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Abstract
Recent technological developments in biomedicine have facilitated the generation of data on the
anatomical, physiological and molecular level for individual patients and thus introduces
opportunity for therapy to be personalized in an unprecedented fashion. Generation of patient-
specific stem cells exemplifies the efforts toward this new approach. Cell-based therapy is a highly
promising treatment paradigm; however, due to the lack of consistent and unbiased data about the
fate of stem cells in vivo, interpretation of therapeutic remains challenging hampering the progress
in this field. The advent of nanotechnology with a wide palette of inorganic and organic
nanostructures has expanded the arsenal of methods for tracking transplanted stem cells. The
diversity of nanomaterials has revolutionized personalized nanomedicine and enables
individualized tailoring of stem cell labeling materials for the specific needs of each patient. The
successful implementation of stem cell tracking will likely be a significant driving force that will
contribute to the further development of nanotheranostics. The purpose of this review is to
emphasize the role of cell tracking using currently available nanoparticles.
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1. Why do we need Personalized Medicine?
The practice of medicine represents a unique relationship between the health professional
and the patient [1–3]. Thus, a personalized approach has always been the essence of health
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care delivery. The patient’s demographics, family history, the results of blood and
radiological exams and of biopsies have been employed for years to tailor a specific therapy
for each patient. That is why the personalized aspect of medicine is continuously being
emphasized, and has recently gained more and more interest.

The term “Personalized Medicine” has recently acquired a new dimension as a result of the
explosion of data about biomedical processes. Anatomical and physiological data on a
molecular level can now be generated for each individual patient. It has long been
anticipated that biotechnology will revolutionize the medicine of the future [4]. We live at a
time when this is becoming a reality. Indeed, the term “Personalized Medicine” was coined
because of the advances in clinical pharmacogenetics [5–7] and was popularized by Hood, a
visionary doctor and researcher, who invented the DNA and protein sequencer and
synthesizer [8]. Hood developed the concept of “4×P” medicine, which is short for
“Predictive, Preventive, Personalized, and Participatory medicine” [9]. However, such a
novel concept, based on using the entire breadth of data available about each patient to make
therapy more individualized, clashed with the current classical approach of evidence-based
medicine (EBM) [10]. EBM focuses on using the best evidence from randomized clinical
trials (RCTs) about treatment efficacy. This process requires dichotomization of patients
into experimental and control groups, resulting in large heterogeneity within groups [11].
However, RCTs remain the mainstream approach and, as of today, from a legal point of
view, they are mandatory to obtain Food and Drug Administration approval for the
marketing of therapeutic products [12]. One criticism of RCTs is that a selected pool of
“ideal” patients is recruited, which ignores complex clinical situations. As a result, the
outcomes of RCTs are relevant to only a fraction of the patient population [13]. Increasing
discontent with EBM is leading to growing support for the concept of personalized medicine
[14]. As a compromise between the two trends, the new term “personalized EBM,” has
recently been coined [15].

Whatever the approach, it would seem that personalized medicine will be a definite factor in
the practice of medicine, and we must choose to use it wisely to save lives and improve the
quality of life for individual patients. The current developments in biotechnology provide us
with an unprecedented opportunity to practice personalized medicine in the most effective
way. Thus, it is our obligation to develop approaches that meet the current demands of
clinical practice and to use personalized medicine to improve the treatment of all patients
[16].

2. The stem cell revolution
Although personalized medicine arose from pharmacogenetics [17], it has now infiltrated
many fields of healthcare [18–20]. Despite the advances in pharmacology, it became
apparent that many disorders were beyond the capabilities of current treatment methods
[21]. As a response to widely unmet clinical needs, an approach based on using cells for
therapy has emerged [22,23]. The discovery and characterization of stem cells, with self-
renewal and differentiation capacities, also accelerated this field, making regenerative
medicine a new independent discipline [24]. However, embryonic stem cells are plagued by
ethical and immunorejection problems, and a shortage of adult stem cells precludes their
wide clinical application. Only the recent discovery of induced pluripotent stem cell
technology, which enables any cell of the body (including skin fibroblasts) to be changed
into a pluripotent stem cell, with the potential to differentiate toward any cell type in
unlimited quantities, may make the advent of large-scale cytotherapeutics possible [25]. Of
106 ongoing and planned neuro-restorative clinical trials, nearly two-thirds focus on cell-
based therapy [26]. The possibility to derive, repair, propagate, and transplant cells
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specifically for each individual patient takes personalized medicine to an entirely new
dimension [27].

A Swedish group, who pioneered cell-based therapy for Parkinson’s disease in their proof-
of-concept clinical neurotransplantation trials, carefully selected and treated individual
patients, thus highlighting the importance of a personalized approach [23,28,29]. However,
traditional RCTs later performed in the USA failed to reveal a statistically significant
positive effect of cell therapy for Parkinson’s disease. Although there were positive effects
in some patients, other patients experienced side effects that exacerbated the disease [30,31].
Thus, the EBM approach, which neglects the heterogeneity of response to treatment within
groups, may be too simplistic an approach for use with stem cell therapy. The personalized
approach, however, seems more likely to succeed with the use of stem cell treatments.

Bone marrow reconstitution by stem cells is a well-established therapy for malignancies
[32,33] and aplasias [34,35], and these are excellent examples of the success and impact that
cell-based therapy has had on medicine. In contrast, the treatment of diseases that affect
many other organs and tissues with stem cell therapy is still in its infancy and requires
further development [36]. New technology, such as non-invasive imaging of transplanted
cells to monitor their fate in vivo, will be instrumental in developing effective clinical
applications for cell therapy [37,38].

There is a wide array of diseases awaiting effective treatment, with neurological disorders
being a prominent example of cases where treatment options are scarce, and stem cell-based
therapies offer hope for scores of patients. The inconvenience of life-long injections for the
treatment of diabetes with inevitable, long-term complications makes diabetes another
application where cell replacement therapy is very attractive, especially in the light of the
increasing incidence of this disease [39]. Stem cell therapy for diabetes and liver failure with
cadaver-derived cells resulted in some positive effects [40]; however, limited access to those
sources precludes widespread clinical application [41]. The effective production of
hepatocytes from induced pluripotent stem cells (iPSC) [42] and from embryonic stem cells
(ESC) [43,44] has been reported, and that may address the problem of donor material
shortage. In addition to the hepatocyte replacement approach, the administration of bone
marrow stem cells enhanced the functional hepatic reserve after extended hepatectomy [45].
It has also been shown that transplanted bone marrow cells may counteract the
complications of anti-cancer therapy by restoring long-term fertility [46] and helping to
repair the intestinal mucosa [47]. Connective tissue diseases, including disc and joint
disorders, occur frequently in young adults, causing long-term absence from work, and
forcing premature retirement, and, as a consequence, major socio-economic challenges
[48,49]. The positive effects of cell therapy for musculoskeletal injuries were demonstrated
initially in race-horses [50,51]. This was followed by the spectacular therapeutic success in
Bartolo Colon, a New York Yankee baseball pitcher who suffered from a shoulder injury,
but who could return to this sport after stem cell therapy (May 14 2011, The Wall Street
Journal). There has also been extraordinary progress in the use of stem cells for the ex vivo
production of connective tissue structures, such as the trachea, and subsequent successful
transplantation in patients [52].

Stem cell-based therapy is very promising for many disorders, with some encouraging
outcomes already reported. However, the results are still variable, making the likelihood
quite low that insurance companies and national health systems will cover such procedures,
at least in the nearest future.
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3. Living in the nanoworld
The tremendous progress in material science and biotechnology has enabled unparalleled
miniaturization and manipulation of materials at the molecular or even atomic scale. By
definition, a nanotechnology deals with materials that range from 1 to 100 nm in size in at
least one of three dimensions. Fabrication at the nanoscale level fundamentally multiplies
the repertoire of attainable products and offers products of unprecedented properties. There
are two main approaches to nanofabrication: top-down and bottom-up [53].

The top-down approach is based on using nano-machine tools to shape matter. This lies
within the domain of physicists, and one of the most spectacular examples was the weaving
of a pattern from single atoms using atomic force microscopy (AFM) [54]. This type of
nanofabrication has also found its way to surgery with the concept of nanosurgery using
multi-photon microscopy [55].

The bottom-up approach is based on the self-assembly of atoms or molecules toward
nanostructures [56]. In other words, the principle of this approach is to make a non-covalent
bond art out of covalently bond blocks. Although this concept seems new, it has already
been employed in nature, with the most apparent manifestation that of complex protein
structures self-organizing from a simple amino-acid sequence. This type of nanofabrication
is now being widely investigated, primarily by chemists, to create functional, highly
ordered, hierarchical structures. There is a wide diversity of self-organizing structures:

– Helical strands—It was shown that enzymatically synthesized phospholipid-
nucleoside conjugates spontaneously form helical strands with a diameter of 5 nm, as in
the case of nucleic acids [57].

– Nanoparticles—Proteins [58], lipids [59], and alcohols [60] self-assembled in the
presence of nano-sized iron oxide particles.

– Nanocoatings (exo-scaffolds)—Synthetic [61] and natural [62] polymers have been
found to coat single cells with nanometric layers.

– Nanogels—Crosslinking polymers have yielded nanometer-sized gels [63].

– Nanofibers—Molecules that self-assemble in nanofibers (which were found to
promote wound healing [64] or could be used as a scaffold for tissue engineering [65]).

– Nanospheres/nanobubbles—Native RNA was converted into stable RNA nanospheres
by ultrasonic waves. Such spheres may then be inserted into cells [66].

The techniques for fabrication, with atomic precision, continue to increase; thus, further
advances toward high-throughput manufacturing are on the horizon. The above-listed
nanostructures have found numerous applications in virtually all fields of science and
medicine, and also proved to be well-suited for stem cell labeling and non-invasive, in vivo
tracking of stem cells.

4. Stem cell tracking and personalized nanomedicine
The diversity of nanomaterials that have recently become available opens the opportunity to
tailor these materials to the specific needs of individual patients [67]. While the proof-of-
principle of personalized nanomedicine has been reported, applying these novel tools
clinically is not trivial [68]. Adding stem cells to this equation makes things even more
complex [69]. Introducing cell-based therapy as a new potent strategy in the therapeutic
arsenal has been met with great enthusiasm, but putting this therapy into routine clinical
practice proved difficult. Studies about the transplantation of stem cells of various origins
have been conducted for years, initially in animal models and then in patients, offering hope
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for effective treatment. However, there are severe problems with the interpretation of the
outcomes of stem cell-based treatments. One of the leading obstacles is the lack of
consistent and unbiased data about stem cell distribution and survival in vivo. Typically, for
drug development, the pharmacokinetics and pharmacodynamics are routinely employed to
characterize the basic features of the tested drugs in the organism [70]. The benefits of any
surgical intervention are usually confirmed through post-operative imaging. These methods
offer a conclusive assessment and allow a judgment about the efficacy of pharmacotherapy
or surgery. Such standards, unfortunately, have not yet been developed for stem cell therapy.
Although neuroimaging was strongly supported as a base for rational stem cell therapy [71],
to date, only a few clinical studies have followed this recommendation [72]. The resistance
to the implementation of cellular imaging into clinical protocols may stem from the notion
that transplanted stem cells will undergo self-guidance in terms of their migration and
functional integration, which is unrealistic at best, or may be due to the lack of robust,
versatile, and validated methods by which to monitor the fate of transplanted stem cells.

Nanotechnology now offers many solutions for labeling cells and those are well-suited for
personalized medicine. With cellular imaging, cell transplantation-based therapy may be
tailored to the individual patient rather than to a large heterogeneous population. Such an
approach, which would consider the pathology of each specific patient, would help to
maximize the therapeutic effect. While cell therapy for internal disorders, such as diabetes,
liver failure, or myocardial infarction, can be evaluated with more objective measures,
neurological disorders are the most challenging in this regard. Although a meta-analysis of
preclinical results revealed the positive effects of cell therapy in neurological disorders [73],
there is still no consensus about the mechanisms that mediate cell-dependent effects, or
about timing, dosage, type of cells, and other factors [74]. Thus, stem cell tracking is
expected to play a pivotal role in defining these mechanisms, and this is essential for further
optimization of cell therapy [75].

5. Customizing stem cell imaging modalities for specific clinical scenarios
There are many imaging modalities used in clinical practice and the choice of a modality is
determined by the specific diagnostic question, availability, and cost-effectiveness.
Additional factors that determine the suitability of an imaging method are specificity,
sensitivity, resolution, and radiation exposure of individual modalities. Imaging plays a
critical and constantly growing role in medicine and there are well-developed imaging
algorithms that are routinely used to evaluate the course of many diseases. Consequently, it
is of the utmost importance that a new imaging methodology, such as cell tracking, does not
interfere with some of the existing critical imaging algorithms. The goal is not only to see
transplanted cells, but also to image pathological processes within the organ of interest.
Some of the available cellular imaging techniques do interfere with anatomical or functional
imaging, such as in the case of iron oxide in MRI. Thus, the selection of an imaging
modality should be driven by the need for a particular anatomical or functional imaging
technique required for evaluation of the underlying pathology. This concept is termed the
“imaging window,” and could be different in each patient, given existing co-morbidities and
other factors.

5.1. MRI
Magnetic resonance imaging is capable of producing images of the human body with an
unsurpassed detail. It has also been shown, with iron oxide as a cell label, that MRI is an
excellent method for detailed demonstration of the cell location after transplantation. In one
reported study in cancer patients, iron oxide-labeled cells were injected into lymph nodes,
and imaging showed a striking mis-injection rate, with off-target delivery in half the cases
[76]. Due to the superior homogeneity of the magnetic field within the brain, MRI has also
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been successfully used for neurotransplantation [77]; however, it was shown that iron oxide
may interfere with MR imaging parameters [78]. Since various MR imaging techniques,
such as functional MRI (fMRI), diffusion tensor imaging (DTI), or perfusion MRI, may be
necessary to evaluate the progression of central nervous system (CNS) diseases or the
healing process, alternative tracers, including those suitable for other imaging modalities,
are desirable. While there is an effort to develop new generation “switch-able” MRI contrast
agents, their sensitivity is still below clinical utility [79]. Nevertheless, for many cell therapy
applications, especially in cases when a precise reference to anatomy is critical, MRI of iron
oxide-labeled cells is still the method of choice.

5.2. X-ray computed tomography (CT)
X-ray CT is characterized by excellent temporal resolution, very high spatial resolution, and
satisfactory anatomical and topographical depiction with relatively low soft tissue contrast.
As such, it is a potentially interesting candidate modality for stem cell imaging, particularly
for applications in the brain or lungs. Well-developed methods for image co-registration [80]
enable spatial superposition of images acquired using CT and MRI, and allow
complementary multimodality imaging. CT is the leading modality for the evaluation of
bone damage and repair[81,82], thus it would be desirable to follow the transplanted cells
for bone healing with a different modality so as not to interfere with the CT evaluation of
osteogenesis. Compared to MRI, stem cell tracking with CT is far less developed. However,
it has been shown that gold nanoparticles can be used to image a molecular target [83] and/
or cells [84] in vivo. Labeling of mesenchymal stem cells with gold nanotracers was found
to be safe, with no detrimental effects on cell function [85]. In addition to standard X-ray CT
scans, it has recently been reported that this modality can produce multi-color images
[86,87] that potentially could be used to monitor several different processes simultaneously,
including tracking two populations of cells.

5.3. Nuclear medicine
Nuclear medicine is characterized by an excellent in vivo sensitivity and whole-body
imaging capabilities. However, the “hot spot” imaging of radionuclides usually requires
additional scanning with another anatomy-providing imaging modality, followed by image
co-registration and superimposition. Luckily, integrated PET/CT scanners are now widely
available. In addition, co-registration of MRI and CT is well-established and those images
can readily be fused with PET results [88]. Integrated PET/MRI scanners are another option.
The integration of PET and high-field scanners is a major challenge, as this result in
interference, with a decreased quality of images in both modalities [89]. Although there has
been significant progress in the development of hardware for the purposes of nuclear
medicine, the applicability of radionuclide-based cell tracking is still unclear, primarily due
to the issues of safety and toxicity. While systemic injection of radionuclides results in
negligible whole-body radiation, the situation is quite different for cell labeling. A relatively
high accumulation of radionuclides in single-labeled cells and the prolonged (days/weeks)
irradiation that concentrates most of the energy within the same cell may be detrimental to
stem cells [90]. The superb signal-to-noise ratio may warrant labeling only a fraction of the
transplanted cells, but even those can be at risk of mutation and subsequent tumorigenic
transformation. Thus, radionuclide-based stem cell tracking in patients should be introduced
cautiously. Another limitation of this modality is the short half-life of radioactive tracers,
which do not extend one week, even with the longest-lived isotopes. While the clinical
application of nuclear medicine for stem cell tracking seems problematic, the application of
this modality in the preclinical setting may still be valuable.
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5.4. Ultrasonography (USG)
The major advantages of USG are the low cost, wide availability, and lack of toxicity. USG
may be easily employed to monitor and navigate the device used for cell injection [91], but
visualization of the cells themselves is complex. As in other modalities, transplanted cells
require labeling with a contrast agent. A typically used and commercially available contrast
agent for USG consists of air bubbles. Functionalized bubbles, injected intravenously, have
been used to detect subcutaneously transplanted cells [92]. The bubbles have been found to
be taken up by tumor cells, improving tumor visualization with USG [93]. However, the
major limitation of USG is associated with the severe attenuation of ultrasound waves by
bones, which practically eliminates USG as a robust method for cell tracking within the
CNS.

5.5. Optical imaging
Due to light scattering and absorption by the tissues, most applications for optical imaging
are in small animals, where bioluminescence imaging, in particular, is intensively exploited
to monitor the status of transplanted cells [94–96]. The clinical application of optical
imaging, for obvious reasons, is largely limited to superficial targets. One very important
application for this approach is based on fluorescent probes that target tumor cells used to
guide brain tumor resection in patients. Relatively good tissue penetration by photons in the
near infrared wavelength region makes optical probes of these characteristics most
promising for broader applications in patients. The so-called “optical window” that offers
good tissue penetration is limited by water absorption of the photons above 1300 nm, and
hemoglobin absorption below 700 nm [97]. Currently, near-infrared (NIR) spectroscopy is
widely used in studies of brain oxygenation [98] or even for fMRI-like assessment of
resting-state functional connectivity in the brain [99]. The low cost and portability of near
infrared (NIR) scanners contributes to the rapidly growing interest in this modality[100].
Recent advances in nanocrystal formation, with exceptionally high photoluminescence
within a near infrared range, have been shown to be very promising in small animal
experiments, and may also find applications in the clinical setting [101].

6. Goals of stem cell tracking
Stem cell tracking has been introduced as a response to the need to address distinct scientific
questions, including the evaluation of cell distribution, cell survival, and cell function. Stem
cell tracking is being applied in a variety of disorders and with many different
transplantation routes [102].

6.1. Monitoring cell distribution
The evaluation of cell distribution following transplantation seems to be an essential, basic
task, and such as pharmacokinetics for drug development should be recommended for any
cell therapy-based study. Determining the location of transplanted cells within the
recipients’ body is critically important, and the value of this information increases the
farther the distance between the site of the cell deposit and the desired cell destination. The
evaluation of cell distribution is usually most important within the first few days after
transplantation, and until cells reach the final destination [103,104]. However, in some
circumstances, cells may migrate over longer periods of time [105–107]. The intravenous
route for cell delivery, with a high degree of uncertainty about cell distribution, is especially
appealing for cell tracking [108–111]. The intra-arterial route is more targeted in terms of
cell delivery[112], it also can suffer from mis-injection, which, however, can be easily
captured by in vivo cell tracking (Fig. 1) [113]. This approach also provides information
about the dynamics of cell redistribution or with-in the body. In animals, cell distribution
can also be assessed by labor-intensive post-mortem histopathology, but this is not an option
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in the clinical setting. Monitoring the time course of cell delivery allows an evaluation of the
desired and actual cell locations. With access to that information, the interpretation of
experimental/clinical data is much easier. As shown in reports on cell-based therapy trials,
the response to cell therapy is often variable, and that variability may, at least in part, result
from less than optimal cell delivery in some patients [76]. The response to therapy may also
reveal that cell distribution is inadequate or insufficient, and this may account for a
suboptimal outcome. In this context, all aspects of cell delivery and cell distribution must be
carefully addressed to maximize the chance for optimal cell delivery to the correct
destination.

An appropriate assessment of cell distribution requires the application of a high-resolution,
tomographic modality, such as MRI, or, alternatively, a multimodality approach that can co-
register high-sensitivity low-resolution and low-sensitivity high-resolution acquisitions (i.e.,
PET and MRI) [114].

6.2. Monitoring cell survival
It has been shown recently that cell tracers used for non-invasive imaging may persist in
tissues following cell death [96], or these tracers can be diluted by cellular proliferation
[115]. Thus, monitoring cell viability is a more challenging task than was thought originally
[116]. In small animals, reporter gene-based (bioluminescence) imaging has been found to
be extremely useful, but, as mentioned above, it is not clinically applicable [117], and, as of
now, no clinically applicable solution has been found by which to monitor cell viability.

There have been continuous efforts to establish a gene reporter system for MRI and several
initial prototype genes have been developed[118,119], but current approaches are still
plagued by insufficient sensitivity and specificity [120]. An alternative to reporter genes
would be a “smart probe,” producing contrast based on cell viability status. Most desirable
probe would be one that produces positive signal within living cells and no signal upon a
cell death.

6.3. Monitoring cell function
Direct imaging of the function of cells in vivo can, at present, only be done using quite
invasive approaches, such as two-photon microscopy[121]. Non-invasive imaging
techniques still lack the sensitivity and resolution to directly image cell function. However,
indirect imaging of transplanted cell function has long been used [122,123] to obtain
information about cell function. A good example of such indirect monitoring is related to a
very specific situation in Parkinson’s disease, where well-defined dopaminergic
transmission is compromised by the disease process, and probes targeted to the
dopaminergic machinery can visualize its function. While such a functional imaging
paradigm has been used to evaluate the efficacy of cell-based therapy, it is not capable of
providing a definitive answer about whether recorded dopaminergic transmission stems
directly from the transplanted cells, or indirectly, from endogenous repair mechanisms.
Nevertheless, indirect measures of grafted cell functionality are an important guide to enable
accurate judgments about graft functionality and facilitate further optimization of the
therapeutic protocol.

7. Stem cell labels and tracers
The field of stem cell research benefits greatly from nanotechnology, which offers many
solutions for stem cell tracking. Nanotechnology provides a variety of direct stem cell
labeling options, as well as facilitates the use of other important methods, such as reporter
genes. Stem cell tracking techniques can be divided, based on the placement of contrast
material, into intracellular, with contrast agent localized within the cell, and extracellular,
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where signal is derived from the out-side of a cell, but is closely related to the cell. Stem cell
tracers may be detectable by just one modality (unimodal) or by several modalities
(multimodal).

7.1. Intracellular labels and tracers
7.1.1. Direct stem cell labels and tracers
7.1.1.1. Unimodal labels and tracers
7.1.1.1.1. Iron oxide nanoparticles: Internalization of iron oxide particles by specific cell
populations was observed as early as 80 years ago and was used for the magnetic selection
of Kupffer cells [124]. After the introduction of MRI to the clinic, it was reported that facial
cosmetics used for mascaras and tattooing resulted in artifacts on MR images, and iron oxide
particles were found to be responsible for this effect[125–127]. After coating by polymers to
increase biocompatibility and protect aggregation [128], iron oxide particles were used for
MR imaging of the liver to diagnose malignancy [129]. There is now a variety of sizes of
iron oxide particles available for cell labeling, ranging from micron-sized [130] to
nanometer-sized particles [131]. Iron oxide nanoparticles are one of the most frequently
used agents for cell tracking.

The first application of iron oxide nanoparticles to label cells other than Kupffer
macrophages was the ex vivo labeling of peripheral blood mononuclear cells [132]. That
was followed by studies on the labeling and imaging of transplanted neural cells [133–136].
Of note is the fact that the size of iron oxide nanoparticles determines the efficiency of cell
up-take, with much higher labeling efficiency for small nanoparticles ca. 70 nm diameter
(SPIO), than for ultra-small iron oxide nanoparticles (USPIO) [137]. One of the SPIO
formulations (Feridex®) approved by the Food and Drug Administration (FDA) in 1996 as a
liver contrast agent, following the development of methods that facilitated the labeling of
non-phagocytes, including stem cells, was extensively used and characterized in preclinical
research, with the intention to use Feridex® clinically thereafter [138–140]. Unfortunately,
in 2008, the company stopped manufacturing Feridex®, citing economic among other
reasons, and leaving the field without a clinically approved SPIO agent. Recently
Feraheme®, a new formulation of iron oxide, has been approved by the FDA for the
treatment of anemia. Due to their ultra-small size (USPIO), labeling cells with these
nanoparticles is more challenging; however, recent reports demonstrated a labeling
technique for Feraheme® that makes them detectable by MRI [141,142]. A follow-up study
demonstrated improved labeling with the use of self-assembling nanocomplexes by
combining Feraheme®, heparin, and protamine, yielding larger, ca. 100 nm-size complexes
(Fig. 2), facilitating stem cell up-take [143]. Of note is that all these agents are FDA-
approved for other clinical uses.

Due to the very strong MRI signal, iron oxide enables almost microscopic visualization of
cells, especially when imaged using a high-field MR scanner. However, long-term
observation has revealed that SPIO within the tissue and contrast on MRI persists despite the
death of transplanted stem cells [96,144,145]. In this context, SPIOs offer robust and
specific information about the distribution of labeled cells; however, long-term monitoring
of the fate of stem cells requires cautious interpretation. For applications in peripheral
organs, dual-modality MRI/PET is an attractive option with SPIO-based MRI reporting on
the detailed location of cells and PET imaging of thymidine kinase products reporting on
cell viability [146]. Such a strategy for imaging within the CNS is, however, complicated by
the lack of penetration of certain PET probes across the blood-brain barrier.

Amid the reported limitations of iron oxide nanoparticles, there have been continued efforts
to improve the properties of these agents with a multitude of new surface modifications/
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coatings, revealing better labeling and toxicity profiles. Poly(N,N-dimethylacrylamide)-
coated maghemite [147], aminosilane coating [148], amine surface modification [149],
carboxymethyl chitosan modification [150], 1-hydroxyethylidene-1.1-bisphosphonic acid
(HEDP) coating [151], non-toxic protein transduction domain (PTD) conjugation [152],
higher density carboxyl groups modification [153], and D-mannose-modification [154] were
used for this purpose. The versatile and tunable coating strategies for iron oxide
nanoparticles [155], may enhance the customization of labeling for individual applications
and the requirements of individual patients.

It has been shown that the contrast mechanism of iron oxide nanoparticles in MRI depends
on the particle size. While SPIOs were traditionally used to provide negative T2 contrast, the
ultra-small iron oxide nanoparticles, in addition to the T2 contrast, can also produce the
more-desirable positive T1 contrast [156]. The large-scale synthesis of uniform and
extremely small-sized iron oxide nanoparticles (ESION) for positive T1 contrast may
increase the utility of iron oxide as a contrast agent [157].

Another use for iron oxide nanoparticles, beyond providing out-standing MR contrast, is
based on their magnetic characteristics that enable the guidance and navigation of labeled
cells after transplantation. This can be accomplished with the use of external magnets placed
over the target organ, which results in increased stem cell homing to desired organs [158–
160].

7.1.1.1.2. Gadolinium nanoparticles: Gadolinium (Gd) is a T1 contrast agent that generates
positive contrast, thus avoiding difficulties in the interpretation of signal voids, which often
complicate imaging with SPIOs [161]. However, clinically used gadolinium chelates do not
produce a positive T1 signal after internalization by the cells [162]. The widespread use of
gadolinium as a cell labeling agent may be hampered by difficulties in the synthesis of
stable, water soluble solutions [163]. However, recently, there have been several reports on
new approaches that incorporate gadolinium within the metal-based core of nanoparticles
[164], or polymer-based scaffolds [165]. While Gd chelates are characterized by a relatively
low signal per molecule, the formation of gadolinium oxide nanoparticles with certain
magnetic properties has been shown to be useful for tracking hematopoietic cells [166].
With the advent of commercially available dextran-coated gadolinium oxide nanoparticles—
e.g. Gado CELLTrack (BioPAL)—it is expected that this approach may be further pursued
[167]. Further work to optimize the surface coatings of gadolinium oxide nanoparticles is
under way, with a range of modifications, such as using shells made of PEG [168] and
DEG[169], silica [170], and albumins [171]. Another approach is to capture gadolinium
atoms within carbon cages made of nanotubes[172] or fullerenes [173]. However, the
cardinal issue that would determine the advantage of gadolinium-based nanoparticles over
SPIOs is their clearance after the death of grafted cells. Recently, it has been reported that a
free Dex-DOTA-Gd3+ contrast agent clears from the transplantation site, as opposed to iron
oxide particles; however, the credibility of this result would have been significantly
improved by the presentation of raw MR images and not merely volume-rendered scans, as
presented in this publication [174]. Most importantly, prolonged retention of gadolinium
will results in release of free Gd3+ ions, which are toxic. Hence, it is very unlikely that Gd-
based cell tracking will reach the clinic.

7.1.1.1.3. Manganese oxide nanoparticles: The similarity of manganese and gadolinium,
with regard to providing T1 contrast in MRI, has been reported some time ago [175].
However, the in vivo [176,177] and in vitro [178] neurotoxicity of manganese favored
gadolinium as a widely clinically applicable contrast agent [179]. Notably, it has been
recently reported that the toxicity of manganese to cells other than neurons is low,
comparable to that of iron, and much lower than that of silver and molybdenum oxide [180].
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An efficient method for the production of manganese oxide nanoparticles, followed by
coating with a biocompatible PEG-phospholipid shell, sparked interest in manganese as an
MRI contrast agent [181]. This manganese oxide nanoparticle formulation was successfully
used to image transplanted cells, but was characterized by a lower sensitivity that was
inferior to that of iron oxide [182]. A modification toward mesoporous silica-coated hollow
manganese oxide nanoparticles yielded increased T1 signal through better access of water
molecules to the magnetic core [183].

7.1.1.1.4. Fluorine nanoparticles: Fluorine is a chemical element that is practically absent
in the human body; thus, 19F imaging can be used to produce contrast devoid of any tissue
background. Another advantage of this method is that, during the same imaging session,
both 1H anatomical and 19F “hot spot” images can be acquired and superimposed [184],
providing data in a quantitative manner[185]. While the signal-to-noise ratio (SNR) of 19F is
about 89% that of 1H per nucleus, the fluorine-based contrast agent requires a very high
density of 19F nuclei, similar to that of 1H density in tissues[186]. This has been
accomplished by synthesizing fluorine compounds from hydrocarbons through the exchange
of 1H to 19F nuclei[187]. Even prior to the era of MRI, fluorocarbons were used as an X-ray
contrast agent [188], or as a blood substitute [189]. Thus, the biocompatibility of
fluorocarbons is undoubted. Perfluoropolyether nanoparticles have been successfully used to
track dendritic cells [190], pancreatic islets [191], and neural stem cells (Fig. 3) [192,193].
While perfluorocarbon is a very promising contrast agent for “hot spot” MRI, its utility is
still limited by the low sensitivity of the method [194], requiring a significant amount of
cells for in vivo imaging [195].

7.1.1.1.5. PARACEST nanoparticles: Chemical exchange saturation transfer (CEST) is a
new contrast mechanism based on the exchange of protons between certain molecules and
bulk water as the result of saturation with an off-resonance pulse sequence, or the use of rare
earth metals that provide a paramagnetic shift in the resonance frequency (PARACEST).
The advantage of PARACEST contrast is that it is saturation pulse frequency-specific, and
thus, completely switch-able, and contrast is generated only after applying a specific
saturation pulse. As such, CEST does not interfere with other MR parameters, i.e., T2, T1,
or diffusion. The sensitivity of CEST for proteins and polymers is very low; however, the
use of PARACEST has been shown to produce a stronger signal. Chelates of europium and
ytterbium were shown to be good PARACEST agents, and these chelates, incorporated into
dendrimer nanoparticles, have been used in vivo [196]. PARACEST nanoparticles, as yet,
have not been used specifically for stem cell tracking, but this technology is ready to be
tested for cell transplantation pending sufficient sensitivity of detection.

7.1.1.1.6. Gold and tantalum nanoparticles: Heavy metals have long been used as contrast
agents for electron microscopy [197–199]. The biocompatibility of gold has already been
established in dentistry[200,201] and the low cytotoxicity of cell labeling with gold
nanoparticles has been confirmed in vitro [202]. Just a few years ago, it was reported that
gold nanoparticles were characterized by very high X-ray absorption, far beyond iodinated
compounds, confirming that these particles made good X-ray contrast agents, when
systemically delivered in small [203] and large animals [204]. Only recently, successful
tracking of cells labeled with gold nanoparticles using micro-CT has been shown [84]. As
discussed above, gold has many features advantageous for cellular imaging; however, a
significant disadvantage is its cost. Thus, there was an effort to replace it with low-cost, bio-
inert tantalum oxide nanoparticles, which reportedly have the many advantages of gold
nanoparticles, including low toxicity [205,206].
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7.1.1.1.7. Quantum dots: The term “quantum dots” has been coined for three-dimensionally
confined semiconductor nanocrystals [207]. These nanocrystals are characterized by a stable
and unique fluorescence emission band that is easily tunable by manipulating the size or the
composition of crystals [208]. The broad absorption and narrowemission bands facilitate
multicolor imaging of dynamic cellular events[209]. The production of quantum dots with
an emission spectrum in the near infrared range contributes to their use for in vivo
imaging[210,211], including successful tracking of stem cells transplanted into the brain
[212,213]. It has been shown that near infrared quantum dots (QD 800) produce a higher in
vivo signal compared to far red quantum dots (QD 655) [214]. Toxicity studies have
demonstrated that quantum dots have no effect on the viability, proliferation, or
differentiation potential of stem cells [215]; however, pro-thrombotic adverse events were
reported following intravenous transplantation of labeled mesenchymal stem cells [216].

7.1.1.1.8. Polymer dots: Highly fluorescent, π-conjugated, polymer-based semiconductor
nanoparticles are an organic alternative to quantum dots [217]. These nanoparticles are
characterized by a very high emission rate, minimal “blinking” behavior, and excellent
photostability. Various polymers emit photons of distinct wave-lengths, which enable
multicolor imaging. Recent advances toward the construction of near-infrared π-conjugated
polymers herald alternative strategy to quantum dots [218]. The successful synthesis
inorganic-organic/nanocrystals-polymer hybrids with unique properties has also been
reported, which may further enhance the detection of transplanted cells [219].

7.1.1.1.9. Nanodiamonds: Among the diversity of biolabels, fluorescent nanodiamonds are
also worth mentioning. They have not yet been used for in vivo tracking of stem cells, but
their characteristics, such as photostability, chemical non-reactivity, biocompatibility, and
emission in the far-red bandwidth, make them another interesting nanoparticle for non-
invasive imaging [220]. The atomic compositionof nanodiamonds enables enhancement by
fluorescence resonance energy transfer (FRET), but at the cost of the introduction of another
label into the cells [221,222]. Nanodiamonds were shown to be relatively safe for the cells
[223,224]; however, a slight increase in DNA repair proteins in nanodiamond-labeled
embryonic stem cells has been reported [225].

7.1.1.1.10. Upconverting luminescence (UCL) nanoparticles: While near infrared
fluorescent nanostructures proved to be useful for in vivo imaging, the autofluorescence is a
factor that limits the sensitivity of this method. The process of UCL may help with that
limitation. The phenomenon of UCL takes place when absorption of light by the molecule
results in the emission of photons with a higher energy, but a shorter wavelength, described
as the Anti-Stokes emission process. This phenomenon has been known for many years, but
only recently have nanoparticles with such properties, suitable for in vivo applications, been
produced. Since there are few, if any, endogenous biological materials that display an
upconverted emission, the images obtained by the use of such materials are completely
devoid of back-ground [226]. Rare-earth nanophosphors, with upconversion within the near
infrared range (both absorption/emission), were used as photoluminescent probes for small
animal in vivo bioimaging [227]. Tissue phantoms provided proof-of-principle for cellular
imaging, using NaYF4 nanocrystals doped with Tm3+, with detection reaching 3 mm in
depth [228]. Very recently, the replacement of yttrium with lutetium, resulting in cubic
sub-20 nm NaLuF4-based upconversion nanophosphors, demonstrated a dramatic increase
in signal, enabling in vivo imaging of large animals, such as rabbits and pigs [229].

7.1.1.1.11. Nanobubbles: For years, echogenic bubbles have been used as an ultrasonic
contrast agent [230,231]. The second harmonic wave provided a background-free signal
using an ultrasonic device[232]. Since the frequency of the second harmonic wave was

Janowski et al. Page 12

Adv Drug Deliv Rev. Author manuscript; available in PMC 2012 October 20.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



dependent upon the bubble diameter, the size of the bubbles had to be tuned to the frequency
of clinical ultrasonic devices. Based on these calculations, the dimension of bubbles suitable
for this application would be in the range of micrometers, and products of this size are being
manufactured and are commercially available. However, these preparations are actually
oversized and not suitable for intracellular labeling.

Although standard ultrasonography equipment cannot be used to detect cells labeled with
nanobubbles, it has been shown that nanobubble-labeled liver cells are detectable by
ultrasound microscopy [233]. However, the exposure of the cells to nanobubbles was related
to toxicity from some of the bubble formulations; thus, their implementation into clinical
practice should be undertaken with caution [234]. Nevertheless, the progress in the
formation of stable nanobubbles in a well-controlled manner [235,236] may facilitate the
introduction of ultrasonography as a viable strategy for cellular imaging.

7.1.1.2. Multimodal nanoparticles
7.1.1.2.1. Homogenous nanoparticles: Several substances are characterized by their
production of contrast that is detectable by more than one imaging modality. Such approach
with exploiting one nano-structure for multimodal imaging is particularly useful, with only
few reported applications.

Europium-doped mesoporous gadolinium oxide nanoparticles, in addition to MRI signal, are
also characterized by strong phosphorescence, which is useful for optical imaging, and these
nanoparticles have already been applied to the labeling of HeLa cells [237]. Doping of
gadolinium oxide with La3+ ions provides an additional upconversion luminescence effect
[238].

While iron oxide is one of the best MR contrast agents in terms of signal change, there are
metals with even higher magnetic moments, potentially further increasing the signal. The
high magnetic moment of cobalt nanoparticles was shown to be even more efficient in signal
generation than iron oxide, but, due to insufficient stability, these particles were not useful
for biomedical applications [239]. However, manufacturing a hollow cobalt and platinum
(CoPt) alloy overcame the hurdle of stability without the accompanying signal
decrease[240]. Such magnetic CoPT nanoparticles were successfully employed for stem cell
labeling [241]. The presence of platinum as a component of this CoPt alloy renders these
particles X-ray visible. It has also been shown that CoPt nanoparticles can be prepared using
a dendrimer matrix [242].

Radionuclides are frequently used for stem cell imaging. Due to the very high sensitivity of
radionuclides, only a minimal amount of label is necessary, and chemical complexes such as
In111-inoxine can be used for cell tracking over the time until the decay of radioactivity,
which, in the case of In111 is several days [243]. Nanotechnology contributed much to the
field of stem cell research with the introduction of multimodal nanoparticles, and by the
addition of radionuclides to existing nanoparticles. Since the relatively fast decay process
precludes the storage of the radionuclides, the synthesis of such nanoparticles should be as
straightforward as possible to enable on-site synthesis immediately prior to their application.
To meet these requirements, rapid, size-controlled synthesis of dextran-coated 64Cu-doped
iron oxide nanoparticles has been developed using simple microwaving [244].

Perfluorooctylbromide, in addition to the MRI signal of fluorine, is also characterized by
strong X-ray absorption due to the presence of bromide atoms, making it suitable for CT
imaging [191]. Perfluoropropane nanobubbles, in turn, are used for ultrasound imaging and
are also visible on 19F MRI [245].
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7.1.1.2.2. Hybrid nanoparticles: While there are only a few examples of tracers made from
homogenous multimodal nanoparticles, there are numerous hybrid nanoparticles employed
for multimodal stem cell tracking (Table 1). Usually, these hybrids are composed of two or
more substances used for unimodal nanostructures, or with one nanostructure and an
additional optical dye or/and radionuclide. The core of such a unimodal nanoparticle is
typically surrounded by a shell made of another unimodal material. An iron oxide core
coated with a gold shell exemplifies the types of nanoparticles designed for dual MR and CT
imaging [246,247]. A more advanced design includes a CT-visible core made of
perfluorooctylbromide with a conjugated europium chelate that produces a CEST MRI
signal [248]. Fluorescein[249] or rhodamine [250] bound to gadolinium nanoparticles enable
both magnetic resonance and optical imaging. An attractive in vivo stem cell tracking
system for clinical translation would be the integration of magnetic nanoparticles with near
infrared quantum dots[251]. Attaching Cy5.5 to iron oxide nanoparticles also enables both
MR and NIR imaging [252,253]. Dendrimer-based nanoparticles can be coated with various
labels, including gadolinium and Cy5.5 [254]. Triple-modality nanoparticles, with a heavy
metal core coated with paramagnetic and optical tags, have also been described (Fig. 4)
[255].

7.1.2. Nanotechnology to enhance cell tracking by reporter genes—Reporter
genes have been found to be very useful for identifying transplanted cells [115]. The
application of reporter gene-based imaging methods allows for unambiguous conclusions
about the viability of transplanted cells. In contrast to many nanoparticles, reporter proteins
produced by engineered cells are very short-lived and degrade rapidly following cell death,
with a resulting loss of signal. They are also resistant to contrast dilution during cell
proliferation [94]. The most popular reporter genes that are suitable for in vivo imaging in
small animals are based on light-emitting proteins or enzymes. The recent discovery of
reporter genes with fluorescent protein emitting in the near-infrared range may open up
applications for optical imaging in large animals or even in humans [256]. However, the
clinical application of reporter genes for stem cell tracking faces some challenges, including
the safety issues associated with manipulating the genome or the effects of gene introduction
into the cells. While the in vivo gene therapy of malignant tumors [257,258] or the ex vivo
introduction of reporter genes to therapeutic immune cells [259] have been used, the genetic
alteration of stem cells in regenerative medicine, due to their expected long-term survival,
has met with much more resistance. Efficient gene delivery to human therapeutic stem cells
is still challenging. While transfection/transduction of immune cells or immortalized human
stem cells is quite efficient, the genetic modification of primary human cells with
therapeutic potential is very difficult. While reporter gene-expressing therapeutic cells can
be derived from transgenic 849 donor animals, such a strategy is not applicable for human
cells. Thus, there is an effort to improve reporter gene delivery to primary stem cells using
developments in nanotechnology. Nano-coating is a very interesting strategy to enhance
gene delivery to the cells. The surface coating of individual cells with an amino-acid
functionalized calcium phosphate nano-film was initially used with the intention of guiding
the process of cell differentiation. The so called “exo-scaffolds,” characterized by a positive
charge of hydroxyapatite, were found to significantly enhance non-viral transfection
methods, probably by increasing plasmid concentration at the cell surface [260]. Nano-
coating with a chitosan and chitosan-hyaluronan was shown to increase the endocytosis of
both DNA plasmids and iron oxide nanoparticles [261].

7.2. Extracellular labels and tracers
7.2.1. Encapsulation—The technology of microencapsulation has been developed
primarily to protect transplanted cells against an immune attack by the host [262]. Since
visualization of transplanted cells is necessary to correctly determine the cell-dependent
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effect, it has been proposed that the capsules containing these cells might also be monitored
with in vivo imaging. For many years, alginate has been used to encapsulate living cells
[263]. The co-encapsulation of pancreatic beta islet cells in alginate capsules with iron oxide
[264–266] or barium (sulfate) [267–269] enabled tracking by MRI and CT, respectively.
Then, trimodal gadolinium-gold capsules were introduced, with detectability by MRI, CT,
and ultrasonography (Fig. 5) [270]. This was achieved by the functionalization of gold
nanoparticles with gadolinium chelates and through cross-linking of alginate with clinical-
grade protamine sulfate [271]. As some of the nanoparticles with beneficial imaging
parameters may be toxic, a strategy has been developed to shield cells from such particles
using capsule-in-capsule (CIC) methods, in which nanoparticles are first encapsulated within
an internal capsule, and then the cells are incorporated within the external capsule layer,
providing a physical separation of cells and nanoparticles [272]. By adding perfluorocarbons
to the capsules, a trimodal capsule composition can also be synthesized that can be detected
with 19F MRI, CT, and USG [273].

Another approach is to label the capsule wall, as for iron oxide[274] and gadolinium
chelates [275]. Particles incorporated into the wall of the capsule demonstrated a sufficient
signal for in vivo MRI, and did not expose the cells to the label itself. PEG-lipids used for
single-cell encapsulation of HEK293 cells (Fig. 6) [276] and hepatocytes [277] were
conjugated with FITC for in vitro visualization. A chitosan-alexa fluor 647 conjugate has
been employed for the in vitro imaging of multilayer chitosan/alginate nano-coating of beta
islets [278]. A modification of this strategy with the use of near infrared dye could
potentially be applicable to clinical capsule imaging.

7.2.2. Nanogels—Nanogels are composed of cross-linked polymer nanoparticles and have
been increasingly used as injectable scaffolds for transplanted cells, especially useful in case
of cell deposition within cavities. The use of scaffold materials facilitates uniform cell
distribution and provides a substrate for cell adhesion [279,280], as well as promoting cell
differentiation and survival [281]. It has been shown that the deposition of cells within a
hydrogel enhanced the therapeutic effects of the cells in a model of acute kidney injury
[282] and myocardial infarction[283,284]. Imaging of nanogels has also been explored, with
reports on labeling with fluorescence tags, such as rhodamine B [285] or quantum dots
[286,287] or magnetic iron oxide [288]. This strategy with tagging gels that encapsulate
therapeutic cells could potentially provide information about whether deposited cells remain
within the targeted site or redistribute. Nanogels were also shown to improve the efficiency
of cell labeling with quantum dots [289,290] or gold nanoparticles [291].

8. Advances in imaging of labeled cells in vitro
The growing interest in the application of nanotechnologies to cell tracking requires tools by
which to evaluate the interactions of nanotracers with living cells at the subcellular level
[292]. Coherent anti-Stokes Raman scattering (CARS) microscopy enables the visualization
of metal oxide particles based only on their electron density, obviating the need for
combination with other labels for in vitro visualization [293,294]. Further advances with the
application of stimulated Raman scattering provides such visualization at high temporal
resolution, enabling recording at video-rate [295]. Surface-enhanced Raman spectroscopy
enabled the imaging of the cellular transport pathways of gold nanoparticles (Fig. 7) [296].
This allows confirmation, in living cells, that the nanoparticles were efficiently internalized,
and in which cell compartment these nanoparticles are located.
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9. Clinical applications of stem cell tracking
The interest in stem cell therapy is keen, and, over the last decade, has increased
dramatically; a search of the clinicaltrials.gov database on 03/24/2012, using the key word
“stem cells,” returned a stunning 3,971 records. As presented in this review, there is a
multitude of techniques for tracking cells, some suitable only for the laboratory setting, but
some with clinical translation potential. To date, only 19 clinical trials (which included a
total of 145 patients) have reported the use of stem cell tracking [297]. Nuclear medicine
was a dominating modality with the majority of applications in the field of cardiology.
Contrast materials used for these studies were either 111-indium and 99-technetium chelates
or 18-FDG. Thus, all nuclear medicine applications did not use nanotechnology approaches.

Iron oxide nanoparticles have been the only nanostructures used in a clinical setting [298–
301]. Considering the abundance of nanomaterials, the low rate of clinical translation is
somewhat surprising and disappointing, particularly if patients could greatly benefit from
more targeted and personalized stem cell therapies. Further research on the biocompatibility
and safety of the most promising agents should help in the rapid translation of new
nanotechnology developments.

10. Limitations
While the enthusiasm related to the biomedical applications of nanotechnology is
substantial, these approaches are not devoid of risk, which requires careful planning and
preclinical testing before wide clinical application. Some nanomaterials that were envisioned
to be highly useful therapeutically proved toxic, including such agents as carbon nanotubes
[302], as well as silver [303] and copper nanoparticles [304,305]. The toxicity may even
depend on the size of the material, as was shown for gold nanoparticles with intraperitoneal
injection. In this instance, 17 nm particles led to impaired cognition in mice, while such an
effect was not observed after the application of larger 37 nm gold nanoparticles [306]. Gold
nanoparticles are known to generate heat after exposure to near infrared light [307] or
ionizing radiation [308], which is actually used in cancer therapy, but which may interfere
with diagnostic imaging. Transplanted stem cells are meant to function over extended
periods of time; thus, the evaluation of potential toxic effects should be performed for both
immediate and long-term effects. It has been shown that even if no acute side effects are
observed, some particles may cause an inflammatory response during long-term observation
[309], inhibit chondrogenesis [310,311], or temporarily interfere with the speed of migration
[312].

It is not only the safety, but also the reliability of stem cell tracking methods that should be
considered. The interpretation of in vivo imaging can be complicated by such processes as
contrast dilution following cell division [115,313], uptake of the label by phagocytes
following the death of transplanted cells, or, as has been recently reported, transfer of
magnetic nanoparticles via microvesicles due to stress (starvation) [314].

11. Summary
Current treatment methods for many diseases are ineffective and inadequate, thus driving the
growing interest in stem cell therapy. The implementation of personalized medicine, based
on extensive and accurate individual patient data, opens up the possibility to design therapy
more specifically, customizing it to the needs of each particular patient. This approach
heralds a more tailored and likely more efficient use of stem cells. The ability to non-
invasively, monitor the fate of transplanted cells, in real-time, is a crucial requirement to
conduct experimental therapies, and only that ability can provide meaningful data that will
allow the advancement of cell therapy. The advent of nanotechnology boosts the arsenal of
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methods for tracking stem cells in patients. Thus, investigators and clinicians who introduce
cell therapies into the clinical realm should be knowledgeable and able to briskly navigate
between the available methods of cell tracking so as to customize the protocol for each
individual case. In general, the selection of the imaging modality and stem cell tracer or
label should be based on the primary disorder, but co-morbidities must also be considered,
which may influence which modality is best for the individual patient so as to avoid
interference with the imaging techniques necessary to evaluate disease progression or
recovery. The condition of the patient is also an important factor, as a worse prognosis may
justify a treatment strategy that is riskier but has the potential to provide greater benefit,
such as cell therapy with the use of cell tracking. At this early stage of the field of cell
therapy, randomized trials, because of the inherent within-population heterogeneity, do not
seem to be the best strategy. Rather, a personalized approach to treatment appears more
appropriate.

The power of personalized nanomedicine lies in the diversity of nanomaterials, which enable
individualized tailoring of materials to the specific needs of each patient. The successful
implementation of stem cell tracking will likely be a significant driving force that will
contribute to the further development of nanotheranostics [315].
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Fig. 1.
Real-time MR monitoring of injection accuracy. Following ligation of the external carotid
and occipital arteries, the common carotid artery was cannulated (a) and SPIO-labeled cells
were infused. In this experiment, the pterygopalatine artery was left intact. MR images were
acquired immediately pre-injection (b) and post-injection (c). MR images demonstrate that
the vast majority of cells localized into the extracerebral tissue, with negligible binding
within the brain. When the pterygopalatine artery was ligated (d), all infused cells were
perfused into the internal carotid artery and localized successfully into the ipsilateral
hemisphere. Shown are the MR images acquired immediately before (e) and after injection
(f). Reproduced, with permission, from Ref. [113].
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Fig. 2.
Characteristics of self-assembling heparin (H), protamine (P), and ferumoxytol (F)
nanocomplexes (HPFs). (a) Graphs of the zeta potential (ζ) (top) and the particle size
(bottom) of HPF nanocomplexes at a ratio of 2 IU ml−1 heparin: 60 μg ml−1 protamine: 50
μg ml−1 Feraheme® in sterile water and serum-free medium (SFM). Data are shown as
mean±s.d. (b) HPF nanocomplexes formed by combining 2 IU ml−1 heparin: 60 μg ml−1

protamine: 50 μg ml−1 Feraheme® in sterile water, as observed by TEM. Scale bar, 0.6 μm.
Inset, native Feraheme® nanoparticles. Scale bar, 20 nm. (c) HPFs at higher magnification.
Scale bar, 0.3 μm. Reproduced, with permission, from Ref. [143].
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Fig. 3.
In vivo 19F MRI and correlation with immunohistochemistry. 1H, 19F, and merged MR
images of a mouse (animal 1), which had been injected with non-labeled control cells into
the left striatum and labeled NSCs into the right hemisphere (a). Only the labeled cells
generated a 19F signal, whereas anti-human nuclear antigen (Hunu) staining confirmed the
presence of cell grafts on both sides, indicated by the arrows (b). MRI of another mouse
(animal 2) two days (c) and six days (e) after grafting showed no major signal loss in the 19F
images over time. This animal had received two deposits of labeled cells in the left striatum
and one deposit in the right striatum. The location and intensity of 19F signal from cell
clusters, marked with white arrows, correlated well with anti-Hunu staining on histological
sections. Note that the 19F resolution allows the distinction of the two clusters in the left
hemisphere (b, f). Only cells that were clearly immunoreactive to HuNu were considered as
grafted human NSCs (d). Scale bars are 50 mm for d, 1 mm for all others. Reproduced, with
permission, from Ref. [192].

Janowski et al. Page 38

Adv Drug Deliv Rev. Author manuscript; available in PMC 2012 October 20.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 4.
(a) Schematic representation of the nanoparticle lipid-coating procedure. (b) TEM image of
hydrophobic gold/silica particles (88±9 nm). The inset shows a negative stain TEM image of
the lipid-coated particles. (c) Absorption (black), emission (lexc 660 nm; red), and excitation
(lem 710 nm; blue) spectra of the aqueous lipid-coated gold/silica particle dispersion (inset).
Note that the dotted line in the emission spectrum is due to scattered excitation light, and
thus, not attributable to Cy5.5 emission. Reproduced, with permission, from Ref. [255]. (For
interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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Fig. 5.
(a) Three-dimensional scheme of alginate-protamine sulfate-alginate (APSA) microcapsule
containing GadoGold (GG). The semi-permeable microcapsule allows diffusion of oxygen,
nutrients, glucose, and insulin, while the passage of immune cells and antibodies is blocked.
(b ,c) Light microscopic images of the APSA-GG microcapsule 1 h (b) and two days (c)
after synthesis. (d) Human pancreatic islet inside the APSA-GG microcapsule. (e)
Fluorescence microscopic image shows viability staining of mouse insulinoma β-TC-6 cells
inside the APSA-GG microcapsule. Green (fluorescein diacetate stain)=live cells, red
(propidium iodide stain)=dead cells. Scale bars=200 mm. Reproduced, with permission,
from Ref. [270].
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Fig. 6.
Confocal fluorescence and differential interference images of (a) FITC-PEG-lipid-modified
HEK293 cells and (b) FITC-treated HEK293 cells. (a) A solution of FITC-PEG-lipid in
HBSS was added to an HEK293 cell suspension ([PEG-lipids]=100 μM). (b) An aqueous
solution of FITC was added to a HEK293 cell suspension. These pictures were taken within
an hour after incubation with PEG-lipids for 2 h. Reproduced, with permission, from Ref.
[276].

Janowski et al. Page 41

Adv Drug Deliv Rev. Author manuscript; available in PMC 2012 October 20.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 7.
SERS analysis of the cellular pathway with an endocytosed gold nanoparticle. (a) An image
of a J774A.1 macrophage cell obtained with a dark-field microscope. The white arrow
indicates a gold nanoparticle, seen as a small white spot. The gold nanoparticle is taken up
by endocytosis of the cell. (b) SERS spectra, obtained from the nanoparticle indicated in
panel a. Characteristic Raman peaks were observed at 977 cm−1 (assigned to the vibration
mode of phosphate), 1457 cm−1 (vibration mode of CH2 and CH3), and 1541 cm−1

(vibration mode of Amide II). These three Raman peaks are overlaid with bars in red, green,
and blue. (c) Trajectory of the nanoparticle, marked by a white arrow in panel a, obtained
from the dark-field images. (d) An RGB color map of the molecular distribution displayed
on the nanoparticle trajectory. Green spots show the Raman intensity distribution of 1457
cm 1, blue spots 1541 cm−1, and red spots 977 cm−1. The green and blue colors are
highlighted along the linear paths, while the red color appears along the confined zone
random walk. The spatial resolution is determined as ~65 nm, resulting from the particle
diameter of ~50 nm and a measurement accuracy of ~15 nm. Reproduced, with permission,
from Ref. [296]. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)
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