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WHAT IS ALREADY KNOWN ABOUT
THIS SUBJECT
• No consensus has been reached so far on the

suitability of different methodologies for dose
selection in children.

• In paediatric drug development, initial estimation
of the paediatric dose is obtained by
extrapolation. This is usually performed using the
dosing regimen in another population as
reference. This approach also implies the
possibility of using interpolations across age
groups.

• Midazolam, the paradigm compound selected for
the purposes of our investigation, is a
short-acting imidazobenzodiazepine used for
inducing sedation before medical procedures.

WHAT THIS STUDY ADDS
• The results of this analysis show that the use of

allometric models to interpolate
pharmacokinetics between paediatric
subpopulations has limitations and drawbacks.

• Estimation of covariate effects is critical, but not
sufficient to interpolate parameter distributions
and drug exposures from a reference population
to another population.

• The covariate–parameter relationship does not
remain constant beyond the range of
observations. Exponential relationships used by
allometry do not correct for these discrepancies.

AIM
The objective of this investigation was to assess the performance of an
allometric model as the basis for interpolating drug exposure in the
context of pharmacokinetic bridging across paediatric subpopulations.

METHODS
Midazolam was selected as a paradigm compound. Two nonlinear
mixed effects models were developed to describe midazolam
pharmacokinetics in infants, toddlers and adults (model 1) and in
children and adolescents (model 2). Subsequently, systemic drug
exposure, expressed in terms of the area under the concentration vs.
time curve (AUC), in children and adolescents was interpolated based
on pharmacokinetic parameter distributions obtained from the model
describing infants, toddlers and adults (model 1). Results were
compared with the values obtained from modelling of the data in the
corresponding population (model 2).

RESULTS
The two pharmacokinetic models accurately described midazolam
exposure in the population on which they were built. However, the
model based on data from infants, toddlers and adults failed to predict
the exposure observed in children and adolescents: the mean
difference between the predicted and estimated AUC0–180 was of
-17.8%, with a range of -6.8 to -38.4%.The discrepancy between
estimated and interpolated exposure increased proportionally with
body weight.

CONCLUSIONS
The current results indicate that irrespective of whether extrapolation
or interpolation methods are to be applied during paediatric drug
development, model predictions beyond the range of the data used for
parameter estimation may be biased. For accurate inter- or
extrapolation to different populations, the assumption of identical
parameter–covariate correlations across age groups may not be taken
for granted.
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Introduction

The development of new drugs for paediatric indications
needs careful consideration of potential differences in
pharmacokinetics, efficacy and safety. These differences
may result from or be compounded by the developmental
changes that occur throughout childhood and adoles-
cence and have major implications for the dose rationale in
early clinical trials. On the other hand, every effort must be
made to decrease the burden on paediatric patients, mini-
mizing the risk and discomfort which are always present
in a clinical trial. The aforementioned considerations are
reflected in the Best Pharmaceuticals for Children Act (BPCA)
and the Pediatric Research Equity Act (PREA) in the US [1] and,
most recently, the 2007 Paediatric Regulation in the EU [2],
which have boosted clinical research activities in children
and prompted the development of regulatory and scientific
guidelines for the design of paediatric clinical trials.

An opportunity exists in some indications and disease
conditions for pharmacokinetic bridging, which would
represent an exemption for formal demonstration of effi-
cacy in children. The feasibility of such an approach
depends on the appropriate dose selection for a pharma-
cokinetic trial [3]. Given that formal dose escalation studies
similar to those carried out in adults are not appropriate in
children, starting a trial at the effective dose range is
of crucial importance in paediatric pharmacology [4].
Extrapolation methods are therefore often used to address
this requirement, providing some initial estimation of dose
to be administered to paediatric patients. This is normally
done by scaling the dose from adults or from one paediat-
ric subgroup (pre-term newborns, term newborns, infants,
toddlers, children and adolescents) [5] to another. Different
approaches have been proposed for the purposes of
extrapolating pharmacokinetic data [6–9]. A discussion
over the benefits and problems associated to each of these
approaches is beyond the scope of this article.However,we
would like to keep in mind that all of them rely on the use
of data from a reference population as the basis for infer-
ences about potential differences in pharmacokinetics.

Assuming that the exposure–effect relationship is inde-
pendent of age, differences in PK parameter distributions
across populations should be used as a basis for the dose
rationale. Such an approach must identify which physi-
ological factors alter pharmacokinetics and how these
(might) differ across the paediatric population(s), without
relying on a priori assumptions about the correlation
between pharmacokinetic parameters and demographic
covariates. For these reasons, we strongly suggest the use
of a physiologically-based scaling approach, which we
describe as scaling for function [3]. In addition, one must
realize that nonlinearity may exist between pharmacoki-
netics and demographic factors. Different examples show
the implications of non-linearity for dosing regimens in
children [7, 10, 11] and how non-linear mixed effects and
Bayesian hierarchical modelling can take into account such

non-linearity, yielding appropriate estimates of the differ-
ences in pharmacokinetics [12, 13].

Recently, we have shown how a parametric approach
can be used to characterize changes in drug exposure due
to developmental growth [14]. Based on the predicted dif-
ferences in parameter distributions, it is possible to define
doses in the paediatric population. In this paper we focus
on the predictive value of allometric models, allegedly the
most used method for initial dose estimation in paediatric
drug development [15]. Given that historically pharmaco-
kinetic modelling has been used to analyze existing com-
pounds (e.g. therapeutic monitoring), it remains unclear
whether the approach has comparable performance when
applied prospectively in drug development.

It was our objective to evaluate the performance of a
model-based approach to interpolate rather than extra-
polate. Whilst most paediatric drug development pro-
grammes involve staggering procedures in which age
groups are included in a trial in a decreasing order (i.e. from
adolescents to newborns), the trigger for considering the
predictive value of models for interpolations between age
groups was the requirement for age stratification. In addi-
tion, in paediatric oncology and some rare, genetic dis-
eases for which prognosis is limited to a few years of life,
there is a need to treat young children before any evidence
is available in an older group, who may be more vulnerable
or refractory to treatment. In this case, the only available
clinical data are from adult patients or volunteers and neo-
nates, infants and toddlers.

From a methodological point of view, interpolation and
extrapolation are not very different, except for the fact that
intuitively one may take for granted the continuity of
covariate–parameter correlations when dealing with inter-
polations and assume the validity of approximation by
linearization methods [16, 17]. Here we assess whether
parameter values estimated in a reference population can
be used to make inferences about the dose requirements
in a paediatric subgroup that has not been investigated
yet. In this particular case, the focus is on those groups
which have not contributed to the data supporting initial
model fitting and validation.

As a paradigm compound for the purposes of our
investigation, we have selected midazolam, a short-acting
water-soluble imidazobenzodiazepine [18, 19]. The
pharmacokinetics of midazolam have been previously
described by many authors in adults [20–23], pre-term
newborns [24, 25], neonates [26–28], infants [29], children
[30, 31] and adolescents [32]. Despite the availability of
numerous models describing the pharmacokinetics of
midazolam, these efforts were aimed at evaluating the
implication of different dosing recommendations for the
same population used to develop the model. Irrespective
of whether data analysis was limited to a specific subgroup
or whether modelling involved meta-analysis, validation
procedures have not included the assessment of model
performance on a different group or sub-populations.
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Methods

Patients
Adult data were obtained from three studies performed by
the Centre for Human Drug Research (CHDR, Leiden, the
Netherlands). Study 89110-pilot was a pilot dose valida-
tion study in which six healthy volunteers received
0.15 mg kg-1 of midazolam intravenously. Study 89110 was
a randomized, double-blind, placebo controlled, four-way
crossover experiment in eight healthy volunteers. Each
subject received four treatments: (1) placebo, (2) mida-
zolam 0.1 mg kg-1 over 15 min by intravenous infusion, (3)
midazolam 5 mg for subjects weighing less than 60 kg,
7.5 mg for subjects weighing 60–80 kg or 10 mg for sub-
jects weighing more than 80 kg, by oral administration and
(4) 1-hydroxy-midazolam 0.15 mg kg-1 over 15 min by
intravenous infusion. Study 94113 was a randomized,
double-blind, five-way crossover trial in 20 healthy males,
in which midazolam was used as comparator for an inves-
tigational drug. Each subject received 0.1 mg kg-1 over
20 min by intravenous infusion [33, 34].

Data from infants and toddlers were obtained from the
Erasmus MC – Sophia’s Children Hospital (Rotterdam, the
Netherlands), where infants admitted to the paediatric sur-
gical intensive care unit (PSICU) were studied during the
first 24 h after elective craniofacial surgery. Twenty-three
infants and toddlers between 3 months and 2 years of age
were administered a bolus of midazolam 0.1 mg kg-1 fol-
lowed by an infusion of 0.05 mg kg-1 h-1. COMFORT [35]
and visual analogue scale were assessed every 2 h and
used as the basis for dose titration during the course of
treatment when needed [36].

Data from children and adolescents were obtained
from a collaborative investigation between the Purdue
University in Indianapolis, USA, and the Sophia Children’s
Hospital in Rotterdam, the Netherlands. The cohort (3–17
years old) comprised 18 paediatric oncology patients who
were administered midazolam intravenously (average
dose was 0.12 mg kg-1) prior to invasive procedures [37]. A
summary of the demographic variables and treatment
regimens for all trials is shown in Table 1.

The aforementioned study protocols were approved by
local Ethical Committees and written informed consent
was obtained from the healthy volunteers or from legal
guardians prior to participation into the trial.

Pharmacokinetic analysis
Nonlinear mixed-effects modelling was used to analyse
the pharmacokinetics of midazolam. The first order condi-
tional estimation with interaction method in NONMEM VI
(release 2.0) [38] was used to fit all concentration data
described later in this section. Given the objective of this
exercise, different model building and validation steps
were involved. A PK model was built based on infants, tod-
dlers and adult data together (model 1). A second PK
model, built on data from children and adolescents, was
used as control for validation purposes (model 2). In other
words, pharmacokinetic parameter estimates derived from
infants, toddlers and adults were used to simulate mida-
zolam concentration profiles in children and adolescents.
The predicted concentration profiles were subsequently
compared with those derived from the data in children
and adolescents.

Different approaches were evaluated during the devel-
opment of a model describing infant, toddlers and adult
data. Initially, the use of adult data as prior information for
the analysis of paediatric data in a Bayesian framework was
considered [14], but it was soon discarded due the lack of
convergence. This clearly suggested that parameter distri-
butions in the younger patients were considerably differ-
ent from the healthy subjects included in the analysis.
Therefore, an attempt was made to integrate infant,
toddler and adult data in a single dataset and analyzing
this population using a covariate model, in which the
demographic covariates would have described the differ-
ences between the subgroups.

The effects of body weight and age (the only covariates
available in the datasets) were investigated as potential
covariates on pharmacokinetic parameters. Significant cor-
relations between covariates and parameters were incor-
porated using an exponential relationship for continuous
variables, according to the formula:

Table 1
Studies characteristics and demographics. Mean (range) values are shown for all three groups of patients involved in the analysis

Infants and toddlers
mean (range)

Children and adolescents
mean (range)

Adults
mean (range)

n 23 18 34
Age 10.9 months (3.2–24.7) 7.7 years (3.2–16.2) 23.8 years (19.9–29.7)

Body weight (kg) 9.2 (5.1–12) 29.0 (12.6–60.1) 72.3 (59–91)
n. samples 8.8 (3–13) 4.6 (3–5) 19.3 (14–31)

Dose and administration route 0.1 mg kg-1 bolus +0.05 mg kg-1 h-1 i.v. 0.12 mg kg-1 i.v. 0.1 mg kg-1 i.v. or 5–7.5 – 10 mg oral

Interpolation of PK between paediatric populations
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θ θi = × ( )COV

median

EXP

Equation 1

where qi represents the parameter of interest for the indi-
vidual, q the population value for the parameter, COV the
covariate of interest for the individual, median is the median
of the covariate in the population and EXP the exponent.

The change in the objective function (OFV; equal to -2
log likelihood) as determined by NONMEM was used
as a goodness-of-fit diagnostic for covariate inclusion
(D = 3.84, P = 0.05, c2 distribution with one degree of
freedom). The contribution of each covariate was con-
firmed by a stepwise backward deletion (DOFV = 6.89,
P = 0.01, c2 distribution). In addition, goodness-of-fit
plots, including observed (OBS) vs. individual prediction
(IPRED), OBS vs. population prediction (PRED), conditional
weighted residuals (CWRES) vs. time and CWRES vs. OBS
were used for diagnostic purposes [39]. Given that the
accuracy of model predictions also depends on the vari-
ance structure, special attention was paid to the evalua-
tion of model misspecifications for the random effects.
Mirror plots from simulated datasets were produced and
results compared with the original data. In addition, the
normalized prediction distribution errors (NPDE) method
was applied for an in-depth diagnosis of potentially poor
behaviour [40]. This method was implemented using the
NPDE add-on software package [41], which was run in R
[42].

In a subsequent step, the parameter estimates
obtained from this model were used to predict midazolam
plasma concentrations in the 18 children and adolescents
available in the control group. The exposure to the drug,
expressed as AUC0–180, was selected as a clinically relevant
endpoint for comparison purposes. Although the original
idea was to directly compare the results from model-based
predictions with the observed pharmacokinetic profiles in
children and adolescents, estimated exposures based on a
separate model (model 2) were used instead of actual
observations. This was caused by the use of a very sparse
sampling scheme in children and adolescents (4.6 samples
on average), which did not allow for accurate estimation of
the individual AUCs. In addition, the use of model-based
estimates mitigates the potential impact of outliers in a
small group of only 18 patients, which could lead to misin-
terpretation of observed AUC distributions. In short, AUCs
in children and adolescents as predicted by model 1 were
compared with the AUCs in the same subjects as estimated
by model 2.

Therefore, a separate pharmacokinetic model for the
analysis of midazolam concentrations in children and ado-
lescents was built in the same manner as previously
described for infants, toddlers and adults. In this case, infor-
mative priors were used to stabilize the model and to mini-
mize the variability caused by the sparse sampling and the
small population [43]. This method was previously applied
to abacavir and was aimed at integrating prior information

about parameter distributions in the analysis of small
datasets [14].Parameter estimates were obtained based on
the posterior distribution, rather than the likelihood, as
defined by the available data. This is an effective approach
to challenge the validity of assumptions regarding the
magnitude of the differences in parameter distributions.
Data analysis was implemented with the PRIOR subroutine
[44] using the Wishart distribution for parameter priors.
Prior information about midazolam parameter distribution
in children and adolescents was taken from De Wildt (CL =
5 ml kg-1 min-1, Vc = 0.38 l kg-1, Vp = 1.7 l kg-1) [45].

Prediction of pharmacokinetics in children and
adolescents
Based on the parameter estimates obtained from this
second model, individual AUCs were simulated 200 times
for each of the 18 children and adolescents in the original
trial. The resulting AUC distribution for each patient was
then plotted as whisker plots and used to assess the accu-
racy of model-based interpolations. AUCs were calculated
in NONMEM by integrating the amounts in a dummy com-
partment, according to the equation:

AUC dt= ⋅∫ Ct

t

0
Equation 2

where Ct is the concentration at time t, dt is the time
derivative.

We evaluated whether drug exposure in children and
adolescents can be predicted accurately under the
assumption of continuity in the correlations between
pharmacokinetic parameters and covariates across the age
range of interest. Using the parameter estimates obtained
from the model built with data on infants, toddlers and
adults, concentration vs. time profiles were simulated 200
times for each patient in the group of children and adoles-
cents (n = 18). Predicted AUCs were summarized for each
patient as mean and 95% confidence intervals and then
compared with the AUCs obtained from the model built on
the data from the actual children and adolescents in the
trial. The discrepancy between the estimated and the pre-
dicted exposure was expressed as percentage, according
to equation 3:

Δ = − ×AUC AUC

AUC
predicted estimated

estimated

100 Equation 3

Results

PK model in infants, toddlers and adults
(model 1)
The pharmacokinetics of midazolam in infants, toddlers
and adults was described by a two-compartment model
with first order absorption and first-order elimination.
Inter-individual variability (IIV) was estimated for clearance
(CL) and peripheral volume of distribution (Vp). Residual
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variability was characterized by a proportional error
model. The incorporation of BW as covariate on clearance
according to an exponential model showed the highest
drop in objective function and improvement in goodness-
of-fit.The exponent was fixed to the classic allometric value
of 0.75 [46]. All attempts to estimate this parameter
resulted in unsuccessful minimizations.This is explained by
the narrow range of body weights in the infant and toddler
population, and the gap between this latter group and
adults. The highest value for body weight in infants was
12 kg, whilst the lowest value for body weight in adults was
59 kg.

Bearing in mind the objective of interpolation across
populations, focus was given to model validation steps,
which yield information about the variance structure
and variance-covariance matrix. As shown in Figure 1,
goodness-of-fit plots reveal that the model provides an

accurate description of the data. Of particular interest are
the mirror plots which showed that the model was able to
simulate data with a variance structure similar to the origi-
nal data. In addition, NPDE summaries indicate that the
discrepancy between predicted and observed values can
be assumed to be normally distributed. In spite of minor
misspecification of the variance, overall these diagnostic
techniques confirm that the infants and adult model is
suitable for simulation purposes.

PK model in children and adolescents
(model 2)
The pharmacokinetics of midazolam in children and
adolescents was also described by a two compartment
model with first order elimination. Inter-individual vari-
ability was estimated for clearance and central volume of
distribution (Vc). Residual variability was characterised by
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Figure 1
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a proportional error model. In contrast to the covariate
model in infants and adults, it was the normalization of Vp

by age using a linear function that caused the highest
drop in objective function and improvement in
goodness-of-fit. As shown in Figure 2, diagnostic plots
show that the model accurately described the observed

data. In addition, NPDE confirms that the difference
between predicted and observed values is normally
distributed. The inclusion of informative priors did
not appear to affect the final parameter estimates. Final
parameter estimates for both models are shown in
Table 2.

Q-Q plot vs. N(0,1) for NPDE
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Interpolation of midazolam exposure from
infants, toddlers and adults to children and
adolescents
To evaluate the predictive power of a model-based
approach to characterize the exposure to midazolam in a
different paediatric population, the parameter estimates
from the model based on infants, toddlers and adults
were used to predict the AUC0–180 in a population of 18
children and adolescents. The mean difference between
the predicted and extrapolated AUC0–180 was of -17.8%,
with a range of -6.8–-38.4%. More interestingly, as can be
seen in Figure 3 and in Table 3, this discrepancy seems to
increase proportionally with body weight. By splitting the
study population into two subgroups across the median
body weight, i.e. the first including nine subjects up to
21.5 kg and the second including nine patients above this
threshold, the discrepancy is of 11.4% for the first sub-
group and of 24.1% for the second one. A summary of
individual exposures obtained by either model is shown
in Table 3.

Discussion

The use of pharmacokinetic bridging studies represents an
important opportunity for the development of new drugs
for paediatric indications. However, the rationale for dose
selection and dose adjustment remains a challenge when
new compounds are first tested in children. Historically,
dosing recommendations and dose adjustment have been
based on empirical methods, most of which assume a
linear relationship between drug exposure and body
weight (i.e., mg kg-1). We have used midazolam pharmaco-
kinetic data to exemplify the concept of bridging and
explore the predictive value of allometric models to
support dose selection in children.

In contrast to retrospective analysis of pharmacokinetic
data, there are two issues that require further attention to
ensure accurate decisions are made with regard to the dose
rationale in prospective trials with new compounds. First is
the recognition that model-based (parametric) approaches
are required to ensure unbiased description of pharmacoki-
netic properties. Noncompartmental analysis and various
nonparametric methods do not warrant characterization (in
a mechanism-based manner) of the physiological factors
underlying the changes in pharmacokinetics induced by
developmental growth [47, 48]. Second is the need to define
model validation requirements for subsequent use of param-
eter estimates in simulations, extrapolation and /or interpola-
tion of results, i.e., prediction of drug behaviour in new
subjects or patients yet to be investigated [49, 50].

The aforementioned methodological aspects are very
pertinent to research protocols in early clinical develop-
ment. In these circumstances, the use of interpolation or
extrapolation assumes the existence of a continuous func-
tion for the parameter-covariate correlation. This implies
that identification of covariates and selection of a covariate
model during data fitting are performed under the
assumption that the correlation between parameter and
covariate holds true for the overall population. Unfortu-
nately, most of the ongoing debate in paediatric pharma-
cology has been focused on the choice of the scaling factor
of allometric models. The issues regarding extrapolation
and interpolation have been left aside [51]. Therefore, the
main point of our analysis was the validity of non-linear
mixed effects models to describe the population of inter-
est when data on the variable of interest and correspond-
ing covariates are limited or not available.

We have characterized the pharmacokinetics of mida-
zolam by combining infant, toddler and adult data and
analyzing them in an integrated manner. A two compart-
ment model was identified, with body weight affecting

Table 2
Final pharmacokinetic parameter estimates for midazolam, as estimated from data on infants, toddlers and adults (Model 1) and on children and adolescents
(Model 2)

Parameters (units)
Model 1 Infants, toddlers and adults Model 2 Children and adolescents
Mean Bootstrap mean (CV%) Mean Bootstrap mean (CV%)

Fixed effects
CL (l min-1) – – 0.19 0.12 (20.4)
CL (l min-1 kg 0.75) 0.234 0.232 (9.6) – –
Vc (l) 0.312 0.310 (9.6) 1.95 2.07 (47.7)
Q (l min-1) 1.34 1.33 (10.3) 0.105 0.107 (32.8)
Vp (l) 16.5 16.2 (8.7) – –
Vp (l ¥ months/74) – – 7.14 7.38 (31.2)
Ka (h-1) 8.21 8.29 (14.7) – –

Inter-individual variability (%)
CL 39.9 39.3 (28.2) 32.7 32.9 (26.0)
Vc – – 31.5 32.4 (22.6)
Vp 58.5 58.9 (17.0) – –

Residual variability
e (%) 40.0 40.0 (12.4) 39.0 37.2 (21.1)

CL, apparent oral clearance; Ka, absorption rate constant; Vc, volume of distribution (central compartment); Vp, volume of distribution (peripheral compartment).

Interpolation of PK between paediatric populations
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clearance according to an exponential function. The use
of a fixed allometric correlation between clearance and
body weight turned out to be a necessity. However, we
defend the view that fixing model parameters is only jus-
tifiable if evidence is irrefutable about the validity of such
an assumption. This is particularly important if param-
eters are used subsequently for making predictions
related to data which have not been used during model
fitting. The implications of data driven methods become
evident by the differences in the covariate model struc-
ture observed when fitting the data from children and
adolescents. Age was identified as the most significant
covariate on the peripheral volume, instead of body
weight on clearance. Even if age and body weight are
highly correlated during developmental growth (co-
linearity), it must be recognized that the diagnostic crite-
ria for goodness-of-fit used with maximum likelihood
methods may overrule the evidence of another plausible
or even mechanistic correlation, if the data do not
support such a correlation.

The degree of accuracy required from model predic-
tions, irrespective of whether they relate to interpolations
or extrapolations, depends on the purpose of the model
in the first place. In our case, predictions were aimed at
defining dosing recommendations in a new population,
under the assumption that target systemic exposure was
known and should be reached to guarantee efficacy and
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Figure 3
Whisker plots of the exposure to midazolam in children and adolescents, as estimated by modelling of the original data (dark grey) and as predicted by the
model 1, i.e., based on data from infants and adults (light grey). Subject 7 has been excluded from the graph because of the extreme values (see Table 3 for
details)

Table 3
Individual exposure to midazolam in children and adolescents ranked by
body weight

Subject

Body
weight
(kg)

Predicted exposure Interpolated exposure
Relative
difference
(%)(mg l-1 min) (mg l-1 min)

1 12.6 9.78 9.12 -6.75
2 14.0 12.29 11.12 -9.52

3 14.8 12.25 11.27 -8.00
4 15.6 11.80 10.58 -10.34

5 17.5 14.15 11.45 -19.08
6 17.9 13.17 11.74 -10.86

7 18.8 78.18 70.10 -10.34
8 19.2 15.24 13.20 -13.39

9 20.5 16.19 13.83 -14.58
10 22.5 16.40 15.23 -7.13

11 22.9 17.81 15.23 -14.49
12 36.4 16.25 13.62 -16.18

13 39.9 29.14 20.54 -29.51
14 40.9 27.24 20.89 -23.31

15 43.9 45.65 31.03 -32.03
16 46.3 36.53 28.30 -22.53

17 57.7 38.80 23.89 -38.43
18 60.1 12.00 7.95 -33.75

The presented values indicate the AUC0–180 vs. time curve obtained by the original
model (i.e. estimated exposure) and as predicted from the model built on data
from infants, toddlers and adults (model 1). The relative difference between
estimated and predicted values appears to become larger with increasing body
weight.
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safety in those patients. Our results show that the model
built on infants, toddlers and adults systematically under-
predicts midazolam exposure in children and adolescents
and these under-predictions become larger with increas-
ing body weight. This means that the differences between
estimated vs. extrapolated exposures are small when the
body weight is low, but differ considerably for heavier sub-
jects. For midazolam, discrepancies observed for smaller
children may have limited clinical impact,and therefore the
model could be considered useful, although not accurate.
On the other hand, in heavier subjects these discrepancies
can be as large as 38% and cannot be overlooked in the
context of the dose rationale for a paediatric protocol. The
difference between observed and predicted exposures
indicates that the interpolation cannot rely on the assump-
tion that covariate-parameter interactions remain con-
stant in different paediatric subpopulations.

The discrepancies observed between the parameter–
covariate correlations across the two groups raise two
important questions. The first one refers to the distinction
between ‘mechanistic’, ‘descriptive’ and ‘predictive’ models,
i.e. models whose parameters correspond to physical or
conceptual entities, models applicable only to a restricted
set of circumstances and models that explicitly incorporate
variables quantifying design features so as to be able to
predict outcomes, respectively [52]. It is clear that the use
of more physiological parameters does not circumvent the
limitations imposed by current model building criteria,
which rely, among other things, on parsimony (Occam’s
razor). Hence, no matter how plausible it may be, the
notion of a common, continuous correlation between
parameter and covariate across populations does not
survive the criteria used by maximum likelihood estima-
tion methods. In this sense, mechanistic and mechanism-
based models remain primarily descriptive of the data
used to develop them. Given the accuracy of the determin-
istic and stochastic components of a hierarchical model, it
can also be said that simulations can be predictive of new
individuals or patients under the assumption that they
come from the same parameter distributions (i.e. the same
population), and that study design factors do not have a
significant effect on these distributions. These require-
ments underpin the concept of Bayesian forecasting and
other similar approaches used for therapeutic drug moni-
toring [53].

The second question regards both the approximation
and inference methods which are required to make predic-
tions about a new population or group. Subjects in the
new population may not share the same parameter distri-
butions, or the parameter distributions may be compa-
rable, but influenced by design factors or experimental
conditions. Given the criteria for maximum likelihood
methods, it is evident that these questions cannot be
addressed by typical modelling algorithms. To this
purpose, model building and validation techniques are
required which account for model uncertainty and permit

parameter estimation irrespective of parsimony. This
requirement is critical for the evaluation of a common,
continuous correlation between parameter and covariate
across populations, an assumption which may be plausible
and defendable from a mechanistic point of view [54].
There are two possible alternatives to solve this conun-
drum: an adaptation procedure to ensure updates of pre-
viously estimated parameter distribution, so that
inaccuracies or model mis-specification are mitigated as
new data are acquired,or alternatively, to obtain parameter
estimates which reflect not a single model but all plausible
ones. The ability to evaluate multiple models is quite
appealing from a statistical point of view. In addition, it
offers advantages as compared with adaptive protocols,
which cannot always be implemented. In contrast to
maximum likelihood methods, a more comprehensive
approach to addressing model uncertainty is Bayesian
model averaging (BMA), which allows us to assess the
robustness of results to alternative specifications by calcu-
lating posterior distributions over coefficients and models
[55]. It should be clear that in the presence of model uncer-
tainty, model averaging procedures provide better predic-
tive performance than any single model which might
reasonably have been selected [56].

Our analysis may have some limitations with regard to
accepted model diagnostic requirements, but do reflect
the reality with regard to the type and amount of data
available during early clinical development. We have not
delved into the discussion of the possible reasons for the
under-predictions of systemic exposure. Based on our
current understanding of processes underlying the dispo-
sition of midazolam, various factors could play a role in the
changes in pharmacokinetics. It should also be noted that
the increase in metabolic capacity in CYP3A4 associated
with increase in body weight may not be fully discrimi-
nated in a quantitative manner without assessment of
different dose levels (e.g. inclusion of exposure levels
approaching Vmax). Given the current therapeutic dose rec-
ommendations, it may not be possible or ethical to explore
this clinically. These limitations may be generalizable to
other compounds.

In summary, our findings show that the accuracy of
model-based predictions depends not only on the charac-
terization of surrogate measures of function which reflect
the changes induced by developmental growth, but also
on the choice of diagnostics and validation procedures.
Whilst the use of model-based approaches is vital for the
implementation and analysis of paediatric clinical trials,
the current results also indicate that model predictions
based on maximum likelihood methods are valid as long
as the same parameter distributions can be warranted
across the population.Bayesian averaging methods should
be further evaluated for the development of truly inter-
and extrapolative models. The development of predictive
models imposes not only novel parameterisations but also
new statistical concepts.
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