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Abstract
Anthrax is an acute infectious disease caused by the spore-forming bacterium Bacillus anthracis.
The anthrax toxin lethal factor (LF), an 89-kDa zinc hydrolase secreted by the bacilli, is the toxin
component chiefly responsible for pathogenesis and has been a popular target for rational and
structure-based drug design. Although hundreds of small-molecule compounds have been
designed to target the LF active site, relatively few reported inhibitors have exhibited activity in
cell-based assays and no LF inhibitor is currently available to treat or prevent anthrax. This study
presents a new pharmacophore map assembly, validated by experiment, designed to rapidly
identify and prioritize promising LF inhibitor scaffolds from virtual compound libraries. The new
hypothesis incorporates structural information from all five available LF enzyme-inhibitor
complexes deposited in the Protein Data Bank (PDB) and is the first LF pharmacophore map
reported to date that includes features representing interactions involving all three key subsites of
the LF catalytic binding region. In a wide-ranging validation study on all 546 compounds for
which published LF biological activity data exist, this model displayed strong selectivity toward
nanomolar-level LF inhibitors, successfully identifying 72.1% of existing nanomolar-level
compounds in an unbiased test set, while rejecting 100% of weakly active (>100 µM) compounds.
In addition to its capabilities as a database searching tool, this comprehensive model points to a
number of key design principles and previously unidentified ligand-receptor interactions that are
likely to influence compound potency.

Introduction
The rod-shaped, spore-forming bacterium Bacillus anthracis has emerged as one of the most
dangerous biological weapons. As the causative agent of anthrax, the bacillus secretes a
tripartite exotoxin comprising the lethal factor (LF), edema factor adenylate cyclase (EF),
and protective antigen (PA), encoded by the pXO1 plasmid.1 The LF enzyme, a zinc
metalloprotein, is the primary agent of anthrax-related toxicity. LF joins with PA to form the
anthrax lethal toxin2 which enters cells and cleaves members of the mitogen activated
protein kinase kinase (MAPKK) family, interfering with cellular immune defense
mechanisms and allowing the pathogen to replicate unchecked.3–6 Host death may result
suddenly from massive release of cytokines from spore-infected macrophages, or in later
stages of the disease, from circulatory shock due to vascular barrier disruption and
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hypovolemia.7–10 The anthrax bacilli are susceptible to antibiotics, but early diagnosis and
treatment are essential, as antibacterial therapeutics have no effect on the rapidly secreted
lethal toxin. In cases of inhalational anthrax, host death is certain without treatment, and
mortality rates approach 50% even with prophylactic antibiotics and aggressive support
including mechanical ventilation, fluids, and vasopressors.11–13

As anthrax continues to pose a significant biowarfare threat, new and more effective
treatment modalities are in high demand, and small-molecule LF inhibitors have attracted
particular attention as potential postexposure drugs to be administered in the aftermath of a
bioterror attack.6, 9, 14–35 LF inhibitor design is nontrivial, however, due to the presence of a
catalytic zinc, challenging active-site topology, and cross-reactivity resulting from relatively
high sequence homology with other zinc metalloproteins at the catalytic center.9, 28, 36–41 LF
inhibitor scaffolds have progressed from small peptide sequences designed as substrate
mimics10, 36, 42 to nonpeptidic acids incorporating hydroxamate groups,9 which are
especially strong zinc chelators, to small molecules featuring a variety of other zinc-binding
groups (ZBGs) intended to avoid the pharmacokinetic liabilities associated with
hydroxamates,15, 16, 24–26, 32, 34, 43–54 yet no LF inhibitor has yet made it to the market as a
preventive or therapeutic agent.

LF is a 90-kDa Zn metalloprotein consisting of four domains (Figure 1). The C-terminal
domain includes the LF active site, in which a catalytic Zn2+ is coordinated to three active-
site residues: His686, His690, and Glu735, all located on α-helices and comprising part of
the signature HEXXH consensus sequence found in many Zn metalloproteinases.9, 43 Three
subsites comprise the LF substrate binding region: the hydrophobic and sterically restricted
S1’ subsite, the less constrained and partly solvent-exposed S1–S2 region, and the less well
characterized, open-ended S2’ area (Figure 2).

Many diverse compound classes have been designed to inhibit LF; examples include small
peptide sequences designed to parallel the natural MAPKK substrate with hydroxamic acid
ZBGs,10, 36, 42 sulfonamide hydroxamate compounds,9 rhodanines,16, 25, 26, 43 and N,N'-di-
quinoline urea derivatives,46 among others. Overall, hundreds of small-molecule LF
inhibitors have been reported in the literature,6, 9, 14–35 and five X-ray structures of LF-
ligand complexes are available in the Protein Data Bank (PDB): 1YQY,55 1ZXV,16

1PWP,46 1PWU,36 and 1PWQ.36 Cocrystallized inhibitors in these structures include the
most active LF inhibitor designed to date, a sulfonamide hydroxamate (IC50 = 0.054 µM,9

1YQY), a rhodanine derivative (IC50 = 1.7 µM,24 1ZXV), a N,N'-di-quinoline urea analog
(Ki = 0.5 µM,46 1PWP), and two peptide hydroxamates (Ki

app = 2.1 µM,36 and 11 µM,36

1PWQ and 1PWU). Figure 3 illustrates a superposition of all five ligands based on
alignment of X-ray receptor structures (MOE 2010.10, Chemical Computing Group, Inc.).
The chemical functionalities of these five ligands occupy various key regions of the LF
active site, and taken together cover all three critical subsites (S1’, S1–S2, S2’) of the LF
binding area.

Researchers are actively seeking novel LF inhibitor scaffolds23, 29, 35, 56 that demonstrate
favorable biological activities, explore new regions in chemical space, and can serve as
starting points for anti-anthrax drug design. Pharmacophore mapping has long been
recognized as a valuable computational tool to pinpoint new drug and probe scaffolds based
on ligand-receptor interactions engaged in by active compounds.57–59 LF inhibitor
pharmacophore hypotheses have been reported in the literature and recommended for
database screening.35, 46, 54, 60 However, these models were developed from limited training
sets, i.e., from one or two structural classes of compounds found to partly occupy the LF
binding site, which somewhat restricts their applicability and usefulness as searching tools.
In the current study, we report a comprehensive pharmacophore model, UM1, which is
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designed to overcome this roadblock by building on experimentally determined binding
modes involving the entire LF binding area. This new model was generated from a series of
five preliminary maps UA1–5, using genetic algorithms,61 Pareto scoring62, 63, and ligand-
receptor interaction diagrams based on experimental structural biology. The final model was
validated using a dataset comprising 546 LF inhibitors – all compounds known to date with
published in vitro biological activities against LF – including an unbiased external test set of
sixty-eight nanomolar-level LF inhibitors that are structurally dissimilar to the compounds
used to construct and optimize the model. We show that, when implemented with a partial
match criterion of at least five features, all of which passed a key statistical significance test,
UM1 successfully identified 49 (72.1%) of the 68 most potent LF inhibitors (IC50 or Ki < 1
µM) in the unbiased test set, and rejected all compounds with specified IC50 or Ki values
greater than 100 µM. In addition to its highly selective searching ability, this comprehensive
map elucidates important design principles for highly potent LF inhibitors. Specifically, a
small molecule effective against LF must incorporate at least five of the following eight
features: (1–3) three hydrophobic groups to interact with hydrophobic sidechains in the S1–
S2 and zinc-chelating regions of the active site; (4) a hydrogen-bond acceptor interacting
with Glu687 near the catalytic zinc; (5) hydrophobic interactions with one or more of the
following: Lys656 (S2’), Leu677 (S1’), His686 (catalytic zinc area), or Tyr728 (S1–S2); (6)
a hydrogen-bond acceptor interacting with Glu735 (S1–S2) or Tyr728; (7) a hydrogen-bond
acceptor interacting with Lys656 or Gly657 (at the S2’ entrance); or (8) a hydrogen-bond
donor interacting with Gly657 and/or Glu687.

Results and Discussion
Preliminary Pharmacophore Models

Five initial pharmacophore maps UA1–5 were generated based on the aforementioned
experimental X-ray structures deposited in the Protein Data Bank.64 Two of these models,
UA1 and UA2, were derived from active LF inhibitor series using genetic algorithms (GAs)
and a scoring function based on Pareto multi-objective optimization, as implemented in the
GALAHAD package61 (Tripos, Inc.) One model (UA3) was generated by modifying a
published pharmacophore map based on further examination of ligand-receptor interactions
observed in LF X-ray structures. Models UA4 and UA5 were obtained by creating new
pharmacophoric feature representations derived solely from crystallographic enzyme-
inhibitor interactions, as no analogs or derivatives of cocrystallized ligands from those
complexes have been made available. Both GA-based hypotheses contained data from all
molecules in the input set and were represented as a set of hypermolecules (ligand
alignments and common features such as hydrogen bond donors/acceptors and hydrophobic
centers). The GA models were subjected to multiple iterative refinements, and their
accuracy was assessed by means of two key criteria: an overall Pareto score and a rank sum
value incorporating (a) pharmacophoric concordance (a measure of the overall
pharmacophoric similarity among ligand conformers; (b) steric overlap (a measure of the
overall steric similarity among ligand conformers; and (c) agreement between the query
tuplet and the pharmacophoric tuplets for the ligands as a group (essentially, a measure of
similarity between the pharmacophoric query and the compound set used to build the
model).61, 65 Within each set of hypotheses, models were ranked first by Pareto score; if all
Pareto scores were equal, the models were then ordered by the rank sum value across criteria
(a) – (c) listed above. Any remaining “ties” were subsequently broken by a total energy term
representing the energies of all molecules in the training set (as estimated by the Tripos
force field), where lower energies are considered more favorable.61, 65 It is important to note
that the presence of a given feature and/or chemical functionality in more than one active
compound does not necessarily indicate a significant contribution to compound activity, or
signify a true enzyme-inhibitor interaction. We therefore generated two-dimensional ligand-
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receptor interaction maps (MOE 2010.10, Chemical Computing Group, Inc.) for each
cocrystallized complex, to eliminate those features in each hypothesis that either did not
parallel enzyme-inhibitor interactions as observed in the X-ray structures, or that represented
those interactions inaccurately (i.e., incorrect hydrogen bonding directionality). As the
MOE-based 2D maps do not illustrate hydrophobic interactions, we also generated
PoseView66 2D diagrams to clarify those interactions in three cases (models UA3–5).

Model UA1: 1YQY.pdb (LF cocrystallized with the sulfonamide hydroxamate
MK-702/LF-1B55)—Fifteen preliminary hypotheses were derived from the five most active
compounds in Ref. 9 as determined by LF FRET assay IC50 values: 38, 39, 46, 49, and 50
(Table 1), with in vitro activities ranging from 0.037 to 0.050 µM. All fifteen models
exhibited an equivalent Pareto rank, so the six-featured hypothesis UA1_001 was chosen
from among these by overall rank sum across pharmacophoric concordance, steric overlap,
and tuplet agreement criteria as described earlier. Based on ligand–receptor interaction
diagrams of the 1YQY.pdb X-ray structure (Figures 4a and 4b), two alterations were made
to UA1_001: a feature representing the sulfonamide NH moiety as an acceptor was
removed, and, the hydroxamate ZBG hydroxyl was represented as a hydrogen-bond donor.
The resulting final model UA1 is shown in Figure 4c

Model UA2: 1ZXV.pdb (LF bound to BI-MFM3, a rhodanine derivative)—Twenty
preliminary models were derived from the three most active compounds 6, 7 and 8 (with in
vitro LF FRET assay activities from 0.19 to 0.30 µM) in Ref. 24 (Table 2); all 20 hypotheses
once again exhibited identical Pareto scores. The most favorable model chosen by
pharmacophoric rank sum value, UA2_001, initially comprised six features. The ligand–
receptor interaction diagrams for 1ZXV.pdb (Figures 5a and 5b) did not illustrate any ligand
moieties functioning as hydrogen-bond acceptors; therefore two such features in UA2_001,
corresponding to a furan oxygen and a carboxylic acid oxygen on the ligands, were
removed. Additionally, a fast Connolly electron density surface of the LF active site
including BI-MFM3 was generated with lipophilic potential mapping using MOLCAD67 in
SYBYL 8.0 (Tripos, Inc.) (Figure 5c). This surface points to hydrophobic regions in the LF
Zn-chelating and S1–S2 areas comprising Val653, Leu658, Tyr659, Pro661, and Tyr728,
supporting the inclusion of three hydrophobic features corresponding to phenyl, furan, and
2-thioxothiazolidine-4-one moieties on the ligand that interact with this receptor area. An
anionic feature in UA2_001 was also retained, as it corresponds to a solvent-exposed
carboxylic acid functionality on the ligand set. The revised, final hypothesis UA2 comprised
four features in total and is depicted in Figure 5d.

Model UA3: 1PWP.pdb (LF complexed with NSC 12155, a methylquinoline
urea derivative)—Previously, Panchal and coworkers46 had developed a partial
pharmacophore model of the LF S1–S2 subsite based on inhibitors NSC 12155, compound 1
(Ki = 0.5 µM) and NSC 357756, compound 2 (Ki = 4.9 µM) (Table 3). The initial
hypotheses were refined by those workers using six other active compounds from virtual and
experimental NCI database screening to generate the final reported model.46 This five-
featured hypothesis comprised two aromatic centers, two polar centers and one neutral
linker. However, only two aromatic features in this published model were present in
experimental interaction diagrams of the 1PWP complex (Figures 6a and 6b), so the other
three features were deleted to form revised model UA3 (Figure 6c).

Models UA4 and UA5: 1PWQ.pdb (LF complexed with thioacetyl-Tyr-Pro-Met-
amide) and 1PWU.pdb (LF bound to peptide-based matrix metalloprotease
inhibitor GM6001)—As no published analogs exist for the small-molecule inhibitors in
these two X-ray structures, the 2D ligand-receptor interaction maps generated for both
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complexes (Figures 7a–7b and 8a–8b) were used to determine key pharmacophoric features
on the ligands. Two hydrogen-bond acceptors, one hydrogen-bond donor, and one
hydrophobic group were present in the 1PWQ thioacetyl ligand; the corresponding features
were combined using MOE 2010.10 to form model UA4 (Figure 7c). Similarly, model UA5
(Figure 8c) was constructed by assembling three hydrogen-bond acceptors, one hydrogen-
bond donor, and one hydrophobic isopropyl group from GM6001 cocrystallized with LF in
1PWU. Although developing a pharmacophore model based on a single cocrystallized
ligand is a nonstandard approach, the significance testing we conducted (see below)
indicated that features in models UA4 and UA5 played key roles in identifying potent LF
inhibitors, as well as in rejecting weakly potent and inactive compounds.

Comprehensive Pharmacophore Hypothesis: Construction, Validation, and Refinement
All five models UA1–UA5 were combined in MOE 2010.10 to form an initial
comprehensive hypothesis consisting of 19 features. Ten features required refinement due to
redundancy: two hydrogen-bond acceptors, one hydrogen-bond donor and one hydrophobic
feature were present in multiple preliminary hypotheses and, upon combination of the five
models, appeared as multiple identical features separated by small distances (≤ 2.11 Å) in
the superimposed X-ray structure assembly. Each group of features was therefore merged
using MOE 2010.10 into a single representative feature localized on the group center of
mass, where the radius of the merged feature was manually adjusted to cover the three-
dimensional space occupied by the corresponding feature group. The resulting intermediate
model UM1A comprising thirteen features is depicted in Figure 9.

Subsequent refinement and validation of UM1A was done by using that model to virtually
screen small-molecule database DB1 comprising all 546 non-redundant compounds6, 9, 14–35

with reported experimental activity data against LF. (Note that compound analogs used to
generate the GA-based preliminary models UA1 and UA2 had previously been removed
from this dataset.) Database DB1 was divided into five initial subsets according to
experimental biological activity values (see Tables 4 and 5): DB1A (strongly active
compounds, IC50 or Ki < 1 µM, 102 structures), DB1B (weakly active compounds, IC50 or
Ki = 1–100 µM, 320 structures), DB1C (inactive compounds with specified biological
activity values from dose-response screens, IC50 or Ki > 100 µM, 9 structures), DB1D (115
compounds for which reported activity values were nonspecific and greater than 25
micromolar) and DB1E (47 compounds in DB1D for which reported activity values were
nonspecific and greater than 100 micromolar). For validation purposes, the strongly active
compound set DB1A was further subdivided into training and test sets: DB1A_Training (34
sulfonamide hydroxamate and rhodanine-based derivatives from Refs. 9, 16, 24 and 26) and
DB1A_Test (68 compounds from Refs. 15, 20, 21, 22, 23, 27, 29 and 34 including
guanidinylated 2–5, dideoxystreptamine derivatives, guanidinylated derivatives of neamine,
aniline and γ-ether derivatives, a carboxylic and N-sulfonylated phenylfuran derivative, one
N-hydroxyhexanamide analog, and (-)epigallocatechin-3-gallate). The sulfonamide
hydroxamate and rhodanine-based DB1A compounds were chosen to constitute the training
rather than the test set because those structures were similar to those used to construct
preliminary pharmacophore hypotheses UA1 and UA2, and for proper model validation, it is
important for the test set to be unbiased, i.e., to comprise compounds that had not been used
in model construction and that are structurally dissimilar to those in the training set.

In the first stage of this virtual screen, a partial-match validation test was done to find the
optimal minimum number of pharmacophoric features in UM1A that must be matched by a
given compound, for that compound to be considered a “hit”. Requiring at least four features
to be matched resulted in a relatively high hit rate across the entire dataset, irrespective of
activity: UM1A returned all 34 highly active compounds in DB1A_Training (LF IC50 or Ki
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less than one micromolar), all of the less actives (DB1B), 77.8% of the inactive DB1C
structures, 95.7% of the inactives in our set with unspecified biological activity values, and
93.6% of those inactives with nonspecific activities reported as greater than 100 micromolar
– meaning that the majority of structures in the 546-compound database matched four of the
thirteen features in UM1A, and that a partial match criterion of ≥ 4 would not be sufficient
to distinguish more potent from less potent compounds. Increasing the partial match
criterion to ≥ 5 resulted in 97.1% of highly actives in DB1A_Training and 78.4% of the less
actives being identified, but requiring at least 6 features to be matched greatly decreased the
active compound hit rate to 2.9% (only one out of thirty-four structures). Consequently, a
partial match criterion of five features was established for subsequent further refinement and
screening.

Next, a significance test was conducted on UM1A, to assess whether each of its thirteen
features must be present in order for the model to identify active compounds and reject
inactives. This was done by removing one feature at a time from the hypothesis (keeping the
partial match requirement of at least 5 features as described above), using the resulting
twelve-featured model to screen the entire DB1 test set (MOE 2010.10), and comparing the
results to those obtained by using the full thirteen-featured model (Table 4). The unaltered
model UM1A returned 33 (97.1%, DB1A_Training) highly active compounds in the
training set, 67 (98.5%, DB1A_Test) highly active compounds in the test set, and 251 of
320 (78.4%) less active compounds (DB1B), while rejecting 5 out of 9 (55.5%) inactive
compounds (DB1C), 49 of 115 (42.6%) nonspecifics (DB1D) and 21 of 47 (44.6%)
nonspecifics with activities reported as greater than 100 micromolar. Omitting anionic
feature F5 had no effect on hit rate; the effect of removing features F10, F11, and F17 was
also negligible (a change of ≤ 1% “hit” or “match” rate across all four subsets), indicating
that none of these features played a significant role in identifying actives and could be safely
omitted from the model. Omitting aromatic feature F9 resulted in a model that returned the
same numbers of strongly active compounds in the training set (33 of 34) and specified
inactives (4 of 9) as did UM1A, but resulted in an improvement in selectivity, as it matched
16 fewer nonspecifics in datasets DB1D and DB1E. Subsequently, the radii of the remaining
features were optimized to minimize the return rates of inactives and nonspecifics (DB1C
and DB1E compounds) while maintaining a reasonable hit rate for highly active compounds
(DB1A_Training). Based on our significance test results, F20 and F23 played the most
significant roles in matching DB1C compounds, as removal of either caused the largest
decrease in the DB1C hit rate (see Table 4). The radii of F20 and F23 were therefore
reduced by 0.1 Å increments until the DB1C hit rate reached zero. The presence of
hydrogen-bond acceptor feature F13 strongly influenced the DB1A_Training hit rate, so the
radius of this feature was increased by 0.1 Å increments until a temporary maximum
DB1A_Training hit rate was achieved. Next, the radii of all features were fine-tuned until
minimal hit rates for DB1C and DB1E and maximal hit rates for DB1A_Training were
reached. This final comprehensive model UM1 is shown in Figure 10. (Note that although
feature F13 originated from models UA4 and UA5, that were derived using structure-based
interaction maps rather than by means of traditional pharmacophore mapping procedures
using sets of ligand analogs, our significance test proved that this feature was required in
order for the comprehensive model to pinpoint active compounds).

We found that this final hypothesis UM1 performed quite well in terms of selectively
returning strongly active vs. less active LF inhibitors (see Table 5): 72.1% of the unbiased
DB1A_Test structures vs. 38.1% of DB1B structures. UM1 also strongly disfavored
inactive compounds, identifying none of the DB1C structures and only 22.6% of the
structures with “unspecified” activities in DB1D – and only eight of the forty-seven
compounds in DB1E with “unspecified” activities greater than 100 micromolar. Note also
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that while UM1 identified fewer strongly active compounds in DB1A_Test than did UM1A
(73.5% vs. 98.5%), this refined model was able to distinguish more precisely between
nanomolar- and micromolar-level compounds, matching only 38.1% vs. 78.4% of DB1B
structures. Importantly, the high selectivity of UM1 for strong actives was not due to
significant structural similarity between compounds used to build/optimize the model and
those in the test set; the mean Tanimoto similarity for nearest-neighbor compounds in the
training (DB1A_Training) and test (DB1A_Test) datasets was only 0.51.

Figure 10 illustrates hypothesis UM1 superimposed on the X-ray structure of the LF active
site (1YQY.pdb)55, with all eight features illustrated: F6–F8, F13, and F20–F23.
Hydrophobic features F6–F8, originating from preliminary model UA2, represent inhibitor
moieties that are necessary to interact with residues in the hydrophobic S1–S2 and zinc-
chelating regions of the LF active site. A key hydrogen-bonding interaction with Glu687
near the catalytic Zn2+ is represented by feature F13. Other hydrophobic interactions that
may enhance compound activity are indicated by feature F20 (with the zinc-binding residue
His686, Tyr728 in the LF S1–S2 region and Leu677 in the S1’ subsite, and with Lys656 in
the less explored S2’ area). Feature F21 points to key hydrogen-bonding interactions
between the ligand with Glu735 and Tyr728 in the S1–S2 area, while F22 represents a
hydrogen-bond acceptor that may enhance binding by interacting with Gly657 near the
bottom of the active site and Lys656 in the S2’ region. Finally, the donor feature F23
indicates two hydrogen bonds from the ligand to Gly657 and Glu687. Note that hydrophobic
and/or hydrogen bonding interactions involving Tyr728, Gly657, and Glu687 are
represented by multiple pharmacophoric features in UM1, suggesting that these residues
may be especially important targets in the LF active site.

Concluding Remarks
In this paper, we have presented a new pharmacophore hypothesis UM1 for anthrax toxin
lethal factor (LF) inhibitors, obtained from experimental X-ray binding modes of
structurally diverse active compounds and spanning all three key subsites in the LF binding
area. This eight-featured, comprehensive model was constructed from five preliminary
models and was validated and optimized by screening all published LF inhibitors with
experimental biological activity data – an extremely diverse dataset occupying a variety of
distinct regions in chemical space – including an unbiased test set of 68 nanomolar-level LF
inhibitors that are not structurally related to the compounds used in pharmacophore
construction. When applied with a partial match criterion of at least five features, UM1
successfully identified 72.1% of the LF inhibitors in this test database, i.e., with biological
activities less than 1 micromolar, and returned none of the published compounds with
specified activities greater than 100 micromolar. Key design principles for active LF
inhibitors are also illustrated by this pharmacophore hypothesis: for good potency, a small
molecule should incorporate hydrophobic moieties to interact with residues in all three
subsites including Lys656, Leu677, His686 and Tyr728; a selection of hydrogen-bond
acceptors to interact with Glu687, Glu735, Tyr 728, Lys656 and/or Gly657; and a moiety
that can function as a hydrogen-bond donor to Gly657 or Glu687. Notably, model UM1 was
derived from experimentally determined bound configurations of a variety of active,
structurally diverse LF inhibitors, and was validated against an even more diverse LF
inhibitor compound database with a broad range of biological activities, including an
external test set. Incorporating structural biology data via 2D ligand-receptor interaction
maps increased the accuracy and predictability of the final model, and interaction maps for a
single ligand and the LF target were able to provide enough information to generate models
with essential features (as determined by significance testing) even when a series of active
analogs was not available for traditional pharmacophore perception methods. We therefore
recommend final model UM1 as an in silico searching tool to rapidly screen compound

Chiu and Amin Page 7

J Chem Inf Model. Author manuscript; available in PMC 2013 August 29.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



collections for new potential LF inhibitor scaffolds. Since this model additionally points to
critical ligand-receptor interactions present in multiple X-ray structures of LF cocrystallized
with small molecules (some of which were also revealed by genetic algorithm-based
pharmacophore perception methodologies), we also recommend UM1 as an adjunct tool in
lead optimization, to help increase the potency of existing compounds.

Methods and Computational Details
X-Ray Structure Preparation

In order to obtain a structural superimposition for pharmacophore perception, the five LF-
inhibitor crystal structures available in the Protein Data Bank (1YQY,55 1ZXV,16 1PWP46,
1PWU36, and 1PWQ36) were aligned in Cartesian space by optimizing the sum of all
pairwise alignment scores using the Homology/Align module in MOE 2010.10 (Chemical
Computing Group, Inc.), with alignment based on protein coordinates rather than
cocrystallized ligand coordinates.

Preparation of Small Molecules for Pharmacophore Perception
For the genetic algorithm-based models UA1 and UA2, all analogs used to construct models
were built from the respective cocrystallized ligands (LF-1B in the case of UA1 and BI-
MFM3 in the case of UA2). Each analog was then subjected to geometry optimization
within the respective enzyme active site (X-ray structural coordinates) in order to approach a
putative bound conformation as closely as possible. Minimization was done in MOE
2010.10 using the MMFF94s force field68, 69 with a convergence criterion of 0.05 kcal/
mol•Å, while the receptor was held rigid.

Screening Dataset Preparation
A database of 546 non-redundant LF inhibitors (DB1) was assembled from structural and
biological activity data reported in a total of twenty-three published works.6, 9, 14–31, 33–35

Each compound was individually sketched in MOE 2010.10 (Chemical Computing Group,
Inc.) and was geometry optimized using the MMFF94s force field68, 69, applying a
convergence criterion of 0.05 kcal/mol•Å. DB1 was divided into six total subsets, including
training and test sets for nanomolar-level compounds, as described earlier. To obtain
predicted bound conformations of these structures, each minimized compound was then
docked into the LF active site (1YQY.pdb55) using Surflex-Dock70–73 and the CScore
consensus scoring module74 in the SYBYL 8.0 discovery software suite (Tripos, Inc.). In the
docking procedure, the active-site representation (protomol) was defined to encompass all
receptor areas that were demonstrated in the X-ray structures to interact with moieties on all
five cocrystallized ligands. The docking threshold and bloat parameters were set to 0.5 and
0, respectively.

The maximum number of conformations per compound fragment and the maximum number
of poses per ligand were both set to 20, and the maximum allowable number of rotatable
bonds per molecule was limited to 100. Post-dock geometry optimizations were done on
each molecule to fine-tune the predicted bound conformations. Tanimoto coefficients
measuring similarity between nearest-neighbor training and test set compounds were
calculated in Pipeline Pilot 8.0 (Accelrys, Inc.), using ECFP_4 descriptors (Extended-
Connectivity Fingerprint with maximum diameter of circular neighborhoods considered for
each atom set to 4).

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Anthrax toxin lethal factor domains II-IV (residues 297–809) (1YQY.pdb55), colored by
secondary structure, with catalytic Zn2+ (gray sphere) and cocrystallized hydroxamate
inhibitor MK-702/LF-1B (visualized in MacPyMOL 1.5.0.1, Schrödinger, LLC).
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Figure 2.
Active site of the anthrax toxin lethal factor (1YQY.pdb55), with MOLCAD electrostatic
potential mapping (red = positive, purple = negative); catalytic Zn2+ (magenta sphere); zinc-
binding residues His686, His690, and Glu735; and illustrating three binding subsites: S1’,
S1–S2, and S2’,56 visualized in SYBYL 8.0., Tripos, Inc.
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Figure 3.
Superposition of bound conformations of five active anthrax toxin LF inhibitors,9 obtained
via protein alignment (MOE 2010.10) illustrating the three binding subsites (visualized in
MOE 2011.10). White = NSC 1215546; orange = GM600136; green = MK-702/LF-1B55;
cyan = BI-MFM316; pink = thioacetyl-Tyr-Pro-Met-amide36.
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Figure 4.
(a) Ligand-receptor interaction diagram of sulfonamide hydroxamate MK-702 (LF-1B, 40)
cocrystallized with the anthrax toxin lethal factor (1YQY.pdb55) (MOE 2010.10, Chemical
Computing Group, Inc.). In this and subsequent MOE interaction diagrams, green spheres =
“greasy” residues; spheres with red outline = acidic residues; spheres with blue outline =
basic residues; spheres with black outline = polar residues; blue background spheres =
receptor exposure to solvent; blue spheres on ligand atoms = ligand exposure to solvent;
green dotted lines = sidechain donors/acceptors; blue dotted lines = backbone donors/
acceptors; purple dotted line = metal contact; grey dotted line = proximity contour. (b)
Additional ligand-receptor interaction map of MK-702 (LF-1B, 40) bound to LF
(1YQY.pdb55) (PoseViewWeb66); in this and subsequent PoseView interaction diagrams,
dashed lines = directed bonds between protein and ligand; spline sections = hydrophobic
contacts between ligand moieties and the indicated receptor residues. (c) Preliminary LF
inhibitor pharmacophore model UA1 based on a series of highly active analogs of
MK-7029; green sphere = hydrophobic features; blue spheres = hydrogen-bond donors; pink
sphere = hydrogen-bond acceptor (visualized in MOE 2010.10).
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Figure 5.
(a) Ligand-receptor interaction diagram of rhodanine derivative BI-MFM3 cocrystallized
with the anthrax toxin lethal factor (1ZXV.pdb16) (MOE 2010.10). (b) Additional ligand-
receptor interaction map of BI-MFM3 bound to LF (1ZXV.pdb16) (PoseViewWeb 66). (c)
MOLCAD Fast Connolly electron density surface of the LF active site (1ZXV.pdb16) with
lipophilic potential mapping, shown with BI-MFM3; brown = highest lipophilicity; blue =
highest hydrophobicity (SYBYL 8.0, Tripos, Inc.). (d) Preliminary LF inhibitor
pharmacophore model UA2 derived from three closely related rhodanine analogs24; green
spheres = hydrophobic features; red sphere = anionic feature (visualized in MOE 2010.10).
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Figure 6.
(a) Ligand-receptor interaction diagram of methylquinoline urea compound NSC 12155
cocrystallized with the anthrax toxin lethal factor (1PWP.pdb46) (MOE 2010.10). (b)
Additional ligand-receptor interaction map of NSC 12155 bound to LF (1PWP.pdb46)
(PoseViewWeb66). (c) Preliminary LF inhibitor pharmacophore model UA3 derived from
the published hypothesis of Panchal et al. 46 and modified based on enzyme-inhibitor
interactions observed in the 1PWP.pdb X-ray structure; yellow spheres = aromatic centers
(visualized in MOE 2010.10).
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Figure 7.
(a) Ligand-receptor interaction diagram of thioacetyl-Tyr-Pro-Met amide cocrystallized with
the anthrax toxin lethal factor (1PWQ.pdb36) (MOE 2010.10). (b) Additional ligand-
receptor interaction map of thioacetyl-Tyr-Pro-Met amide bound to LF (1PWQ.pdb36)
(PoseViewWeb66). (c) Preliminary LF inhibitor pharmacophore model UA4 developed from
the 2D enzyme-inhibitor interaction diagrams; green sphere = hydrophobic center; pink
spheres = hydrogen-bond acceptors; blue spheres = hydrogen-bond donors (visualized in
MOE 2010.10).
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Figure 8.
(a) Ligand-receptor interaction diagram of peptidic matrix metalloproteinase inhibitor
GM6001 cocrystallized with the anthrax toxin lethal factor (1PWU.pdb36) (MOE 2010.10).
(b) Additional ligand-receptor interaction map of GM6001 complexed with LF
(1PWU.pdb36) (PoseViewWeb66). (c) Preliminary LF inhibitor pharmacophore model UA5
developed from the 2D enzyme-inhibitor interaction diagrams; green sphere = hydrophobic
center; pink spheres = hydrogen-bond acceptors; blue sphere = hydrogenbond donor
(visualized in MOE 2010.10).
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Figure 9.
(a) Intermediate comprehensive LF pharmacophore hypothesis UM1A, superimposed on the
LF active site (1YQY.pdb55), with key receptor residues, catalytic Zn2+ (magenta sphere),
and three binding subsites displayed (MOE 2010.10). (b) List of features and their radii in
UM1A: Don = hydrogen-bond donor; Ani = anion; Hyd = hydrophobic; Aro = aromatic;
Acc = hydrogen-bond acceptor

Chiu and Amin Page 29

J Chem Inf Model. Author manuscript; available in PMC 2013 August 29.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Chiu and Amin Page 30

J Chem Inf Model. Author manuscript; available in PMC 2013 August 29.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 10.
(a) Final comprehensive LF pharmacophore hypothesis UM1, superimposed on the LF
active site (1YQY.pdb55), with key receptor residues, catalytic Zn2+ (magenta sphere), and
three binding subsites displayed (MOE 2010.10). (b) List of features and their radii in UM1:
Hyd = hydrophobic; Acc = hydrogen-bond acceptor; Don = hydrogen-bond donor

Chiu and Amin Page 31

J Chem Inf Model. Author manuscript; available in PMC 2013 August 29.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Chiu and Amin Page 32

Table 1

The five most active sulfonamide hydroxamate LF inhibitor compounds from Ref. 9, as determined by in vitro
LF FRET assay IC50 values.

Cpd # R LF IC50 (µM)

38 c-Hex 0.042

39 Ph 0.050

46 0.037

49 0.048

50 0.040

J Chem Inf Model. Author manuscript; available in PMC 2013 August 29.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Chiu and Amin Page 33

Table 2

The three most active rhodanine-based LF inhibitor compounds from Ref. 24, as determined by in vitro LF
FRET assay IC50 values.

Cpd # Structure LF IC50
(µM)

6 0.30

7 0.26

8 0.19
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Table 3

Two analogs utilized by Panchal et al. 46 to derive a LF pharmacophore hypothesis covering the S1–S2
subsite.

Cpd # Structure LF Ki (µM)

1 0.50

2 4.90
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Table 5

Performance of intermediate comprehensive pharmacophore hypothesis UM1A and final comprehensive
hypothesis UM1 as evaluated by virtual screening of published active and inactive LF inhibitors.

Database Subset Experimental activity
range of cpds in subset
(IC50 or Ki values, µM)

# cpds in
subset

# of “hits” and
% cpds

returned by
model UM1A

# of “hits” and %
cpds returned by

refined model
UM1

DB1A_Training <1 34 33, 97.1% 29, 85.3%

DB1A_Test <1 68 67, 98.5% 49, 72.1%

DB1B 1–100 320 251, 78.4% 122, 38.1%

DB1C >100 9 4, 44.4% 0, 0.0%

DB1D unspecifieda 115 66, 57.4% 26, 22.6%

DB1E unspecifiedb 47 26, 55.3% 8, 17.0%

a
Compounds for which published biological activities were nonspecific, e.g., “greater than 25 micromolar”

b
Compounds for which published biological activities were nonspecific but “greater than 100 micromolar,” a subset of DB1D
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