0/�

2Lgd1

; (32)

a threshold pressure formula for the two-mass model that is

the counterpart of Eq. (3) for the surface wave model. The

form of Eq. (32) makes it clear that the slope and intercept

of a linear fit to the glottal half-width dependence of the

threshold pressure are sensitive to the parameters of the two-

mass model only through the combination of these parame-

ters embodied in the expression for /� given by Eq. (28).

Thus one might expect that the parameters of the two-mass

model represent more freedom than required to give a rea-

sonable fit to any given set of the phonation threshold data

collected by Chan and Titze.6 Nevertheless one consequence

of our treatment of the two-mass model is apparent from the

numerator of Eq. (32), where both the slope and the intercept

are directly proportional to /�. An increase in /� means

both a larger slope and a larger intercept. Failure to find such

a correlation between the slope and the intercept in phona-

tion threshold data would indicate that Eq. (32) is too great a

simplification to account for the observed trends in the data.

The first decision to be made when trying to compare

with the data of Chan and Titze is how to determine the en-

trance loss parameters E and F. Because their experiments

were based on a hemilaryngeal geometry instead of the sym-

metric geometry of model M5, one would expect these pa-

rameters to be different from those of Ref. 8. However, the

large glottal width behavior of the entrance loss coefficients

reported there is not much different from unity, and thus we

choose F¼ 1.0 for all of the calculations reported here. We

will further assume that the entrance loss coefficient is deter-

mined mainly by the geometry, and hence the value of E
will be taken as the same for all of Chan and Titze’s 2006

experiments. The choice E¼ 0.385 cm and /�¼ 12 880 g/s2

gives the fit to the 0.01% hyaluronic acid data shown by the

lower dashed line (visible under the solid line) of Fig. 4 after

the geometric parameters are changed to consider the

FIG. 3. (Color online) Oscillator coordinates as functions of time at phona-

tion threshold from the numerical solution of Eqs. (13) and (14).

FIG. 4. (Color online) Threshold pressures as functions of glottal half-

width for two concentrations of hyaluronic acid. The dashed curves there

are calculated from Eq. (32) with the values of /� listed near the top of

the figure. The (onset) data are taken from Fig. 4 of Chan and Titze.6 The

error bars (610 Pa) are added to the data to consider the accuracy of the

pressure resolution of the water manometer used by Chan and Titze.

Results (not shown) identical to the dashed curves are obtained from the

elastic shear moduli and damping parameters listed in Table I of Sec. 4.

The solid straight lines were obtained with the elastic shear moduli and the

depths of the oscillating mass listed in Table III under the assumption of

identical spring constants k1 and k2.
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dimensions of the apparatus used by Chan and Titze6

(Lg¼ 2.22 cm, T¼ 1.1 cm, and d1¼ 5 T/6, to be consistent

with the m1 to m2 ratio of the set of typical glottal parameters

of Ishizaka and Flanagan10). To fit the 0.1% hyaluronic acid

data requires a larger value of /�, which produces a larger

intercept and a larger slope, both of which seem consistent

with the data.

Figure 5 shows the results of adding fibronectin to a

0.01% concentration of hyaluronic acid. There it is seen that

fibronectin increases the threshold pressure for each glottal

width. Such an increase requires a larger value of /� as

shown by the higher dashed line of Fig. 5. As discussed in

the preceding text, an increased value of /� requires a larger

intercept and a steeper slope, and both of these features seem

to be present in the data. Figure 6 shows the results of adding

fibronectin to a 0.1% concentration of hyaluronic acid. There

it is seen that the threshold pressure at each half-width is

increased by adding fibronectin. In an attempt to accommo-

date these increases, the value of /� is raised by about 30%.

Thus the intercept of the dashed fibronectin line is about

30% larger than the dashed line for no fibronectin. However,

this increase in /� also increases the slope by 30%, a trend

not consistent with the data. Because this is the only clear

discrepancy reported between our calculations and the

experiments done by Chan and Titze, it might be worthwhile

to consider some additional measurements with the 0.1% hy-

aluronic acid with fibronectin implant. If further experiments

confirm this discrepancy, then it would represent a substan-

tial challenge to our approach to the two-mass model.

The 1995 experiments done by Titze, Schmidt, and

Titze4 were done with a different apparatus. Instead of

implanting biomechanical materials under the silicone mem-

brane as Chan and Titze did, the physical model of the vocal

fold mucosa was designed so that fluids could circulate

under the silicone membrane. Threshold pressures were

reported for water and water with two concentrations of so-

dium carboxymethyl cellulose (CMC) powder (to change the

viscosity of the fluid) as shown in Fig. 7. These data show

the predicted linear increasing trend for half-widths of

0.10 cm or greater. However, there is an increase with

decreasing half-width at smaller half-widths, contrary to the

trends expected from either Eqs. (3) or (32). Titze, Schmidt,

and Titze noted this inconsistency with their expectations

and suggested that the upward trends at small half-widths

were a consequence of collisions between the oscillating

membrane and the opposing Plexiglas wall. This situation

was explored further in Ref. 7, where Lucero’s suggestion27

of using Poiseuille’s approach to describe viscous effects of

the flowing air within the glottis to explain the upward trends

was analyzed. There it was shown that Poiseuille’s approach

to viscous effects should also lead to upward trends in Chan

and Titze’s 2006 measurements at small glottal widths.

Because no such upward trends were reported in the 2006

experiments, it was concluded that collisions with the oppos-

ing Plexiglas wall were a more likely explanation of the

FIG. 6. (Color online) Threshold pressures as functions of glottal half-width

for 0.1% concentrations of hyaluronic acid with and without fibronectin.

The (onset) data are taken from Fig. 7 of Chan and Titze.

FIG. 5. (Color online) Threshold pressures as functions of glottal half-width

for 0.01% concentrations of hyaluronic acid with and without fibronectin.

The (onset) data are taken from Fig. 6 of Chan and Titze.

FIG. 7. (Color online) Threshold pressures as functions of glottal half-width

for water and water with two concentrations of CMC powder flowing under

the silicone membrane of the experimental apparatus described in Ref. 4.

The dashed lines were obtained with the values of /� listed near the bottom

of the figure. Identical results (not shown) were obtained for the damping

parameters and the depths of the oscillating mass listed in Table II, with the

elastic shear modulus G0 ¼ 88.4 Pa being the same for all three cases. The

data for water without the CMC powder are taken as the average of the two

runs presented in Figs. 2 and 3 of Ref. 4. The differences between those two

runs average about 15 Pa and thus fall within the 10 Pa error bars alloted to

consider the limitations of the pressure resolution of the water manometer.
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upward trends of Fig. 7 than viscous effects. The implication

of this conclusion is that one would not expect calculations

based on the linearized equations [Eqs. (13) and (14)] to

apply to the anomalous small width behavior of the data in

Fig. 7 because these equations do not include any collision

effects.

Because the experimental setup28 for the 1995 experi-

ments was different from that of Chan and Titze, one would

expect different values for the parameters E and F. Again F
is taken to be 1.0 and E¼ 0.517 cm for all of the 1995

experiments. The values for /� in Fig. 7 are considerably

larger than those required for the calculations of Figs. 4–6, a

consequence of higher threshold pressures. It is worth noting

that these larger values of /� lead to steeper slopes in addi-

tion to larger values for the magnitudes of the threshold pres-

sures in the linear regime and that both of these trends are

readily accommodated by a single parameter /� for each

experiment. In the next section, we show that one can fit all

of the linear trends of Fig. 7 with the same value of the elas-

tic shear modulus but with different values of the damping

parameters f, as indicated in Fig. 7. One might expect this to

be true for the 1995 experiments because each experiment

used the same silicone membrane, which presumably

accounted for most of the shear properties, but different flu-

ids, the viscosities of which would probably have a greater

influence on the damping parameters than on the elastic

shear properties.

IV. SPRING CONSTANTS AND ELASTIC SHEAR
MODULI

Before outlining the strategies used to connect the

observed threshold pressures of Figs. 4–7 to the appropriate

values of the elastic shear moduli, it will be convenient to

rewrite Eqs. (27) and (28) in terms of the spring constants,

masses, and damping parameter using the definitions follow-

ing Eq. (15) and the connection between c and f listed above

Eq. (24). Thus

x2
r ¼ ðk1 þ kc � /�Þ=ð2m1Þ þ ðk2 þ kcÞ=ð2m2Þ; (33)

/� ¼ k1ð1þ 4f2Þ þ kc þ ðkc � k2Þm1=m2 � 2

� ½kcðk1 � k2 m1=m2Þm1=m2

þ 4f2k1ðf2k1 � k2 m1=m2Þ�1=2: (34)

According to the analysis presented by Titze and Story,14 the

spring constant k1 is connected with the elastic shear modu-

lus of the cover G0 by the equation,

k1 ¼
G0LgT

D
; (35)

where D is the depth of the oscillating mass in the 1995 and

the 2006 experiments. Our goal of writing Eqs. (33) and (34)

in terms the elastic shear modulus G0, the depth of oscillating

mass D, and the damping parameter f requires ratios for the

spring constants k1, k2, and kc and the masses m1 and m2. The

first strategy chosen is based on the same choice of these

ratios as those of the set of typical glottal parameters listed in

Fig. 2, namely, k2=k1¼ 1/10, kc=k1¼ 5/16, and m2=m1¼ 1/5.

It is denoted as the scaled IF72 approach in the captions of

Tables I and II in the following text. Then Eqs. (33) and (34)

take the forms,

x2
r ¼ ½1=2� 2f2 þ ð25=32þ 4f4 � 2f2Þ1=2�k1=m1;

(36)

/� ¼ k1½19=8þ 4f2 � 2 ð25=32þ 4f4 � 2f2Þ1=2�:
(37)

Using Eq. (35) for the spring constant k1 and the connection

between m1 and the average density q of the oscillating

mass, namely, m1¼ q Lg T D, Eqs. (36) and (37) may be

expressed as

x2
r ¼ ½1=2� 2f2 þ ð25=32þ 4f4 � 2f2Þ1=2�G0=ðq D2Þ;

(38)

/� ¼ ½19=8þ 4f2 � 2 ð25=32þ 4f4 � 2f2Þ1=2�
� G0LgT=D: (39)

Assuming that the fundamental frequency for each of the

threshold measurements in Figs. 4–6 is 100 Hz and using the

values of the effective stiffness /� presented there, one may

calculate the depths of the oscillating masses and the elastic

shear moduli listed in Table I. The results for D and G0 listed

in columns 3 and 4 were obtained with f¼ 0.1, and those in

columns 5 and 6 were obtained with f¼ 0.2. Because each

of the depths D listed in Table I is several times the thickness

of the silicone membrane (70 lm¼ 0.0070 cm), in retrospect

it seems reasonable to use a value of q (1.02 g/cm3) close to

that of the vocal fold cover.6 On the other hand, the

TABLE I. Parameters for the scaled IF72 fit to the 2006 experiments of

Chan and Titze. The frequency at threshold is assumed to be 100 Hz for

each of the experiments.

f¼ 0.1 f¼ 0.2

Experiment / (g/s2) D (cm) G0 (Pa) D (cm) G0 (Pa)

0.01% HA 12 880 0.0265 20.9 0.0194 12.0

0.1% HA 18 960 0.0390 45.2 0.0285 26.0

0.01% HA

with FN 17 600 0.0362 38.9 0.0265 22.4

0.1% HA

with FN 24 700 0.0508 76.8 0.0371 44.0

TABLE II. Parameters for the 1995 experiments of Titze, Schmidt, and

Titze based on the scaled IF72 approach. The elastic shear modulus

G0 ¼ 88.4 Pa, and the frequency is assumed to be 100 Hz for each of the

experiments.

Experiment / (g/s2) f D (cm)

Water 27490 0.100 0.0545

Water with 0.088% CMC 32550 0.166 0.0534

Water with 0.117% CMC 38870 0.221 0.0521
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calculation may be done in reverse order. One may assume

that the values for G0, D, and f are known, use Eq. (39) to

determine the effective stiffness /�, and then use Eq. (32) to

determine the threshold pressures. Results (not shown) cal-

culated in this manner are almost identical to the dashed

lines in Figs. 4–6.

Equations (38) and (39) may also be used to calculate

depths of the oscillating mass and elastic shear modulus for

each of the values of /� listed in Fig. 7, again assuming that

the fundamental frequency of oscillation to be 100 Hz. In

fact, it was possible to account for all of the linear trends in

Fig. 7 with the same value of the elastic shear modulus

(88.4 Pa) and different values of the damping parameter f as

summarized in Table II. This choice is motivated by the con-

sideration that it would seem more likely for an increase in

the viscosity of the fluid flowing under the silicone mem-

brane to change the damping parameter than the shear modu-

lus. The values of D listed in Table II are reasonable because

they are more than a factor of two larger than the thickness

(200 lm¼ 0.020 cm) of the silicone membrane used in the

1995 experiments.

The second strategy for determining the elastic shear

moduli and the depths of oscillating tissue begins with the

assumption that k1¼ k2, an attempt to model the more uni-

form properties of the oscillating masses of Chan and Titze’s

2006 experiments. This choice is referred to as the homoge-

neous strategy in Figs. 4–6. Making this substitution in Eq.

(34) yields

/� ¼ k1

bþ 1

b
þ 4f2 þ kc

k1

bþ 1

b

�

�2
b� 1

b2

kc

k1

þ 4f4 � 4
f2

b

� �1=2
#
; (40)

where b is the mass ratio m2=m1. Minimizing /� with

respect to kc determines a ratio of kc to k1, that is,

kc ¼
k1

b� 1

ðb� 1Þ2

ðbþ 1Þ2
þ 4f2b� 4f4b2

" #
: (41)

From the argument of the square root factor in Eq. (40), it is

clear that the choice of equal masses m1 and m2, (b¼ 1) is

not an option because the argument of the square root factor

then becomes 4 f2 (f2� 1), which is negative for f< 1. Thus

an important requirement for the validity of the homogene-

ous strategy is that the mass of the upper oscillator of the

physical model be greater than that of the lower oscillator.

A choice of b also requires a recalculation of /-,

because one would expect the ratio of d1 to d2 to be propor-

tional to the mass ratio. From the b¼ 3/2, one finds

d1¼ 0.44 cm. Values for the effective stiffness /-, the depth

of the oscillating mass, and the elastic shear modulus

obtained with the choice b¼ 3/2 are listed in columns 2–4 of

Table III. One would expect these values for the elastic shear

modulus to be closer to those of the biomechnaical implants

used in the 2006 experiments than the results of Table I

because Chan and Titze made an effort to distribute the bio-

material under the silicone membrane evenly. Thus, the

values of G0 in column 4 may be interpreted as predictions

for the elastic shear moduli of the four biomaterials used in

the 2006 experiments. They are the basis of the solid lines in

Figs. 4–6, which were obtained from Eqs. (41), (40), and

(32) and are labelled with the appropriate values of G0. In

each case, the solid lines are identical to the corresponding

dashed lines in Figs. 4–6, emphasizing the mathematical

equivalence of using either the first or second strategy to

determine the connections between the spring constants and

the more physical elastic shear moduli. To get some idea of

the sensitivity of the values for G0 to the assumptions made

in implementing the second strategy, results for b¼ 5/4 are

also presented in Table III. A new value of b also requires a

new value of d1 (0.489 cm), and the values of /� thus deter-

mined are listed in column 5. The results for D and G0 in col-

umns 6 and 7 are rather close to those in columns 3 and 4,

suggesting a mild dependence of the predicted values on the

ratio b.

The elastic shear moduli for hyaluronic acid compounds

do not seem to have been measured for phonatory frequen-

cies. Nevertheless, it is worthwhile to compare the predic-

tions in Table III with recent measurements15 at 100 Hz of

several human vocal fold cover specimens. In Fig. 12 of Ref.

15, these rheometer measurements give values between

about 220 and 500 Pa, and thus these measurements are

more than an order of magnitude higher than the values

listed in Table III. To consider whether this order of magni-

tude difference is reasonable, it is instructive to examine two

sets of measurements done at 10 Hz. Chan and Titze29

reported rheometer measurements of the human vocal fold

mucosa at this frequency for 10 male subjects. Their results

ranged from about 25 Pa to about 700 Pa (Fig. 9 of Ref. 29).

These were at least an order of magnitude larger than some

measurements of the elastic shear properties of a 0.01% con-

centration of HA and a 0.1% concentration of HA (about 1.5

and 3 Pa, respectively) reported in Fig. 1 of Ref. 30. More-

over, the ratio of the 0.1% case to the 0.01% case is about a

factor of 2, which is close to this ratio in Table III.

The work presented in this and the preceding section

makes it clear that Eq. (32) gives reasonable fits to most of

the phonation threshold pressures measured in the 2006 and

1995 experiments. The developments based on Eqs. (38) to

(41) show that one can infer reasonable values for the elastic

shear moduli and the depths of oscillating tissue from these

experiments.

TABLE III. Parameters for the homogeneous approach to fitting the 2006

experiments of Chan and Titze. The frequency is assumed to be 100 Hz, and

the damping parameter f is taken to be 0.1.

m2¼ 3m1/2 m2¼ 5m1/4

Experiment / (g/s2) D (cm) G0 (Pa) / (g/s2) D (cm) G0 (Pa)

0.01% HA 6180 0.0112 6.49 6869 0.0120 6.66

0.1% HA 9097 0.0165 14.1 10 111 0.0177 14.4

0.01% HA

with FN 8445 0.0153 12.1 9386 0.0164 12.4

0.1% HA

with FN 11 852 0.0215 23.9 13 173 0.0230 24.5
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V. CONCLUSIONS

Although much of the previous work with Ishizaka and

Flanagan’s two-mass model has been based on the assump-

tion that the entrance loss coefficient is a constant, this

assumption is not necessary. Such an assumption has the

consequence that the phonation threshold pressure is

required to approach zero as the glottal half-width becomes

very small. This prediction is not consistent with Chan and

Titze’s 2006 measurements,6 where the linear trend of the

threshold pressure data clearly does not approach zero. As

shown in our earlier work with Titze’s surface wave model,7

the key to resolving this discrepancy is to introduce a param-

eterization of the entrance loss coefficient that includes an

inverse dependence on the glottal half-width. It is shown that

this parameterization may be readily incorporated into the

two-mass model of Ishizaka and Flanagan.

With the new parameterization, one can obtain an ana-

lytic formula for the threshold pressure [Eq. (32)], which

enjoys considerable success in accounting for the threshold

pressures taken in the 2006 experiments that Chan and Titze

did with biomechanical materials implanted under the silicone

membrane of their physical model of the vocal fold mucosa.

In particular, the formula gives a good account of the thresh-

old pressures for the 0.01% and 0.1% hyaluronic acid implants

(Fig. 4) and also for the case where fibronectin was added to

the 0.01% implant (Fig. 5). The only serious discrepancy is

the case of the fibronectin implant with 0.1% hyaluronic acid,

where the increase of the threshold pressure with glottal half-

width is considerably less than the slope of the line calculated

with the analytic formula of Eq. (32) (Fig. 6). It was explained

that this failure might potentially be a shortcoming of the

approach to the two-mass model employed here because the

connection between larger intercept and larger slope given by

Eq. (32) is intrinsic to the formulation of the two-mass model

described in Secs. II and III. Perhaps more data collected in

this case might ameliorate the disagreement between calcula-

tions and experiment, but if the discrepancy persists, more so-

phisticated modeling may be called for.20–22,25 It is also

shown that the treatment of the two-mass model described

here gives a satisfactory explanation of the 1995 threshold

pressures (Fig. 7) measured by Titze, Schmidt, and Titze

above glottal half-widths of 0.1 cm, where the linearized equa-

tions of motion are expected to apply [Eqs. (13) and (14)].

Several analytic formulas are derived for the frequencies

of the oscillations from the linearized equations of motion

for the two oscillators. Using parameters typical of those

defined in the classic paper of Ishizaka and Flanagan,10 the

eigenfrequencies are shown to synchronize at a value of the

subglottal pressure around 440 Pa when f0¼ 0.04 cm. About

400 Pa above the synchronization pressure, the imaginary

part of one of the eigenfrequencies crosses the axis and

becomes negative, which signals the advent of threshold. An

analytic formula is derived for the effective stiffness of the

fluid-structure interaction at which this imaginary part

crosses the axis [(Eq. (28))]. From this formula, one can

determine the threshold pressure [Eq. (29) or Eq. (32)].

Two strategies are implemented to connect the spring

constants, masses, and damping constants required to explain

the experiments with potentially observable quantities, such

as, the elastic shear modulus [Eq. (35), which comes from

Ref. 14]. One of these is modeled on the same ratios as the

set of typical glottal parameters used by Ishizaka and Flana-

gan, and it is described as a scaled IF72 approach. The sec-

ond strategy is based on the assumption k1¼ k2, which is

appropriate for a more homogeneous vocal fold cover. It is

expected that results from this strategy should be closer to

the actual situation with the 2006 experiments by Chan and

Titze because they spread the biomaterial under their sili-

cone membrane evenly along the axial direction. The depths

of the oscillating mass with both strategies seem reasonable

because they are several times the thickness of the silicone

membrane. Predictions for the elastic shear moduli of the

biomechanical implants used in the 2006 experiments (Table

III) tend to be more than an order of magnitude below recent

measurements of human vocal tissue at 100 Hz. This finding

may be reasonable because a comparison of measurements

at a lower frequency suggests there may be an order of mag-

nitude difference for the elastic moduli of hyaluronic acid

implants and human vocal fold tissue. Because the shear rhe-

ometer described in Ref. 15 represented a considerable tech-

nological advance, it may soon be possible to do

measurements that will test the predictions of Table III.

The equations described in Sec. IV make it clear that

one can predict the phonation threshold pressure of models

of the vocal folds given their elastic shear moduli, the fre-

quency at which the observation is to be made, and the geo-

metric parameters describing the vocal folds. Since Klemuk

et al.31 have recently reported measurements of the elastic

shear moduli of nine injectibles at a range of frequencies

from 0.1 to more than 1000 Hz, one might employ the for-

malism of Sec. IV to obtain predictions of the phonation

threshold pressure for vocal fold models made of a given

injectible material. Such a follow up calculation is planned,

and it will be interesting to compare the results with those

reported in Ref. 31 the results of which were based on the

surface wave model formulas of Ref. 6.

ACKNOWLEDGMENTS

The authors gratefully acknowledge support of this pro-

ject by NIH 2R56DC003577. The participation of J.W. was

supported by the SETGO Program (NSF Grant DUE

0757001). The authors also are thankful for the independent

checks of the numerical results presented in Fig. 2 by Jason

Kaminski.

1I. Titze, “The physics of small amplitude oscillation of the vocal folds,” J.

Acoust. Soc. Am. 83, 1536–1552 (1988).
2R. Scherer and C. Guo, “Laryngeal modeling: Translaryngeal pressure for

a model with many laryngeal shapes,” in ICSLP Proceedings, 1990 Inter-
national Conference on Spoken Language Processing (The Acoustical So-

ciety of Japan, Tokyo), Vol. I, pp. 3.1.1–3.1.4.
3R. Scherer and C. Guo, “Generalized translaryngeal pressure coefficient

for a wide range of laryngeal configurations,” in Vocal Fold Physiology:
Acoustical, Perceptual, and Physiological Aspects of Voice Mechanisms,

edited by J. Gauffin and B. Hammarberg (Singular, San Diego, CA, 1991),

pp. 83–90.
4I. Titze, S. Schmidt, and M. Titze, “Phonation threshold pressure in a

physical model of the vocal fold mucosa,” J. Acoust. Soc. Am. 97, 3080–

3084 (1995).

2590 J. Acoust. Soc. Am., Vol. 132, No. 4, October 2012 Fulcher et al.: Phonation threshold and elastic shear modulus



5R. Chan, I. Titze, and M. Titze, “Further studies of phonation threshold

pressure in a physical model of the vocal fold mucosa,” J. Acoust. Soc.

Am. 101, 3722–3727 (1997).
6R. Chan and I. Titze, “Dependence of phonation threshold pressure on

vocal tract acoustics and vocal fold tissue mechanics,” J. Acoust. Soc.

Am. 119, 2351–2362 (2006).
7L. Fulcher and R. Scherer, “Phonation threshold pressure: Comparison of

calculations and measurements taken with physical models of the vocal

fold mucosa,” J. Acoust. Soc. Am. 130, 1597–1605 (2011).
8L. Fulcher, R. Scherer, and T. Powell, “Pressure distributions in a static

physical model of the uniform glottis: Entrance and exit coefficients,” J.

Acoust. Soc. Am. 291, 1548–1553 (2011).
9J. van den Berg, J. T. Zantema, and P. Doornenbal, “On the air resistance

and the Bernoulli effect of the human larynx,” J. Acoust. Soc. Am. 29,

626–631 (1957).
10K. Ishizaka and J. Flanagan, “Synthesis of voiced sounds from a two-mass

model of the vocal cords,” Bell Sys. Tech. J. 52, 1233–1268 (1972).
11J. Gauffin, N. Binh, T. Ananthapadmanabha, and G. Fant, “Glottal geome-

try and volume velocity waveform,” in Vocal Fold Physiology: Contempo-
rary Research and Clinical Issues, edited by D. Bless and J. Abbs

(College-Hill, San Diego, CA, 1983), pp. 194–201.
12The calculations presented in Ref. 8 showed that typically the exit coeffi-

cients were an order of magnitude smaller than the entrance loss coeffi-

cients for a given glottal diameter and transglottal pressure.
13J. Lucero and L. Koenig, “Simulations of the temporal patterns of oral air-

flow in men and women using a two-mass model of the vocal folds under

dynamic control,” J. Acoust. Soc. Am. 117, 1362–1372 (2005).
14I. Titze and B. Story, “Rules for controlling low-dimensional vocal fold

models with muscle activation,” J. Acoust. Soc. Am. 112, 1064–1076

(2002).
15R. Chan and M. Rodriquez, “A simple-shear rheometer for viscoelastic

characterization of vocal fold tissues at phonatory frequencies,” J. Acoust.

Soc. Am. 124, 1207–1219 (2008).
16B. Story and I. Titze, “Voice simulation with a body-cover model of the

vocal folds,” J. Acoust. Soc. Am. 97, 1249–1260 (1995).
17R. Scherer, D. Shinwari, K. DeWitt, C. Zhang, B. Kucinschi, and A.

Afjeh, “Intraglottal pressure profiles for a symmetric and oblique glottis

with a divergence angle of 10 degrees,” J. Acoust. Soc. Am. 109, 1616–

1630 (2001).

18R. Scherer, D. Shinwari, K. DeWitt, C. Zhang, B. Kucinschi, and A.

Afjeh, “Intraglottal pressure distributions for a symmetric and oblique

glottis with a uniform duct (L),” J. Acoust. Soc. Am. 112, 1253–1256

(2002).
19K. Ishizaka and M. Matsudaira, “Fluid mechanical considerations of vocal

cord vibration,” in Speech Communication Research Monograph No. 8
(Speech Communication Research Library, Santa Barbara, CA, 1972), pp.

1–76.
20Z. Zhang, J. Neubauer, and D. Berry, “Physical mechanisms of phonation

onset: A linear stability analysis of an aeroelastic continuum model of

phonation,” J. Acoust. Soc. Am. 122, 2279–2295 (2007).
21Z. Zhang, “Characteristics of phonation onset in a two-layer vocal fold

model,” J. Acoust. Soc. Am. 125, 1091–1102 (2009).
22Z. Zhang, “On the difference between negative damping and eigenmode

synchronization as two phonation onset mechanisms,” J. Acoust. Soc. Am.

129, 2163–2167 (2011).
23J. Lucero, “Dynamics of the two-mass model of the vocal folds: Equili-

bria, bifurcations, and oscillation region,” J. Acoust. Soc. Am. 94, 3104–

3111 (1993).
24I. Steinecke and H. Herzel, “Bifurcations in an asymmetric vocal fold

model,” J. Acoust. Soc. Am. 97, 1874–1884 (1995).
25I. Tokuda, J. Horacek, J. Svec, and H. Herzel, “Comparison of biomechan-

ical modeling of register transitions and voice instabilities with excised

larynx experiments,” J. Acoust. Soc. Am. 122, 519–531 (2007).
26J. Lucero and L. Koenig, “Phonation thresholds as a function of laryngeal

size in a two-mass model of the vocal folds (L),” J. Acoust. Soc. Am. 118,

2798–2801 (2005).
27J. Lucero, “Relation between the phonation threshold pressure and the pre-

phonatory glottal width in a rectangular glottis,” J. Acoust. Soc. Am. 100,

2551–2554 (1996).
28Reference 4 lists Lg¼ 2.3 cm instead of 2.22 cm.
29R. Chan and I. Titze, “Viscoelastic properties of human vocal fold mu-

cosa: Measurement methodology and empirical results,” J. Acoust. Soc.

Am. 106, 2008–2021 (1999).
30R. Chan and I. Titze, “Hyaluronic acid (with fibronectin) as a bioimplant

for the vocal fold mucosa,” Laryngoscope 109, 1142–1149 (1999).
31S. Klemuk, X. Lu, H. Hoffman, and I. Titze, “Phonation threshold pressure

predictions using viscoelastic properties up to 1400 Hz of injectibles

intended for Reinke’s space,” Laryngoscope 120, 995–1001 (2010).

J. Acoust. Soc. Am., Vol. 132, No. 4, October 2012 Fulcher et al.: Phonation threshold and elastic shear modulus 2591


	s1
	d1
	d2
	d3
	n1
	s2
	d4
	d5
	s2A
	d6
	d7
	d8
	d9
	d10
	d11
	f1
	s2B
	d12
	d13
	d14
	d15
	d16
	d17
	d18
	d19
	d20
	s2C
	d21
	d22
	d23
	d24
	d25
	d26
	s2D
	d27
	d28
	d29
	f2
	d30
	d31
	s3
	d32
	f3
	f4
	f6
	f5
	f7
	s4
	d33
	d34
	d35
	d36
	d37
	d38
	d39
	t1
	t2
	d40
	d41
	t3
	s5
	c1
	c2
	c3
	c4
	c5
	c6
	c7
	c8
	c9
	c10
	c11
	c12
	c13
	c14
	c15
	c16
	c17
	c18
	c19
	c20
	c21
	c22
	c23
	c24
	c25
	c26
	c27
	c28
	c29
	c30
	c31

