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Songbirds provide rich natural models for studying the relation-
ships between brain anatomy, behavior, environmental signals,
and gene expression. Under the Songbird Neurogenomics Initia-
tive, investigators from 11 laboratories collected brain samples
from six species of songbird under a range of experimental con-
ditions, and 488 of these samples were analyzed systematically for
gene expression by microarray. ANOVA was used to test 32 planned
contrasts in the data, revealing the relative impact of different
factors. The brain region from which tissue was taken had the
greatest influence on gene expression profile, affecting themajority
of signals measured by 18,848 cDNA spots on the microarray. Social
and environmental manipulations had a highly variable impact,
interpreted here as a manifestation of paradoxical “constitutive
plasticity” (fewer inducible genes) during periods of enhanced be-
havioral responsiveness. Several specific genes were identified
that may be important in the evolution of linkages between envi-
ronmental signals and behavior. The data were also analyzed using
weighted gene coexpression network analysis, followed by gene
ontology analysis. This revealed modules of coexpressed genes
that are also enriched for specific functional annotations, such as
“ribosome” (expressed more highly in juvenile brain) and “dopamine
metabolic process” (expressed more highly in striatal song control
nucleus area X). These results underscore the complexity of influen-
ces on neural gene expression and provide a resource for studying
how these influences are integrated during natural experience.
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The genome plays an active role in the biological embedding of
social experience. Social interactions and variations in abiotic

and biotic environmental conditions can trigger both transient and
lasting changes in gene expression in specific parts of the brain (1–
5). Conversely, preexisting variations in brain gene expression or
genotype may influence how an individual reacts to particular
social and environmental challenges (6, 7). These different forces—
gene, environment, and life history—intersect in the biological
tissue of the brain, itself an exceedingly complex physical entity.
Studies of brain gene expression have typically found that most
genes are expressed in the brain but in many different patterns
according to brain cell subtype and subregion, developmental
age, and physiological state of the organism (8–11). A coherent
view has yet to emerge for how these many axes of variation are
produced from the common genome present in all cells of each
individual and how they are influenced by natural experience.
Songbirds (oscines of the order Passeriformes) are uniquely

attractive organisms for studying how genes, environment, and
life history interact in the complex anatomy of the brain (12).
Like humans, songbirds mediate social interactions through
learned vocalizations (13–15). Also like humans, most songbirds

are altricial and their young require a prolonged period of pa-
rental care during which vocal learning is most active. Brain cir-
cuits involved in songbird vocal learning have been defined with
unparalleled precision and detail (e.g., 16–19). This circuitry is
organized into a set of interconnected nuclei (the song control
system) that can be readily identified and even dissected for
analyses of local gene expression. There are ∼4,000 songbird
species, with significant differences in social organization,
behavioral ontogeny, and sensitivity to environmental cues.
Because these are all members of a single monophyletic line-
age, they have a shared genetic background, affording rich
opportunities for interpreting variations in gene expression in
a functional context (12, 20).
To advance the development of genome-informed research

using songbirds, a consortium of investigators organized the
Songbird Neurogenomics (SoNG) Initiative (21), and an initial
draft sequence of the zebra finch genome was produced (22).
Through the SoNG Initiative, the “SoNG 20K microarray” was
generated (21) with cDNA probes measuring gene expression at
more than 15,000 chromosomal loci (22), and this array was val-
idated for use in studies of other songbird species as well (21).
Through a set of structured collaborations, this array was used to
assess variations in gene expression in brain tissue samples con-
tributed by multiple laboratories and representing a diversity
of songbird species, brain subregions, developmental stages, and
physiological or behavioral states. These collaborations were
organized so that individual datasets could be analyzed in-
dependently, as shown in several reports to date (23–27). How-
ever, a unique opportunity was anticipated for an integrated global
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analysis to evaluate the relative impact on gene expression of the
multiple biological and experiential dimensions represented in
the combined dataset (21). Here, we develop such an analysis
by combining two complementary approaches. First, we used
a standardized data preprocessing and analysis method for each
experiment so that the numbers of genes found “significant” can
be compared between experiments. Second, we conducted a cross-
experiment analysis to cluster genes with similar expression pat-
terns across all treatment manipulations considered at once.
Our results answer fundamental questions about gene expres-

sion, brain organization, and experience. Do different regions of
the brain differ significantly in their patterns of gene expression, or
is all neural tissue mostly similar? Do the distinctive, inter-
connected nuclei of the song control circuit share a gene expression
pattern that links them together and distinguishes them from the
rest of the brain? Do different signals trigger similar changes in
gene expression across the different song nuclei (e.g., a common
“growth and regression” program), or is there significant hetero-
geneity in the way different brain regions respond at the genomic
level to different experiential cues? Can species and age differences
in learning ability and responsiveness to social cues be linked to
specific variations in gene expression? Most generally, how much
variation in brain gene expression can be attributed to differences
in anatomy, sex, age, species, environment, and experience?

Results
Statistical Analyses of Variations in Gene Expression Across all Ex-
periments. RNA samples were collected from six different song-
bird species (phylogeny in SI Appendix, Fig. S1) and represent
80 different “treatments” [i.e., combinations of species, brain
region, sex, age, behavioral and physiological (or reproductive)
state]. The tissue samples were organized around 15 stand-alone
experiments (Table 1 and SI Appendix, Table S1) contributed by
investigators in 11 different laboratories but analyzed under
uniform conditions in a single laboratory as originally planned
under the SoNG Initiative (21). Each sample was hybridized to
a zebra finch cDNA array along with a universal reference (a
pool of zebra finch telencephalic RNA). Independent analyses of
seven of the individual experiments have already been published
(23–27), but all data were reanalyzed here under uniform pro-
cedures. The data from all 488 arrays, each representing one
contributed sample (SI Appendix, Table S2), were first standard-
ized and then assessed for relationships between the samples
using principal components analysis (PCA) (SI Appendix, Fig.
S2). We then conducted two types of analyses to assess the rel-
ative impact of different factors on gene regulation across the
entire dataset: one using ANOVA to evaluate each experiment
independently, followed by tabulation of results across experi-
ments, and the other using weighted gene coexpression network
analysis (WGCNA) (28, 29) to identify genes that shared similar

Table 1. Number of “significant” cDNAs for each of the 32 planned contrasts in the 15 experiments

Exp. no. Species n (g) Age Sex Region
Dataset S1
column

Contrast (no. of
levels) P < 0.001 P < 2.6 E-06

e01 Gambel’s
white-crowned
sparrow

71 (12) Adult M HVC, RA e01.A Time after T (6) 689 75
e01.B Region (2) 7,112 4,413
e01.C Interaction 57 2

e02 Zebra finch 16 (3) p35 M Area X e02.A Tutor experience (3) 21 0
e03 House finch,

Red crossbill
24 (5) Adult M Diencephalon e03.A Species (2) 4,322 1,448

e03.B Food (2) 53 1
e03.C Interaction 55 2
e03.D Day length (2) 66 1

e04 Zebra finch 48 (8) p1, p25,
p45, Adult

M, F Telencephalon e04.A Age (4) 8,234 4,675
e04.B Sex (2) 1,192 652
e04.C Interaction 266 55

e05 Zebra finch 24 (4) p1, p7 F Telencephalon e05.A E-silastic (2) 15 0
e05.B Age (4) 2,715 653
e05.C Interaction 20 0

e06 House finch 24 (3) Adult M HVC e06.A Time after T (3) 15 0
e07 Zebra finch 24 (4) p55, Adult M HVC e07.A Age (2) 682 43

e07.B Food access (2) 47 0
e07.C Interaction 15 0

e08 Starling 120 (20) Adult M Area X, HVC,
POA, RA

e08.A Region (2) 13,245 10,511
e08.B Time (5) 871 36
e08.C Interaction 201 8

e09 Zebra finch 12 (2) Adult M HVC, shelf e09.A Region (2) 1,038 139
e10 Zebra finch 36 (6) Adult F NCM, L2a e10.A Song playback (3) 356 23

e10.B Region (2) 8,963 5,874
e10.C Interaction 48 4

e11 Zebra finch 18 (3) Adult M AL e11.A Song playback (3) 2,585 417
e12 Zebra finch 12 (2) p20 M AL e12.A Song playback (2) 19 1
e13 Zebra finch 16 (2) p25, p45 M LMAN e13.A Age (2) 156 3
e14 Song sparrow 31 (4) Adult M Hypothalamus e14.A Season (2) 123 6

e14.B STI (2) 11 0
e14.C Interaction 6 0

e15 Starling 12 (2) Adult M AL e15.A Song playback (2) 37 1

Exp. no. gives the designated number of each experiment, and the other columns show the species, number of birds (n), number of treatment groups (g),
age, sex, brain regions, and contrasts evaluated by each experiment. We provide both rigorous Bonferroni-corrected P values and a more liberal empirical
standard (raw P < 0.001) derived from previous analyses of individual experiments in this dataset (23–27). We compared the numbers of significant probes
based on raw P values instead of FDR-corrected P values because a cDNA could have the same raw P value in two experiments yet have vastly different
FDR P values depending on how many other cDNAs have expression differences in each experiment. Full results are given in Dataset S1. AL, auditory lobule;
F, female; LMAN, lateral magnocellular nucleus of the anterior nidopallium; M, male; p, posthatch day; POA, preoptic area; T, testosterone.
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expression patterns across all treatments and all experiments
considered at once.
For the ANOVA, Table 1 summarizes the numbers of probes

significant for each planned contrast in each experiment (full
results for each probe and contrast are given in Dataset S1). The
number of genes affected by a given type of factor can be taken
as a measure of the relative impact of specific factors on specific
genes (Table 2). With certain caveats (Discussion), we believe
this numerical comparison of gene lists across experiments is
valid due to the use of a common microarray, hybridization, and
analysis pipeline.
For the WGCNA analysis, we began with the mean expression

values for each treatment group derived from the ANOVA
analysis and normalized them as described in Materials and
Methods and SI Appendix, Fig. S3. WGCNA algorithms were
then used to calculate the similarity of expression patterns for
each pair of cDNAs considered across all treatment conditions
(28, 29). This resulted in the identification of 95 “modules,” with
each cDNA assigned to one primary module, such that all
cDNAs in a given module showed more similar expression pat-
terns to each other than to the patterns of other modules (details
are provided in SI Appendix, SI Materials and Methods). For each
module, a single eigenvalue describes the relative expression of
all cDNAs in that module under a given treatment condition and
the set of eigenvalues for all treatment conditions describes the
overall expression pattern of that module. Large positive
eigenvalues mean relatively higher expression values, and large
negative eigenvalues mean relatively lower expression values
(see SI Appendix, Fig. S6 for an example comparing expression
profiles with eigenvalues for module 1; all eigenvalues for all
cDNAs are in Dataset S2, and expression profiles for all modules
are given in Dataset S3]. To assess major factors that might be
responsible for each module’s expression pattern, we then per-
formed ANOVA on the eigengene values for all 95 modules × 80
treatment groups for effects of species (5 levels), region (12
levels), age (8 levels), sex (2 levels), photoperiod at sacrifice (6
levels), or song exposure (2 levels) (Fig. 1). To gain insight into
the possible functional significance of the various modules, we
performed gene ontology (GO) enrichment analyses on the
genes in each module (Dataset S4). Ten modules were enriched
for specific GO terms at a false discovery rate (FDR) <0.02.
These modules are described in Table 3, where they have been
further organized into four groups based on their expression
patterns as assessed from their eigenvalue bar plots (Dataset S3)
and ANOVA factor analysis (SI Appendix, Table S4).
Comparisons of the individual ANOVA results and the

WGCNA analyses lead us to the following overall conclusions.

Almost all Genes Vary in Expression Across Brain Regions, Ages, or
States. Of the 18,848 cDNA spots analyzed, only 1,660 reported
no significant differences in expression by ANOVA within any of
the individual experiments using the criterion of P < 0.001 (SI
Appendix, Fig. S4). Similarly, by WGCNA, all 95 modules had
highly significant P values (P < 1e-5) for at least one factor and
only 316 cDNAs could not be assigned to any module.

WGCNA analysis was especially useful in revealing how mul-
tiple factors may interact to generate different patterns of gene
expression, because 88 of the 95 modules showed significant P
values for two or more factors (Fig. 1 and SI Appendix, Table S4).
Module 1 (the single largest module) and module 13 are illustrative
of this, because both “age” and “region” are highly significant
interacting factors in their expression patterns. This is further
illustrated in SI Appendix, Fig. S7, where eigenvalue plots for
modules 1 and 13 have been colored to show how these two
factors map onto the 80 different experimental treatment groups
(compare this with SI Appendix, Fig. S6, where the same plot
for module 1 is colored to show “experiment”). In both of these
modules, samples from the youngest animals (posthatch days
1–7) have the highest eigenvalues, and samples from auditory
lobule and its subregions caudomedial nidopallium (NCM) and
L2a have low eigenvalues. Both of these modules are highly
enriched for functions associated with ribosomes (Table 3).

Brain Region Is a Dominating Factor in Differential Gene Expression.
Whether summing the numbers of genes significant for all con-
trasts (by ANOVA; Table 2), or the numbers of gene expression
modules significant for each major treatment factor (by
WGCNA; Fig. 1), we find that the major determinant of gene
expression pattern is the region from which the brain sample was
drawn. The effect of brain region is enormous, with more than
70% of all probes producing different signals among just the four
brain regions compared in experiment e08. Although within-
subject designs may have enhanced the sensitivity of individual
experiments focused on regional comparisons, region also
emerged as the dominant factor in the WGCNA analysis, which
compared group mean expression values across all experiments
at once: Region had the lowest (most significant) P value for the
most modules (n = 68), followed by species (n = 19), age (n = 6),
and then sex (n = 3).
The comparatively limited effect of sex is interesting, given the

chromosomal differences between the sexes and the absence of
robust dosage compensation in birds (30, 31). In the one experi-
ment where sex was an explicit contrast (e04), we detected 652
significant differences after Bonferroni correction, or 1,192 using
the criterion of raw P < 0.001. This estimate is somewhat more
conservative than a previous analysis of the same microarray
data (27), although our analyses detected a greater number of
cDNAs showing interaction between sex and age (266 at P <
0.001). TwoWGCNAmodules, module 82 and module 95, showed
strong effects of sex and also evidence of functional enrichment
by GO analysis. Module 82 genes are expressed higher in males
(SI Appendix, Fig. S8), and the two genes that contribute to its
annotation for glutamate secretion (Table 3) are both present on
the Z chromosome (consistent with overall higher expression in
males). They are APBA1, a neuronal adaptor protein that inter-
acts (in humans) with the Alzheimer’s disease amyloid pre-
cursor protein, and NTRK2, a BDNF/NT-3 growth factor receptor.
Module 95 genes are more highly expressed in females, and in-
clude genes for ssDNA binding proteins ERCC5 (DNA excision
repair) and SUB1 (an RNA polymerase II cofactor).

Table 2. Number of “significant” cDNAs for each main factor, averaged over the number of
treatment levels in each contrast

Factor (no. of
contrasts)

No. of levels per
contrast

Avg. no. sig. cDNAs per
level per contrast P < 0.001

Avg. no. sig. cDNAs per
level per contrast P < 2.6 E-06

Region (4) 2, 2, 4, 2 2,967 1,960
Species (1) 2 2,161 724
Age (4) 4, 2, 2, 2 959 380
Sex (1) 2 596 326
Social (6) 3, 3, 3, 2, 2, 2 170 25
Environment (7) 6, 2, 2, 3, 2, 5, 2 63 3

Avg. no. sig., average number of significant.

Drnevich et al. PNAS | October 16, 2012 | vol. 109 | suppl. 2 | 17247

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1200655109/-/DCSupplemental/sd01.txt
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1200655109/-/DCSupplemental/sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1200655109/-/DCSupplemental/sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1200655109/-/DCSupplemental/sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1200655109/-/DCSupplemental/sd02.txt
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1200655109/-/DCSupplemental/sd03.txt
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1200655109/-/DCSupplemental/sd04.txt
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1200655109/-/DCSupplemental/
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1200655109/-/DCSupplemental/sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1200655109/-/DCSupplemental/sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1200655109/-/DCSupplemental/sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1200655109/-/DCSupplemental/sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1200655109/-/DCSupplemental/sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1200655109/-/DCSupplemental/sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1200655109/-/DCSupplemental/sapp.pdf


Great Variation Across the Song Control System. The song control
nuclei have been described only in oscine songbirds, raising
questions about their ontological and evolutionary origins. Here,
we find that the song nuclei differ from each other as much as they
do from the rest of the brain. Thousands of genes differentiate
nucleus HVC (letters used as proper name) and its immediately
adjacent and functionally related surrounding shelf region

(experiment e09), and even more differentiate HVC from the
motor output nucleus to which it projects, the robust nucleus of
the arcopallium (RA) (experiment e01). In the experiment using
starlings (e08), comparing three major song nuclei (HVC, RA,
and X) and the preoptic area of the hypothalamus, roughly 55%
of all spots on the microarray showed a significant effect of brain
region. These results do not disprove the hypothetical existence
of one or a few general markers common to all song nuclei (e.g.,
32), but they do suggest that each song nucleus is highly differ-
entiated not only from the surrounding tissue but from every
other nucleus in the circuit.
Study of gene expression patterns that distinguish individual

song nuclei may be uniquely informative about the functional
and biological properties of each nucleus. A detailed analysis of
HVC gene expression from experiment e09 has been presented
previously (23), and we also note a very strong signature in the
combined data for another song nucleus, area X. In the
WGCNA analysis, module 22 genes are expressed at low levels in
this nucleus, whereas module 89 and 91 genes are expressed at
high levels (Fig. 2 and Table 3). In contrast to the pallial (or
“cortical”) nuclei HVC and RA, area X is a striatal nucleus that
is densely populated with small neurons and receives rich do-
paminergic innervation (33). Consistent with this and with prior
evidence for enrichment of various neurotransmitter receptors in
area X (23, 33), module 89 contains 6 ion channel-associated
genes, including two glutamate receptors (GRIA1 and GRIK3),
a GABA receptor (GABRB3), a cyclic nucleotide gated channel
(CNGA3), a monoamine transporter (SLC22A3), and a tran-
sient receptor potential cation channel (TRPM1). Module 91
includes another glutamate receptor (GRINA) and is enriched
for the term “dopamine metabolic process.”

Large Differences in Gene Expression Even Among Closely Related
Songbird Species. We also detected a very large effect of species
in our data, although this effect was numerically smaller than the
effect of region (i.e., there are more differences between 2
regions of the same species than between the same region of 2
different species). One might question whether the lower effect
of species could reflect reduced sensitivity of cross-species
hybridizations; however, the ANOVA contrast that detected the
greatest number of differences across all the experiments in the
entire dataset (contrast e08.A) was a comparison within starlings,
supporting prior conclusions that the SoNG Initiative 20K cDNA
array is useful for all passerines (21). Any comparison of ex-
pression differences between species runs the risk of confound-
ing expression changes with sequence divergence, but one
experiment in our dataset compared two closely related species
from the same family (house finches and red crossbills, family
Fringillidae). These two species are equally distant from the
zebra finch (SI Appendix, Fig. S1); thus, one would expect that
they should share similar patterns of sequence divergence rela-
tive to the probes on the zebra finch microarray. The 1,448
(4,322) observed differences in hybridization signal seem higher
than expected for sequence divergence between two members
of the same family (21). This suggests there may be true species
differences in their brain gene expression patterns, although this
needs to be confirmed experimentally [e.g., using methods like
RNA sequencing, which avoid the problem of species cross-
hybridization].

Effects of Experience Are Variable and Often Subtle. Against these
large effects of brain region and species on gene expression, we
observed fewer and more variable effects of experience, even
though most experiments involved some manipulation of experi-
ence-dependent factors. In Table 2, we classified experience-de-
pendent factors as either social (i.e., exposure to another bird
through sound or sight) or environmental (i.e., alteration of light
cycle or food availability). Unlike the experience-independent fac-
tors above, however, we could link none of these factors to specific
modules in WGCNA (SI Appendix, SI Materials and Methods).

Fig. 1. Heat map of the P values from separate one-way ANOVAs for re-
gion, species, age, and sex on the eigengene values for each module (ME1–
ME95) from the WGCNA analysis. The color scale is −log10 (P value). Exact P
values are provided in SI Appendix, Table S4.
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Nevertheless, by ANOVA, we did detect strong effects in
some but not all experiments. Prior analysis of experiment e11
(comparing males hearing novel song, familiar song or silence)
had reported very large effects, with thousands of cDNAs varying
under these three conditions (24), and our analysis of the same
data are in agreement (contrast e11.A). Experiment e10 (con-
trast e10.A) is an independent replication of the primary effect
of social isolation followed by song exposure, using females
hearing only novel song or silence and separately analyzing two
subregions (NCM and field L2a) that are combined in the “au-
ditory lobule” dissection used in experiment e11. In marked
contrast to these two experiments, four others also used song
playback to assess effects of social interactions (e02, e12, e14,
and e15) but found only modest or even negligible changes in
gene expression (Discussion).
Six experiments involved natural or artificial changes in pho-

toperiod (some with additional testosterone manipulation) to
stimulate changes in behavior (contrasts e03.D and e14.A) or
growth and regression in the song control nuclei (contrasts e01.
A, e06.A, and e08.B). Effects on expression profile ranged from
minimal (0 or 1 gene expression differences after Bonferroni
correction in e03.D and e06.A) to moderate (dozens to hundreds
of changes in e01.A and e08.B). The primary difference in results
here may be time: Experiments e01 and e08 both assayed mul-
tiple time points ranging from 3 to 56 d after a shift in photo-
period and found differences emerging at multiple points all
across this period, whereas experiment e03 only assessed 7 d af-
ter a shift to long days and experiment e06 only assessed 24 h and
48 h. These results indicate that photoperiod shifts can indeed
cause large changes in brain gene expression but may do so on a
prolonged time course.
Together, these experiments indicate that gene responsiveness

to acute experience does not necessarily correlate with our
perceptions of behavioral responsiveness but may vary in ways
more broadly linked to the developmental, environmental, and
perhaps social contexts in which the organism is embedded.

Frequent Regulation of Cell-Matrix and Peptidergic Signaling Genes.
The 12 most commonly regulated genes in our dataset (SI Ap-
pendix, Fig. S5) all show strong effects of both development
(contrast e04.A) and brain region (contrasts e08.A and e10.B).
Additionally, 4 of these genes map to the Z sex chromosome and
all these show main effects of sex in their expression (CRHBP,
GPR98, PCSK1, and JUND; contrast P). Three genes encode
transcription factors often described as immediate early genes
(EGR1, NR4A3, and JUND). Interestingly, however, the largest
numerical subcategory of the most highly regulated genes com-
prises 7 genes that encode proteins involved in cell-matrix
interactions and cell-cell (mainly peptidergic) signaling. Three of
these (ADAMTS1, APOH, and PCSK1) are found in the same
module in the WGCNA analysis (module 26), indicating they
have very similar overall expression patterns in this dataset.
ADAMTS1, an ECM protein, is a target of regulation by min-
eralocorticoid; APOH is a phospholipid binding protein typically
described in serum; and PCSK1 is a proprotein convertase that
activates proopiomelanocortin, proenkephalin, and other neu-
ropeptide precursors. The others in this functionally related set,
found in different expression modules, include cathepsin B
(CTSB), an extracellular protease; corticotropin-releasing hor-
mone binding protein (CRHBP), whose regulation in HVC
(contrast e09.A) was independently confirmed by in situ hy-
bridization (23); G protein-coupled receptor (GPR98); and cal-
cipressin, regulator of calcineurin (RCAN2).

Brain Genes Responding to Food Manipulations. Experiment e03
(contrast e03.B and interaction e03.C) tested the effects of an
enriched diet on the red crossbill (Loxia curvirostra), an opportu-
nistic breeder that responds to food with increased reproductive
behavior even on the shortest and longest days of the year (34).
Fifty-three cDNAs were significant in the diencephalon for the
effect of food at P < 0.001, but only 1 cDNA remained significant
after Bonferroni correction. It maps to ENSTGUG00000011402,
which is described as a novel gene in Ensembl and may be unique
to birds based on lack of alignments to other well-curated genomes.
A different gene, ENSTGUG00000007155 [macrophage-expressed

Fig. 2. Plots of the representative expression patterns for modules 22 (Top), 89 (Middle), and 91 (Bottom), colored by brain region. Each bar rep-
resents one of the 80 treatment groups (treatment names are provided in SI Appendix, Fig. S6), and the height of the bar indicates the relative expression
level for each group as estimated by the eigengene value. All three module types had significantly overrepresented GO terms and highly significant P values
for brain region ANOVA. The expression patterns show that all three distinguish area X from the other regions. AL, auditory lobule; LMAN, lateral mag-
nocellular nucleus of the anterior nidopallium; POA, preoptic area.
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gene 1 protein (MPEG1)] remained significant after Bonferroni
correction for the interaction of species and food (there are
two separate cDNAs on the array, and both were significant in
this test). These are some interesting leads to pursue in regard
to the evolution of linkages between environmental signals and
reproductive behavior.
Experiment e07 (contrast e07.B and interaction e07.C) also

used food manipulation to manipulate behavior, not by varying
nutritional content but only by varying the daily rhythm of food
availability in this case. Restriction of access to the last 6 h of a
14-h light phase does not affect daily food intake or body mass but
reduces daily song production by more than two-thirds (35, 36).
Here, the primary goal was to test the interaction of the amount
of singing with juvenile development of song nucleus HVC. Forty-
seven and 15 genes were significant (P < 0.001) for the main effect
of food manipulation and interaction with age, respectively, al-
though none was significant after Bonferroni correction. Never-
theless, the 47 apparent food-sensitive (singing-sensitive) genes
do show an intriguing and highly significant enrichment (FDR of
P < 0.05) for 2 voltage-gated potassium channel genes (KCNS1,
KCNC2), one calcium-gated potassium channel (KCNN2), two
serotonin receptors (HTR1D, HTR2A), and 3 other G protein-
coupled receptor signaling pathway genes (INSR, ZMPSTE24,
and C5orf32). There is no overlap in the cDNAs significant in
these two experiments (e03 and e07) using food manipulation.

Discussion
Here, we performed a synthetic statistical analysis of a unique
dataset collected under the SoNG Initiative (21). The SoNG
Initiative was designed with two goals: (i) to engage the partic-
ipation of a wide range of songbird biologists, allowing individ-
uals to choose the experimental questions of greatest interest
within their own subfields, and (ii) to minimize the sources of
technical variation between the various experiments so that they
could be analyzed as a group to gain broad insight into the rel-
ative influence of diverse factors on brain gene expression, as we
have done here. The rationale for this metaanalysis was the
potential for extracting information from the whole that could
not be obtained within any individual planned experiment by

itself. Our results affirm this expectation and also provide
a platform for bringing forward observations within individual
experiments that were beyond or tangential to the experi-
menter’s initial objectives. Although we did not conduct new
independent experiments to validate specific microarray results
presented here, extensive validations have been performed pre-
viously on subsets of these data (23–27, 30), and these consis-
tently found very high agreement with measurements based on in
situ hybridization and PCR.
By design, the SoNG Initiative aimed for breadth over depth,

and breadth was indeed achieved by drawing from samples
contributed by 11 different laboratories. However, this also
resulted in a sparse dataset with frequent confounding of factors
(e.g., all hypothalamic samples were from non-zebra finches, thus
confounding the effects of species and brain region when com-
paring these experiments with the rest of the amassed data).
Moreover, even though we minimized sources of technical vari-
ation by using a single analysis pipeline, the effect of experiment
(i.e., the laboratory that provided the brain samples) is still pri-
mary in the initial clustering of data (SI Appendix, SI Materials
and Methods and Table S4) echoing a prior study comparing data
from different laboratories using the same mouse strains and
experimental protocols (37). Future studies will benefit from
both deeper sampling and more systematic control of experi-
mental variables to describe gene expression configurations
uniquely associated with specific developmental or functional
states in the brain accurately. Future studies are also likely to
benefit from the rapidly developing techniques for direct se-
quencing of RNA (38) as a potential improvement over the
microarray technology used in the SoNG Initiative.
As a complement to ANOVA, we used a relatively recently

developed statistical method, WGCNA, because it extracts pat-
terns from all the combined data without requiring a formal
specification of the expected factors and interactions. Thus, it
may be especially useful as a discovery tool in data mining. Here,
for example, we found three modules that were dominated by
higher or lower expression in area X, suggesting that this song
nucleus may be unusually distinctive, even though no experiment
was explicitly designed to test this idea. WGCNA also identifies

Table 3. Ten modules with significantly enriched GO terms

Theme Module
No. of
cDNAs Factor Visual pattern GO FDR Expect Observe GO description

“Ribosome” 1 829 Age × region p1 and p7
telencephalon

2E-09 8 32 Structural
constituent of
ribosome

13 408 Region × age LMAN and juvenile
telencephalon

4E-10 4 25 Ribosome

“Area X” 22 196 Region Area X low 0.016 0 3 Stereocilium
89 47 Region Area X high, pallium

low
0.0001 0 6 Ion transport

91 46 Region Area X high 0.019 0 2 Dopamine metabolic
process

“Sex” 82 51 Sex M > F 0.019 0 2 Glutamate secretion
95 43 Sex F > M 0.016 0 2 ssDNA binding

“Contrast
telencephalon and
diencephalon”

30 152 Species × region Fring. or Ember. X
hypothalamus or
diencephalon

0.018 0 3 Secretory granule

71 62 Region Telencephalon high;
diencephalon,
HVC and X low

0.0044 0 2 Axis specification

61 75 Region Hypothalamus low 0.0053 0 2 Transmembrane
receptor protein
tyrosine kinase
signaling protein
activity

Ember., Emberizidae; F, female; Fring., Fringillidae; LMAN, lateral magnocellular nucleus of the anterior nidopallium; M, male; p, posthatch day.
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gene sets that are consistently coexpressed, which may define
common functional processes, states, or cell types that vary sys-
tematically across the different treatment groups. The module 1
genes, for example, tend to share roles in ribosomal function and
protein synthesis, processes that are most active in juvenile brain
development. Interestingly, only 10 of the 95 modules have sig-
nificant functional internal relationships as assessed by GO. We
can only speculate whether the lack of significant annotations for
the remaining modules is a limitation of the annotations cur-
rently available in GO or evidence for coexpression of highly
cellular disparate processes in most of the modules. Another use
of WGCNA data is to identify central or “hub” genes within the
gene expression network, which may serve as network control
points and are operationally defined by each gene’s module
membership or connectivity value (the correlation between
a gene’s actual expression pattern and the module’s eigengene
value). For example, transcription factor genes that closely
match a module’s eigengene pattern might be responsible for
regulating the other genes in that module. We explored that
possibility for the modules in Table 3; transcription factor genes
with high connectivity values (among the top 5 within each
module) are found in area X modules 22 (NRF2) and 91 (HLF),
as well as in the male-increased module 82 (SIX6). Functional
manipulations of these genes would be informative as to their
potential role in area X differentiation and function. A fourth
demonstrated use of WGCNA data is to compare modules in
different networks built from different datasets to look for evi-
dence of deep conservation. For example, Oldham et al. (39)
used this approach to find evidence of conserved modules that
correspond to particular brain cell types. Here, we just created
a single network to describe the expression pattern across all our
data at once. A productive future analysis might be to construct
separate networks for the same brain region in different species
to define conserved functional modules more sharply.
Both ANOVA and WGCNA approaches gave similar results

with respect to the relative impact of the major factors repre-
sented in the 488 brain tissue samples analyzed, with both finding
brain region to be the major determinant. A dominant effect of
brain region has also been described in the mammalian brain (40–
42). Regional variations in gene expression probably reflect both
developmental differences (e.g., the relative abundance of dif-
ferent cell types in the various brain regions) and physiological
differences (i.e., local microenvironments, modulatory inputs,
hormonal signals). In any case, the strong effect of brain region
is a major factor to consider in the search for core regulatory
mechanisms common in the nervous system, as well as in con-
sidering how environmental factors reach the genome. Genes are
expressed at different levels in different brain circuits and sys-
tems, and even a broad organismal factor like “stress” will thus
engage with a different genomic substrate in different parts of
the brain.
Songbirds have attracted much attention in scientific research

as models for studying the interplay between development, social
experience, neural circuitry, and behavior. Our results indicate
that experience-dependent factors interact powerfully with the
dominating experience-independent factors, such that the effects
vary greatly with brain region, species, age, and sex. For example,
the largest social effect (most regulated genes) occurred in the
adult auditory forebrain of zebra finches in response to song
playbacks (experiment e11). However, no significant differences
were detected in response to song or tutor exposure in the ju-
venile zebra finch (experiments e02 and e12), and effects were
much reduced in the starling auditory forebrain (experiment
e15) and in the song sparrow hypothalamus (experiment e14).
A reduced genomic response to song playbacks was the a priori
prediction in the experiment with juvenile zebra finches (exper-
iment e12), based on the hypothesis of age-dependent “consti-
tutive plasticity” during the critical period for juvenile song
learning (25). According to this hypothesis, gene expression
patterns associated with enhanced information storage are sus-
tained (constitutive) throughout the developmental period when

the bird is most sensitive to song tutoring, whereas they become
suppressed in the adult and are induced only when the bird
experiences a strong, salient social stimulus (e.g., isolation fol-
lowed by sudden exposure to a new conspecific).
A variant of the constitutive plasticity hypothesis could also

explain the lower numbers of song-responsive genes seen in ex-
periment e15.A with starlings (not previously published) and
experiment e14.B with song sparrows [independently described
by Mukai et al. (26)]. Starlings, unlike the zebra finch, are life-
long “open learners” in which functional sensitivity to new song
models is sustained into adulthood. The constitutive plasticity
hypothesis thus predicts that juvenile patterns of basal gene ex-
pression should be sustained in the adult starling, whereas they
become suppressed in the adult zebra finch; a direct comparison
of gene expression in adult and juvenile starlings and zebra
finches would be informative in this regard. The song sparrow
experiment involved a different brain region (hypothalamus in-
stead of auditory forebrain) and a different behavioral context
[aggressive response to simulated territorial intrusion (STI)]. The
initial hypothesis in that experiment was that gene responses to
STI would be greatest in spring during the season of enhanced
behavioral aggression, but the opposite was observed (26). Thus,
gene expression patterns appear to become more “constitutive”
and less immediately “experience-dependent” during precisely
those ages or seasons when a focused response to immediate
experience may be most critical to the organism.
The diversity of songbirds and their various adaptations to

different ecological and behavioral niches have inspired many
proposals of comparative experiments to correlate genetic or
gene expression differences with specific functional or behavioral
differences (e.g., 12, 43). Our data here suggest that differences
in brain gene expression between even relatively closely related
species may be quite large, which will challenge any simple
species comparisons attempting to correlate gene expression
variation with particular traits. This also raises the question
of whether there are conserved transcriptional networks for
embedding of social experience in the brain, and if so, what
would be required to detect them? If such networks exist, we
suggest that future research may find them by a process of
triangulation, combining both comparative studies of species
that differ in responsiveness to social experience (e.g., open vs.
closed learners in songbirds) with careful developmental analyses
of changing social sensitivities within a laboratory-reared species
like the zebra finch and looking for correlated patterns of reg-
ulation that extend across both evolutionary and developmental
time scales.
Our analysis shows that experience-dependent changes in gene

expression occur against a background of enormous structured
variation in the brain. Although all nervous tissue obviously
shares some intrinsic commonalities, our results highlight how
much variation there is at the molecular level, even among
regions that are functionally related. Against this baseline of
intrinsic variation, some experiential treatments result in large
changes in gene expression in a particular brain region, whereas
other similar manipulations may result in much smaller effects.
These variations may be especially important for understanding
the constraints and mechanisms that underlie the biological
embedding of social and environmental conditions.

Material and Methods
Tissue Samples and Microarray Hybridizations. Tissues were provided and
analyzed under the SoNG Initiative program as described (21). SI Appendix,
Table S1 describes the general design of each of the completed experiments
that contributed to the final results of this analysis. The provider of each
tissue is indicated in SI Appendix, Table S1, and in each case the provider
obtained approval for the animal experiments from the Institutional Animal
Care and Use Committee of the provider’s home institution (see author list
for affiliations). SI Appendix, Table S2 presents technical details for all 488
samples representing the set of 80 treatment groups and 32 planned contrasts.
See SI Appendix, SI Materials and Methods for details on sample preparation,
hybridization, and scanning.
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Data Preprocessing. All 488 arrays were initially preprocessed together in R
(44) with the limma package (45), using a standardized method, including
background correction and within-array normalization (details are provided
in SI Appendix, SI Materials and Methods).

ANOVA. Further data preprocessing and statistical analysis were done sepa-
rately for each experiment. The sample/reference log2 ratios were between-
array normalized using the scalemethod; the log2 transformation of the ratio
values is the common practice for microarray data before use of parametric
statistics (45). Next, a statistical model was fit, either a one-way ANOVA F
test for those experiments with one factor or with the main effects and
interaction F tests for those experiments with two factors, plus the reference
X dye interaction and any additional factors as necessary (SI Appendix,
Table S3).

The statistical models were fit using all 20,160 addresses on the array, but
the comparisons of significant probes were limited to the 18,848 addresses
spotted with cDNA clones from the nonredundant “songbird” (SB) series
of cDNAs. In total, 13,859 of these SB sequences were mapped to Ensembl
genes in the zebra finch genome assembly, 8,521 of which were unique,
as previously described (22). Mapping of multiple SB cDNAs to the same
Ensembl gene may indicate alternative transcripts (e.g., splicing) or repre-
sentation of different portions of the same transcript. Thus, in the ANOVA
analysis, we treated each SB spot independently.

WGCNA. WGCNA applies a variety of algorithms to calculate the similarity of
expression patterns among all pairs of genes across all treatment conditions,
assigning each gene to a “module” based on shared expression patterns.
To reduce the significant computational burden of WGCNA, we used the

mean values for each treatment group as derived from the ANOVA models,
which collapsed the 488 samples down to 80 treatment groups. The 80 group
mean values were further normalized to remove the batch effects of species
and cDNA amplification as described in SI Appendix, SI Materials and
Methods. Of the 18,848 SB cDNAs on each array, 17,175 were used in the
WGCNA analysis because they had at least 1 of the 32 within-experiment
contrasts with a raw P value <0.001 and an estimated group-level value
for all 80 treatment groups. By WGCNA, these 17,175 individual expression
patterns were collapsed down to 95 modules ranging from 829 to 43 cDNAs
each, plus the “0” module with 316 cDNAs that did not fit any of the 95
patterns well enough. Each cDNA’s module assignment is indicated in
Dataset S1, and a complete list of kME values (the module eigengene-based
connectivity measure) for all genes in all modules is given in Dataset S2.

GO Enrichment Tests. GO analyses of specific gene sets were performed using
the Web-based GOfinch tool (http://bioinformatics.iah.ac.uk/tools/GOfinch).
This analysis relies on the gene-level annotation supplied by Ensembl, and
performs both Fisher and Hypergeometric tests of enrichment for terms in
the input list against the terms in the reference (the full list of Ensembl gene
identifiers represented on the 20K microarray). Because ANOVA and WGCNA
both generated lists of individual SB cDNAs, these identifiers were subsequently
converted to Ensembl gene names. Thus, SB cDNAs that mapped to redundant
Ensembl genes were collapsed into a single gene entry for GO analysis.
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