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Purpose: Combined MR/PET is a relatively new, hybrid imaging modality. A human MR/PET proto-
type system consisting of a Siemens 3T Trio MR and brain PET insert was installed and tested at our
institution. Its present design does not offer measured attenuation correction (AC) using traditional
transmission imaging. This study is the development of quantification tools including MR-based AC
for quantification in combined MR/PET for brain imaging.
Methods: The developed quantification tools include image registration, segmentation, classification,
and MR-based AC. These components were integrated into a single scheme for processing MR/PET
data. The segmentation method is multiscale and based on the Radon transform of brain MR images. It
was developed to segment the skull on T1-weighted MR images. A modified fuzzy C-means classifi-
cation scheme was developed to classify brain tissue into gray matter, white matter, and cerebrospinal
fluid. Classified tissue is assigned an attenuation coefficient so that AC factors can be generated. PET
emission data are then reconstructed using a three-dimensional ordered sets expectation maximiza-
tion method with the MR-based AC map. Ten subjects had separate MR and PET scans. The PET
with [11C]PIB was acquired using a high-resolution research tomography (HRRT) PET. MR-based
AC was compared with transmission (TX)-based AC on the HRRT. Seventeen volumes of interest
were drawn manually on each subject image to compare the PET activities between the MR-based
and TX-based AC methods.
Results: For skull segmentation, the overlap ratio between our segmented results and the ground truth
is 85.2 ± 2.6%. Attenuation correction results from the ten subjects show that the difference between
the MR and TX-based methods was <6.5%.
Conclusions: MR-based AC compared favorably with conventional transmission-based AC. Quan-
titative tools including registration, segmentation, classification, and MR-based AC have been de-
veloped for use in combined MR/PET. © 2012 American Association of Physicists in Medicine.
[http://dx.doi.org/10.1118/1.4754796]
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I. INTRODUCTION

Combined MR/PET is an emerging imaging modality that can
provide metabolic, functional, and anatomic information and
it has the potential to be a powerful tool to study the mecha-
nisms of a variety of diseases.1 PET has high sensitivity yet
relatively low resolution and few anatomic details. In contrast,
MRI can provide excellent anatomical structures with high
resolution and high soft tissue contrast. MR can be used to
delineate tumor boundaries and to provide an anatomic ref-
erence for PET, thus MR can be used to improve the quanti-
tation in PET. Present design of hybrid MR/PET does not of-
fer measured attenuation correction (AC) using a transmission
scan. Thus novel techniques for AC in MR/PET are needed.

In combined PET/CT, a successful example of hybrid
imaging systems for clinical applications, CT images are rou-
tinely used for attenuation correction. CT-based AC is imple-
mented using a piecewise linear scaling algorithm that trans-
lates CT attenuation values into linear attenuation coefficients
at 511 keV.2 In standalone PET, a transmission source (either
68Ge or 137Cs) is used for AC. In combined MR/PET, nei-
ther CT nor transmission images are available for attenuation
correction. As MR signals are not one-to-one related to the
electron density information, a direct mapping of attenuation
values from MR images is challenging.

Several MR-based attenuation correction methods
have been proposed.3–17 (i) In segmentation-based AC
methods,6, 18, 19 MR images are aligned to the preliminary, re-
constructed PET data and then segmented into different tissue
types with predefined attenuation coefficients. A MR-derived
attenuation map is defined and is then forward projected to
generate attenuation correction factors (ACFs) to be used for
correcting the emission (EM) data. In Martinez-Moller and
co-workers’ study,11 a segmentation-based AC method was
used for body MR images and was validated by CT-based
attenuation correction. In another study, the outer contour of
the body and the lungs were segmented on T1-weighted MR
images for attenuation correction of whole-body PET/MR
data.13 A three-region, MR-based whole-body AC approach
has also been applied to animal studies for automated PET
reconstruction.14 (ii) In a template-based AC method by Kops
and Herzog,20 a common attenuation template was created
from transmission scans of ten normal volunteers and was
then spatially normalized to a standard brain shape. After
warping the brain template to an individual’s MR image,
the same warping matrix was applied to the attenuation
template to obtain the AC map for the individual. Similarly,
an atlas from CT was warped to individual MR images and
then used for attenuation correction.12 (iii) In a pseudo-CT
based AC method,21 Hofman et al. used a combination of
local pattern recognition and atlas registration for AC that
captures global variation of anatomy. The approach predicts
pseudo-CT images from a given MR image. These pseudo-
CT images were then used for attenuation correction. Beyer
et al.3 reported an approach in which MR-based attenuation
data were derived from CT data following MR–CT image
registration and subsequent histogram matching. After deter-
mining the matching pairs of MR and CT image intensities,

a corresponding look-up table was generated to map the MR
intensities to pseudo-CT values. (iv) In MR sequence-based
AC methods, ultrashort echo time (UTE) sequence has
been used to improve bone detection on MR images for
AC applications.4, 9 When a conventional T1-weighted MR
sequence is used, bone tissue has low signal intensity on
MR images and hence it is difficult to detect the bone. With
the UTE sequences, bone signals are enhanced and used for
MR-based AC.

In this study, we focused on segmentation-based AC and
emphasized the development of quantification tools includ-
ing registration, segmentation, and classification for brain
MR/PET imaging. One particular contribution includes the
quantitative comparison of the MR-based AC and TX-based
AC from a high-resolution research tomography (HRRT). To
the best of our knowledge, the comparison of PET images be-
tween HRRT and combined MR/PET has not been reported.
We also integrate image registration, segmentation, classifica-
tion, and attenuation correction into one software application
package. Section II describes the details for each step.

II. MATERIALS AND METHODS

II.A. Image acquisitions from 3 T MR and HRRT PET

II.A.1. PET image acquisition from HRRT

Ten human subjects were scanned using a HRRT brain
PET system (Siemens Healthcare, Knoxville, TN) and using
11C-labeled Pittsburgh Compound-B ([11C]-PIB). The HRRT
uses a collimated single-photon point source of 137Cs to pro-
duce high-quality transmission data. Each of the subjects un-
derwent a 6-min transmission scan before the emission scan.
A 20-min emission scan was started immediately after the in-
jection of 555 Mq [11C]-PIB. The reconstructed images had a
matrix size of 256 × 256 × 207 voxels with a voxel size of
1.2 × 1.2 × 1.2 mm3.

II.A.2. Image acquisition from 3 T MR scanner

The same ten human subjects were scanned on a 3-T clin-
ical MR scanner (Magnetom Trio, A Tim System, Siemens
Medical Solutions USA, Inc., Malvern, PA 19355). The
T1-weighted rapid gradient echo sequence (MPRAGE) (TR
= 2600 ms and TE = 3.0 ms) was used for image acquisition.
Sagittal images were acquired with a 1-mm slice thickness
and no gaps between slices. The MR volume has 256 × 256
× 176 voxels covering the whole brain and yielding a 1.0 mm
isotropic resolution.

II.B. Image acquisition from combined MR/PET

Combined MR/PET images were acquired from the
Siemens combined MR/PET prototype system. The MR unit
is a Siemens 3.0 T Trio, which is a whole-body scanner
(60 cm bore) with Sonata gradient set (gradient amplitude of
40 mT/m, maximum slew rate of 200 T/m/s, minimum gradi-
ent rise time of 200 μs). The system is actively shielded and is
equipped with multiple RF channels and the total imaging
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matrix (TIM) suite. An eight-channel brain coil was used for
the MR image acquisition. The PET system is a dedicated
brain tomograph and operates as an insert to the MR bore.
The insert comprises 192 lutetium oxyorthosilicate (LSO) de-
tector blocks with 12 × 12 crystal arrays coupled to avalanche
photodiodes (ADPs) and arranged in six rings. The crys-
tal dimensions are 2.5 × 2.5 × 20-mm3 and the bore di-
ameter is 35.5 cm with an axial field of view (FOV) of
19.1 cm. The PET insert is unique to this system and rep-
resents a substantial increase in PET electronic complex-
ity, including the magnetically insensitive avalanche photo-
diodes necessary for MR compatibility. The PET scanner has
2.5-mm isotropic resolution throughout the field of view. The
PET ring is sized such that an eight-element phased array
brain coil can fit inside the PET ring. An elevator-track sys-
tem allows the PET ring to be installed or removed, so that
the Trio can function as a whole-body MR system.

Two human subjects were scanned with both the combined
MR/PET and the HRRT PET systems. This was done so that
imaging on the MR/PET could be compared with imaging on
the HRRT. Each subject was injected with 384.8 Mq [18F]-
fluorodeoxyglocuse (FDG), underwent the HRRT scan (6-min
transmission scan plus a 20-min emission scan), and then a
MR/PET scan. During simultaneous MR/PET imaging, both
T1- and T2-weighted MR images were acquired for each sub-
ject; at the same time, a 40-min dynamic emission acquisition
was performed using the PET insert.

II.C. Overview of the MR/PET data processing

As shown in Fig. 1, our AC method includes several key
steps. (1) We first register the MR images with the preliminary
reconstruction of PET data using the mutual information-
based registration methods developed in our lab.22–28 (2) The
skull tissue is segmented on the MR images using our seg-
mentation method as described below. (3) Brain tissue seen on
MR images are classified into gray matter (GM), white matter

FIG. 1. Schematic diagram of the MR/PET data processing flow.

(WM), and cerebrospinal fluid (CSF). (4) The voxels of dif-
ferent tissue types are assigned theoretical tissue-dependent
attenuation coefficients. (5) The MR-derived attenuation map
is then forward projected to generate ACFs that are used for
correcting the PET emission sinogram data. (6) At the last
step, the attenuation corrected PET sinogram is reconstructed
to obtain the corrected PET images.

II.D. Segmentation of the skull on MR images

In order to identify bone so that appropriate attenuation co-
efficients may be assigned, we first perform segmentation of
the skull. The segmentation algorithm includes the following
steps: (1) The MR image is transformed to the radon domain
and the sinogram data are obtained. (2) The MR sinogram
data are processed using a bilateral filter to remove noise and
to retain the edge information. (3) A multiscale scheme is
used to process the MR sinogram data in order to detect the
edge of the skull. (4) At different scales, the sinogram data are
filtered by a gradient filter to detect the edge of the skull. (5)
Once the reciprocal binary sinogram of the skull is obtained,
the data are transformed to the image domain to obtain the
skull image. These steps are described in detail in the follow-
ing.

II.D.1. Radon transform

As described in Fig. 2, the Radon transform is defined as a
complete set of line integrals Rf(α, s),

Rf (α, s) =
∫ ∞

−∞

∫ ∞

−∞
f (x, y)δ(s− x cos α − y sin α)dxdy

×α ∈ [0, π ] s ∈ R, (1)

where s is the perpendicular distance of a line from the origin,
and α is the angle formed by the distance vector. Because
the “skull” has low signals on T1-weighted MR images, the
projection image, i.e., “sinogram” has two, local minima on
the Rf(α, s) curve (Fig. 2). After the Radon transformation,
the MR image is transformed from the image domain to the
Radon domain. Figure 3 shows a T1-weighted MR image and
its corresponding sinogram.

In Fig. 4, we demonstrate noise reduction results from per-
forming a Radon transform. We compare three profiles on the
original MR image without adding any noise, and the ones
with 5% and 10% noise added to the image. The image with
10% noise was contaminated severely (Fig. 4); however, the
noise level was reduced significantly when the Radon trans-
form was applied. This is shown by the profiles of the sino-
grams (Fig. 4).

II.D.2. Bilateral filtering

Bilateral filtering, a nonlinear filtering technique,29 is a
weighted average of local neighborhood samples, where the
weights are computed based on the temporal (or spatial in the
case of images) and radiometric distances between a center
sample and its neighboring samples. Bilateral filtering can be
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FIG. 2. Radon transformation of brain MR images.

described as follows:

h(X) = λ−1(X)
∫ ∞

−∞

∫ ∞

−∞
I (ξ )s(ξ − X)r(I (ξ ) − I (X))dξ

(2)

with the normalization

λ(X) =
∫ ∞

−∞

∫ ∞

−∞
s(ξ − X)r(I (ξ ) − I (X))dξ , (3)

where I(x) and h(x) denote the input and output images, re-
spectively. s(ξ − X) measures the geometric closeness be-
tween the neighborhood center X and a nearby point ξ ; and
r(I(ξ ) − I(X)) measures the photometric similarity between
the pixel at the neighborhood center X and that of a nearby
point ξ . Various kernels can be used in bilateral filtering. An

FIG. 3. T1-weighted MR image (a) and its corresponding sinogram (b). The
skull (arrows) has a low signal intensity on both the MR image and the sino-
gram.

FIG. 4. Lines of profile from MR images (a) and from the corresponding
sinograms (b). The original MR image (noted as no noise) was added with
5% and 10% noise levels.

important case of bilateral filtering is shift-invariant Gaussian
filtering.

II.D.3. Multiscale bilateral decomposition

The multiscale bilateral decomposition technique
smoothes the images as the scale increases.30 For an input
image I, the goal of the multiscale bilateral decomposition
is to first build a series of filtered images Ii that preserve the
strongest edges in the image I while smoothing small changes
in intensity. At the finest scale (i = 0), we set I0 = I. Images
at different scales can be computed by iteratively applying
the bilateral filter as shown below

I i+1
p = 1

λ

∑
q∈�

sσ i
s
(‖q‖) · rσ i

r

(
I i
p+q − I i

p

) · I i
p+q (4)

with

λ =
∑
q∈�

sσ i
s
(‖q‖) · rσ i

r

(
I i
p+q − I i

p

)
, (5)

where p is a pixel coordinate; sσ (d) = exp (−d2/σ 2); and σ i
s

and σ i
r are the widths of the spatial and range Gaussians at

the scale i, respectively; and q is an offset relative to p that
runs across the support of the spatial Gaussian, i.e., �. The
repeated convolution by sσ i

s
increases the spatial smoothing at

each scale i. In the finest scale, the spatial kernel is set as σ 1
s

= σs . In other scales, σ i
s = 2i−1σ i−1

s , where i > 1. The range
Gaussian rσ i

r
is an edge-stopping function. The parameter is

defined as σ i
r = 2i−1σr . By increasing the width of the range

Gaussian by a factor of 2 at every scale, a noisy edge from a
previous iteration can be smoothed in the later iterations.

II.D.4. Gradient filtering and multiscale reconstruction

Images at difference scales are filtered along the vertical
direction using two sets of filters. Figure 5 shows the kernels
of the filters, which are mirrored along the vertical direction.
After applying the two filters to the image, we use the up-
per half of the first filtered image and the lower half of the
second filtered image. In the coarsest scale, the images are
much smoothed and only show main edges. At the two coars-
est scales, we use a region growing method to obtain a mask.
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FIG. 5. Kernels of the two filters. Each is mirrored along the vertical
direction.

Results from coarse scales provide a mask for the next fine
scale and supervise the segmentation in the next fine scale.
After obtaining the reciprocal binary sinogram that includes
only the skull, we perform reconstruction to obtain the skull
image. To eliminate artifacts introduced by reconstruction, we
use a predetermined threshold to obtain the skull image.

II.E. Classification of tissue types on MR images

Brain tissue is classified into three types: GM, WM, CSF.
We first use a diffusion filter to process MR images and to
construct a multiscale image series. Classification is applied
along the scales from the coarse to the fine levels. The ob-
jective function of the conventional, fuzzy C-means (FCM)
method is modified to allow multiscale classification process-
ing in which the result from a coarse scale supervises the clas-
sification in the next finer scale.

II.E.1. Anisotropic diffusion filtering

Due to partial volume effect, MR images often have
blurred object edges. Linear low-pass filtering gives poor
results as it can blur the edges and remove the details.
Anisotropic diffusion filtering can overcome this drawback
by introducing a partial edge detection step into the filtering
process to encourage intra-region smoothing and inter-region
edge preservation. Anisotropic diffusion filtering, introduced
by Perona and Malik,31 is a partial differential diffusion equa-
tion model described as

∂I (X, t)

∂t
= div(c(IX, t)∇I (X, t)), (6)

where I(X, t) stands for the intensity at the position X and
the scale level t; ∇ and div are the spatial gradient and the
divergence operator. c(IX, t) is the diffusion coefficient and is
chosen locally as a function of the magnitude of the image
intensity gradient;

c(IX, t) = e−(‖∇I (X,t)‖/ω)2
. (7)

The constant ω is referred to as the diffusion constant
and determines the filtering behavior. In this diffusion model,
maximal flow presents where the gradient strength is equal to
the diffusion constant (∇I ≈ ω); the flow rapidly decreases to
zero when the gradient is close to zero or much greater than
ω, which implies that the diffusion process maintains a ho-
mogeneous region where ∇I � ω and preserves edges where
∇I � ω. To reduce noise in the image, ω is chosen as the
gradient magnitude produced by noise and is generally fixed

manually or estimated using the noise estimator described in
Ref. 32.

II.E.2. Multiscale fuzzy C-means (MsFCM) algorithm

A multiscale approach can improve the speed of a classi-
fication algorithm and can avoid being trapped into local so-
lutions. In our classification scheme, the multiscale descrip-
tion of images is generated by the anisotropic diffusion fil-
ter that iteratively smoothes the images as the scale t in-
creases. General information is extracted and maintained in
large-scale images, and low-scale images have more local tis-
sue information. t is the scale level, and the original image is
at level 0. When the scale increases, the images become more
blurred and contain less detailed information. Unlike many
multiresolution techniques in which the images are down-
sampled along the resolution, we keep the image resolution
along the scales. We perform classification from the coarsest
to the finest scale, i.e., the original image. The classification
result at a coarser level, t + 1, is used to initialize the clas-
sification at a higher scale level t. During the classification
processing at the level t + 1, the pixels with the highest mem-
bership above a threshold are identified and assigned to the
corresponding class. These pixels are labeled as training data
for the next level t.

The objective function of the MsFCM at the level t is

J =
N∑

i=1

c∑
k=1

uε
ik‖I (i) − vk‖2

+ α

NR

N∑
i=1

c∑
j=1

uε
ik

⎛
⎝ ∑

j∈NR

‖I (j ) − vk‖2

⎞
⎠

+β

N∑
i=1

c∑
k=1

(uik − u′
ik)ε‖I (i) − vk‖2, (8)

where uik stands for the degree of membership of the pixel i
belonging to the class k, and c is the total numbers of classes.
N is the total number of voxels for classification. The param-
eter ε is a weighting exponent on each fuzzy membership
and is set as 2. I(i) represents the intensity of the MR im-
age at the pixel i, and vk is the mean intensity of the class k.
For d-dimensional data, vk is the d-dimension center of the
class. ‖*‖ is the norm expressing the similarity between mea-
sured data and the center. NR stands for the neighboring pix-
els of the pixel i. The objective function is the sum of three
terms where α and β are scaling factors that define the effect
of each factor term. The first term is the objective function
used by the conventional FCM method, and which assigns a
high membership to the pixel whose intensity is close to the
center of the class. The second term allows the membership
in neighborhood pixels to regulate the classification towards
piecewise-homogeneous labeling. The third term is to incor-
porate the supervision information from the classification of
the previous scale. u′

ik is the membership obtained from the
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classification in the previous scale. u′
ik is determined as

u′
ik =

{
ut+1

ik , if max
k

(
ut+1

ik

)
> κ

0, otherwise
, (9)

where κ is the threshold to determine the pixels with a known
class in the next scale classification and is set as 0.85 in our
implementation. The classification is implemented by mini-
mizing the objective function J. The minimization of J occurs
when the first derivative of J with respect to uik and vk are
zero.

II.F. Attenuation coefficients and PET reconstruction

Once the MR images are classified into different tissue
types using our MsFCM technique, the attenuation coeffi-
cients of different types of tissue are selected according to
the report by Zaidi and co-workers,18 e.g., air = 0.0, scalp
= 0.1022, skull = 0.143, GM and WM = 0.0993, CSF
= 0.0952, and nasal sinuses = 0.0536 (cm−1). Although the
gray and white matter can be considered as one type of tis-
sue for the purpose of attenuation correction, our classifica-
tion and quantification tools differentiate these two types of
tissue in order to perform further quantitative analysis such
as volumetric measurement of the gray matter. We assign at-
tenuation coefficients to the classified tissue followed by 4
× 4 × 4 Gaussian smoothing. The MR-derived attenuation
map is then forward projected to generate AC factors to be
used for correcting the PET emission data at appropriate an-
gles of the resulting attenuation map. Finally, the original
PET sinogram and attenuation map are combined to gen-
erate the correction PET sinogram. In our AC method, we
use a three-dimensional, ordinary Poisson ordered subset ex-
pectation maximization (OP-OSEM) method.33 The OSEM
method uses a subset of 16 and an iteration number of 6.

II.G. Evaluation methods

II.G.1. Segmentation evaluation

To evaluate the performance of the segmentation method,
the difference between the segmented images and the ground
truth was computed.34 We examined the segmentation results
from pairs of CT and T1-weighted MR data obtained from the
Vanderbilt Retrospective Registration Evaluation Dataset.35

These CT and MR volume images were acquired preopera-
tively from human subjects. Each of the CT volumes con-
tained at least 40 transverse slices with 512*512 pixels for
each slice. The voxel size was 0.4 × 0.4 × 3.0 mm3. The cor-
responding MR image volume contained 128 coronal slices
with 256*256 pixels for each slice. The voxel size was 1.0
× 1.0 × 1.6 mm3. We registered the CT to the correspond-
ing MR images using the registration methods22–28 that have
been evaluated in our laboratory. On the CT images, we used
a threshold method to obtain the skull and the results provide
the ground truth of the skull for the evaluation of the MR im-
age segmentation.

II.G.2. Classification evaluation

Our classification method has been previously evaluated
with synthetic images and the McGill brain MR database.36

We used overlap ratios between the classified results and the
ground truth for classification evaluation. For synthesized im-
ages, the ground truth was known. For brain MR image data,
the true tissue classification maps were obtained by assign-
ing each pixel to the class to which the pixel most probably
belongs. We used the Dice similarity measurement (DSM)
(Refs. 37–39) to compute the overlap ratios. The DSM for
each tissue type is computed as a relative index of the over-
lap between the classification result and the ground truth. It is
defined as

DSMc = 2(A ∩ B)c

Ac + Bc
, (10)

where Ac and Bc are the numbers of the pixels classified as
Class c using our classification method and the ground truth,
respectively; (A ∩ B)c is the number of pixels classified as
Class c in both results. This metric attains a value of one if the
classified results are in full agreement with the ground truth
and is zero when there is no agreement.

II.G.3. Evaluation of MR-based attenuation correction

Our MR-based AC was validated by comparison with the
transmission-based AC method. HRRT PET and MR images
were acquired from each of the ten human subjects. From the
HRRT PET system, transmission images were also acquired
from each subject. The PET image volume of each subject
was aligned to an anatomically standardized stereotactic tem-
plate using our registration methods.40–42 The corrected PET
images with MR-based AC were compared to those with TX-
based AC. The quality of the corrected PET images was first
assessed by visual inspection and then followed by quantita-
tive evaluation of the PET signals in the clinical volumes of
interest (VOIs) in the brain.

Seventeen VOIs were defined on different slices of the MR
template and were superimposed on each subject’s images,
resulting in a total of 170 VOIs for the 10 subjects. The reg-
istered PET images were then used for quantitative analysis
using the defined VOIs. The VOIs in the brain include the left
cerebellum (LCE), left cingulate (LCI), left calcarine sulcus
(LCS), left frontal lobe (LFL), left lateral temporal (LLT), left
mesial temporal (LMT), left occipital lobe (LOL), left parietal
lobe (LPL), Pons (PON), right cerebellum (RCE), right cin-
gulate (RCI), right calcarine sulcus (RCS), right frontal lobe
(RFL), right lateral temporal (RLT), right medial temporal
(RMT), right occipital lobe (ROL), and the right parietal lobe
(RPL). The left and right medial temporal (LMT and RMT)
region included the amygdale, hippocampus, and the entorhi-
nal cortex.

The relative difference of the PET signals at each VOI be-
tween MR-based and TX-based AC was calculated using the
following equation:

Diff = |VOI(MRI) − VOI(TX)|
VOI(TX)

. (11)
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We also used mean squared error (MSE) and peak signal-
to-noise ratio (PSNR) to evaluate the image quality before and
after AC. MSE is defined as the average squared difference
between a reference image and a distorted image. It is com-
puted pixel-by-pixel by adding up the squared differences of
all the pixels and dividing by the total pixel count. For images
A = {a1 . . . aM} and B = {b1 . . . bM}, where M is the number
of pixels

MSE(A,B) = 1/M

M∑
i=1

(ai − bi)
2. (12)

The PSNR is defined as the ratio between the reference
signal and the distortion signal in an image, given in decibels.
The higher the PSNR, the closer the distorted image is to the
original. In general, a higher PSNR value should correlate to
a higher quality image. For images A = {a1 . . . aM}, B = {b1

. . . bM}, and MAX equal to the maximum possible pixel value

PSNR(A,B) = 10 log10

(
MAX2

MSE(A,B)

)
. (13)

III. RESULTS

III.A. Segmentation results

Figure 6 shows an example of skull MR image segmenta-
tion and comparison with the result from the CT images. The
subtraction image between MR-based and CT-based segmen-
tation shows the minimal difference in the region of the skull.
The average overlapping ratios between the segmented skull
from the MR and the CT images was 85.2 ± 2.6% for the
eight image pairs from the Vanderbilt Database.

III.B. Attenuation correction results of subject MR
and PET images from HRRT scanner

Figure 7 shows the processed PET and MR images in the
MR-based AC. After the MR images were registered to the
preliminary PET images, the skull was segmented and
the brain tissue was classified into GM, WM, and CSF. Be-
fore the classification method was applied to the subject data,
it was evaluated using synthetic images and the McGill brain
MR database. The overlap ratios between the classified results
and ground truth were over 90%. After the skull segmenta-
tion and tissue classification, different AC coefficients were
assigned to different types of tissue in order to generate an
AC map.

As shown in Fig. 8(c), our MR-based AC achieved similar
results as compared to the currently used standard approach,
i.e., the TX-based correction [Fig. 8(b)]. There was no visible
difference between the skull-based [Fig. 8(d)] and MR-based
corrections [Fig. 8(c)]. The profiles demonstrate the closeness
of the three AC methods. However, without AC, the center of
the brain has low signals [Figs. 8(a) and 8(e)] that must be
corrected before quantitative analysis.

We calculated and analyzed the relative difference between
the MR-based and TX-based correction methods. The aver-

FIG. 6. Comparison of skull segmentation from MR (a) and CT (c) of the
same human subject. The skull was segmented from MR (b). The difference
between MR and CT segmentation is small (d).

age relative differences of the 10 subjects is less than 7.6%
(min/max: 3.0%/7.6%) for each of the 17 VOIs (Fig. 9).
Among the 170 VOIs that were analyzed for the 10 subjects,
only 5.3% (9/170) of them had a relative difference of more
than 10% (min/max: 10.2%/16.4%). If we average the relative
differences of the 17 VOIs of an individual subject, the mean
relative difference is less than 7.5% (min/max: 2.4%/7.4%)
for each of the 10 subjects. When averaging the relative dif-
ference of the 10 subjects and the 17 VOIs, the average rela-
tive difference is 4.2% between the MR-based and TX-based
correction methods.

For the ten subjects, we used the TX-based AC as the ref-
erence to evaluate the PSNR of the PET images with MR-
based AC. The mean and standard deviation of the PSNR are
44.5 ± 6.9.

III.C. Phantom results obtained on
the combined MR/PET

Figure 10 shows sample images of a Flanged Jaszczak
ECT phantom; these images were acquired on the combined
MR/PET. The phantom was filled with 6.8 l water and then
with 84.4 MBq F18-fluorodeoxyglocuse (FDG). Assessment
of how well the cold rods within the phantom were recon-
structed provides information on the characteristics of imag-
ing on MR/PET. The PET signals should be homogeneous
within the phantom; however, the signals at the center of the
phantom are lower than those in the peripheral region when
there is no attenuation correction. The MR image of the same
phantom provides the structural image. The phantom MR
image was then segmented into two different materials, i.e.,
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FIG. 7. Data flow for the generation of attenuation correction maps. The
PET images (a)–(c) were first registered and fused (d)–(f) with the corre-
sponding MR images (g)–(i) that were segmented and classified into different
tissue types (j)–(l) to generate attenuation correction maps (m)–(o).

water and plastic. After an attenuation coefficient was as-
signed to each material (water = 0.096 cm−1 and plastic
= 0.183 cm−1), the AC map was generated and then used
in the PET reconstruction. The signals on the central region
were corrected on the PET image.

Figure 11 shows comparison of the MR-based and TX-
based AC. The difference between the two AC correction ap-
proaches is not visible on the corrected PET images. The pro-
files from the two methods are close [Fig. 11(d)]. Again, the
quality of the PET image is not acceptable for quantification
if there is no attenuation correction.

To assess the image quality after AC, PET images gener-
ated using TX-based AC are used as the reference, the PSNR
were 53.4 and 3.3 for the images generated using MR-based

FIG. 8. Comparison of PET images without attenuation correction (a), with
transmission (TX)-based (b), and MR-based (c) attenuation correction. Image
(d) is obtained using the skull-based correction method. (Bottom) Lines of
profiles on PET images.

AC and those without AC, respectively; indicating the im-
provement of the image quality after MR-based attenuation
correction.

III.D. Estimation of MR coil attenuation
in combined MR/PET

Simultaneous PET/MR acquisition uses a transmit/receive
coil that fits concentrically within the PET insert. The coil is

FIG. 9. Comparison between MR-based and transmission (TX)-based at-
tenuation correction methods. Uptake signals at 17 VOIs were quantified for
each subject’s PET images. The percentage of difference between the two
methods was calculated. Means and standard errors were calculated using
data of ten subjects.
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FIG. 10. PET (a) and MR (b) images of a phantom acquired using the com-
bined MR/PET scanner. The segmented MR image was used to generate the
attenuation correction map (d) in order to obtain the corrected PET image (c).

transparent in MR but is within the PET FOV and occupies
space between the subject and the PET detectors. For accu-
rate reconstructions, the coil attenuation properties need to be
estimated and incorporated into the reconstructions. We esti-
mated the coil position within the BrainPET FOV and pro-
vided an estimate of the coil AC factors.

Ten Na-22 point sources were taped in various positions on
the transmit/receive coil. PET scans of the coil were collected
on three scanners, i.e., BrainPET, GE DST, and Siemens

FIG. 11. Comparison of PET images without attenuation correction (a), with
transmission (TX)-based correction (b), and with MR-based correction (c).
Profiles (d) show little difference between the TX- and MR-based methods.

FIG. 12. Comparison of the attenuation correction maps between the MR-
based (left) and transmission (TX)-based (right) methods. The AC map takes
the coil and bed into consideration.

HRRT. Transmission scans were also collected, including CT,
Ge-68 rod source data on the GE DST, and Cs-137 point
source data on the HRRT. The emission data from the DST
and HRRT were co-registered with the BrainPET emission
data. The transformation matrices created from these registra-
tions where used to transform respective scanner transmission
attenuation coefficient maps (μ-maps) to the brain PET space.
The CT data were scaled to 511 keV attenuation values using
a bilinear function; the values of the Cs-137 μ-maps were in-
creased by 11% to match the 511 keV attenuation values. The
μ-map images were compared by smoothing the μ-map im-
ages to the DST resolution and creating joint histograms using
the DST 511 keV μ-map as the standard.

The 511 keV and CT μ-maps showed a strong correlation
between their attenuation values with the CT values slightly
overestimating the 511 keV values by a factor of 1.14. The CT
provides a good estimate of the brain PET coil attenuation
properties after minor adjustment to match the 511 keV μ-
map. Figure 12 shows example AC maps that took the coil
attenuation into consideration. The MR-based AC map shows
more details within the brain, e.g., the CSF, than the TX-based
map. Overall, the difference between the MR-based and TX-
based maps was minimal.

III.E. Patient results from combined MR/PET

From the combined MR/PET scanner, both PET and MR
images were simultaneously acquired from human subjects.
The fusion of the PET and MR images combines both func-
tional and anatomic information regarding the brain (Fig. 13).
Furthermore, the combined information was captured
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FIG. 13. PET [left: (a)/(d)/(g)] and MR [right: (c)/(f)/(i)] images of a hu-
man subject, obtained on the combined MR/PET system. The fused images
[middle: (b)/(e)/(h)] show both functional and anatomic information of the
brain.

simultaneously from the brain and thus allows correlation
analysis not only in space but also in time. However, atten-
uation correction is needed for the PET images before quan-
titative analysis of brain function. As the combined MR/PET
system does not provide transmission or CT images for atten-
uation correction, MR images are used for this AC purpose.
To evaluate the MR-based AC method, the same subjects were
scanned on the HRRT. It provides transmission images for at-
tenuation correction.

Comparison between the MR-based and TX-based AC
methods is shown on the corrected PET images (Fig. 14).
The PET image from the combined MR/PET is visually close
to that from the HRRT PET. Figure 15 allows comparison
among the PET images from the HRRT with TX-based AC,
from the MR/PET scanner with TX-based AC, and from
MR/PET with MR-based AC.

IV. DISCUSSION

Combined MR/PET is a new imaging modality. Accurate
attenuation correction represents an essential component for

FIG. 14. Comparison of PET images from MR/PET without attenuation cor-
rection (a), with transmission (TX)-based correction (b), and with MR-based
correction (c), and the PET image from the HRRT with AC (d) of the same
subject.

FIG. 15. Comparison of PET images from HRRT with AC [left: (a)/(d)/(g)],
from MR/PET with transmission (TX)-based AC [middle: (b)/(e)/(h)], and
from MR/PET with MR-based AC [right: (c)/(f)/(i)].

the reconstruction of quantitative PET images. The present
design of combined MR/PET does not offer measured atten-
uation correction using a transmission scan. We developed
quantification tools including MR-based AC for potential use
in combined MR/PET for brain imaging.

Our quantification tools include image registration, classi-
fication, and attenuation correction. We have integrated all the
components into one software package. In this scheme, MR
images are first registered with the preliminary reconstruction
of PET data, and are then segmented and classified into dif-
ferent tissue types. The voxels of classified tissue types are
assigned theoretical tissue-dependent attenuation coefficients
to generate AC factors. Corrected PET emission data are then
reconstructed to obtain the corrected PET images.

The skull segmentation algorithm is an important step re-
quired for the MR-based AC because bone tissue has a signif-
icant effect on attenuation. In the segmentation algorithm, the
Radon transformation of the MR images into the sinogram do-
main is a key step for the detection of bone edges and for the
reduction of noise. Without Radon transformation, it can be
difficult to directly segment the skull on the original MR im-
ages. The evaluation of the skull segmentation demonstrates
satisfactory results.

The classification method can classify the brain tissue into
gray matter, white matter and CSF. The classification method
can be used not only for AC but also for the quantification of
tissue volumes such as measuring the volume of gray matter.
As the difference of the attenuation coefficients between gray
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matter and white matter is small, they could be considered as
one tissue type during AC.

This study focused on the technical development and fea-
sibility evaluation of the MR-based quantification tools. The
MR-based AC has been evaluated in phantoms, in two sub-
jects who had combined MR/PET scans, and in ten subjects
who had separate brain MR and PET scans. Application of the
MR-based AC method to body imaging as opposed to brain
imaging should be possible. That said, however, significant
additional research and development efforts will likely be re-
quired to refine and confirm such as AC of chest and abdomen
is more difficult if for no other reason than organ motion is
present in both. A large field of view of MR imaging may be
required in order to cover the body before the MR image can
be used for AC. When some part of the tissue is missing on
MR images, software correction may be required in order to
compensate for the missing data before the MR images could
be used for attenuation correction.43 To demonstrate the clin-
ical utilization of the quantification tools, more studies are
needed in order to show particular clinical applications in the
future.

V. CONCLUSION

We developed and evaluated quantitative tools that in-
clude image registration, segmentation, classification, and
MR-based AC for potential use in combined MR/PET. MR-
based AC was compared with transmission-based AC using
high-resolution HRRT PET. The MR-based AC compared fa-
vorably with conventional transmission-based AC. The quan-
tification tools that have been integrated into one software
package have various potential applications for quantitative
neuroimaging.
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