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Abstract
The diagnosis and treatment of cancers, which rank among the leading causes of mortality in
developed nations, presents substantial clinical challenges. The genetic and epigenetic
heterogeneity of tumors can lead to differential response to therapy and gross disparities in patient
outcomes, even for tumors originating from similar tissues. High-throughput DNA sequencing
technologies hold promise to improve the diagnosis and treatment of cancers through efficient and
economical profiling of complete tumor genomes, paving the way for approaches to personalized
oncology that consider the unique genetic composition of the patient’s tumor. Here we present a
novel method to leverage the information provided by cancer genome sequencing to match an
individual tumor genome with commercial cell lines, which might be leveraged as clinical
surrogates to inform prognosis or therapeutic strategy. We evaluate the method using a published
lung cancer genome and genetic profiles of commercial cancer cell lines. The results support the
general plausibility of this matching approach, thereby offering a first step in translational
bioinformatics approaches to personalized oncology using established cancer cell lines.

1. Introduction
Despite innovations in relevant diagnostics and therapeutics over the past decades, cancers
remain among the leading causes of mortality in developed nations. Although many
common molecular drivers of oncogenesis are known to exist, the majority of cancers are
heterogeneous in their molecular characteristics, leading to disparities in response to
standard cancer therapies. High-throughput sequencing technologies, with promise to offer
complete DNA sequence profiling of cancer genomes, present novel opportunities
understanding the unique molecular characteristics of tumors profiled in clinical
populations. Knowledge of the unique molecular characteristics of a tumor, as detailed by its
genomic sequence, could inform diagnosis, prognosis and treatment, thereby establishing a
basis for personalized oncology.

In order to gain clinical utility from personal cancer genomes, the molecular characteristics
latent in the cancer genomic sequence must be related to a broader biological context.
Aberrations in a cancer genome, such as somatic variations in single nucleotides, copy
number or novel gene fusions can serve as informative biomarkers that inform diagnosis,
prognosis or treatment. For example, mutations in the epidermal growth factor receptor
(EGFR) have been associated with response to gefitinib in non-small cell lung cancer
(NSCLC)1, and mutations in KRAS are known to be predictive of response to cetuximab in
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colon cancers2. Such markers have great clinical value when they are well characterized,
however a complete genomics sequence of a cancer is likely to present many novel
molecular aberrations that have minimal to no precedence in the literature. Furthermore,
consideration for only a subset of the markers available in a fully sequenced cancer genome
might miss molecular and biological features important for individualized treatment.

In order to assess functional correlates of disease progression or therapeutic susceptibility,
approaches to personalized oncology need to consider molecular phenotypes salient in
individual tumor biology along with the tumor’s genotype. For example, expression levels
of human epidermal growth factor receptor 2 (HER2) are predictive of response to
trastuzumab3, and various cellular metabolic features have been associated with tumor
progression4. Ideally, it would be possible to functionally investigate these molecular
phenotypes towards a personalized course of clinical care (e.g. test the response of several
different chemotherapies to determine the best course of treatment), however it is not
possible to conduct such clinical experimentation in vivo without placing the patient in
danger of serious harm. One solution is to create autologous tumor cell lines from tumor
tissue excised from the patient. However, the technical capacity to establish, maintain, and
functionally test autologous cell lines is not at all common in most clinical settings, and
therefore may not be as viable as a therapeutic option during the course of clinical care for
cancer patients.

Here we describe a method to match a personal cancer genome with commonly studied
commercially available cancer cell lines based on shared genetic profiles. Commercial cell
lines serve as an attractive option for personalized oncology, because they are readily and
economically available through commercial suppliers, and the pharmacological and
biochemical characteristics of many of the available cancer cell lines are well reported in the
literature. Furthermore, it has been shown that large collections of cancer cell lines can serve
as “systems” to functionally characterize the pathophysiological properties of individual
tumors5. Once a personal cancer genome is matched to a commercial cell line, it is possible
that the cell line and the prior knowledge around that cell line could serve as an in vitro
surrogate for clinical functional assessment of tumor biology. We offer a profile similarity
approach that matches a cancer genome with commercial cell lines based on profiles of
shared somatic variability at multiple loci. The method is assessed using data from a recently
published genomic sequence of a lung cancer tumor, which was matched to genotyped cell
lines found in the GlaxoSmithKline cancer cell line genomic profiling data.

2. Methods
2.1. Data

A set of somatic single nucleotide variants discovered in a NSCLC genome through paired
genome sequencing in a lung cancer patient was obtained from the supplementary
information provided by Lee et al6. Variant positions were mapped to dbSNP rsId’s by
genomic location. SNP genotype profiles for commercial cancer cell lines were downloaded
from the Cancer Biomedical Informatics Grid (caBIG) website (https://cabig.nci.nih.gov/
caArray_GSKdata/) via FTP. Allele frequency information was downloaded from data
provided by the International HapMap Project Phase IIa7. We aggregated in vivo tumor
xenograft screening data made available through the National Cancer Institute (NCI)
Developmental Therapeutics Program (DTP) website (http://dtp.nci.nih.gov/webdata.html).
The DTP screening data provides assessments of the anti-tumor efficacy of a wide range of
chemical compounds evaluated across various clinical endpoints in human tumor xenograft
models8.
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2.2. Profile similarity
A profile similarity metric was computed by comparing common variant loci between the
cancer genome and the cancer cell line SNP profiles. The SNP profiles for the commercial
cell lines only represent the genotype of various primary cancer cells, and therefore offer no
means to distinguish somatic variants from neutral variation. We used allele frequency data
from the HapMap project as a proxy for the normal baseline genotype. In this way, a locus
was said to be a cancer-associated variation if it was not found to harbor the associated
major allele for that locus found in the HapMap data. We then derived a multi-locus identity
metric to compute a similarity score between to genomic profiles based on shared genotypes
at somatically variant positions. For each locus an identity-by-similarity (IBS) score was
computed based on the number of alleles shared between the profiles at that locus. The IBS
score = 0 if no alleles are share, 1 if one allele is shared, or 2 if both profiles are
homozygous for the same allele. The multi-locus profile identity score (mIS) was computed
by summing the IBS scores across all shared loci and dividing by twice the number of
common loci:

Where L is the number of common variant loci between two genomic profiles i and j, and 

is the genotype of the Ith locus in profile i, and  is the genotype of the Ith locus in profile j.

2.3. Matching the lung cancer genome to cell lines
To match the NSCLC genome to cell lines we computed the mIS score between the somatic
variants and the SNP profiles for all cell lines found in the GSK data set. To estimate a p-
value for mIS scores we computed a random distribution of mIS scores by constructing
random genotype profiles by sampling randomly from the GSK data, and computing the
mIS score between the NSCLC profile and the random genotype for one thousand iterations.
The empirical p-value for an mIS score was computed as the proportion of mIS scores from
the random distribution greater than the given mIS score.

2.4. Clustering tumors by therapeutic profiles
The DTP inhibition data was averaged by tumor type and compound. For each tumor type
defined in the DTP data set, a chemotherapeutic profile was defined as the average
inhibition for each compound against which the tumor was evaluated. A distance matrix was
computed between tumors using the Pearson’s correlation of compound inhibition response
values. Only statistically significant correlations were retained. Hierarchical clustering was
performed on the correlation distance matrix (1 -correlation) using the average
agglomeration method. The significance of the compound inhibition clustering was assessed
by multiscale bootstrap resampling across 1,000 bootstrap replicates using the pvclust
package (http://www.is.titech.ac.jp/~shimo/prog/pvclust/). All computations were performed
using the R language for statistical computing (http://www.r-project.org).

3. Results
Using genomic location information we mapped 9,754 somatic single nucleotide variants
and their genotypes to dbSNP rsId identifiers. Among these loci we found 391 that
overlapped with the SNPs measured on the SNP array used to profile the cancer cell lines in
the GSK data set. This common set of loci was used to compute the profile similarity
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between the NSCLC genome and the cancer cell lines. After computing mIS profile
similarity scores (see methods) between the NSCLC genome and all cell lines profiled in the
GSK data set, we find 16 cell lines to be significantly associated with the personal cancer
genome by genetic profile (Table 1). The distribution of mIS scores across the GSK data set
is shown in Figure 1. The top match among the GSK cancer cell lines is bladder carcinoma
line J82. While other lung carcinomas are found among the top results, we also find non-
obvious associations between various leukemias and lymphomas.

To explore the plausibility of these cell line associations, we obtained chemotherapeutic
screening data from the NCI Developmental Therapeutics Program (DTP) and clustered
tumors based on their response to various chemotherapies (Figure 2). Based on
chemotherapy response profiles, we find that Lewis lung carcinomas, a model for non-small
cell lung cancer, generally cluster with several leukemias and reticular (lymphoid) sarcoma,
which is reflective of our cell line match results.

4. Discussion
In effort to relate a personal cancer genome to cancer cell lines for personalized oncology,
we developed a profile similarity method that computes a similarity score between two
genetic profiles based on shared alleles at somatically variant sites. We applied this method
to a published non-small cell lung cancer genome and a set of SNP profiles from the GSK
cancer genomic profiling data set. We found that the personal cancer genome could be
significantly matched with 16 cell lines from the GSK data set by genetic profile (Table 1).
While we find a number of lung cancer cell lines among these significant matches, we also
find equally significant matches for non-lung cancers, including various Hodgkin
lymphomas, leukemias and bladder cancer.

It is not immediately apparent why the lung cancer genome would be associated with these
seemingly unassociated cancers. One possible explanation is that there are many passenger
mutations after the cancer initiation event has started9, and that the similarities are being
driven by these mutations. Since passenger mutations are not necessarily causal, and could
therefore confound variation based similarity metrics like the one used in this study. In this
case, future work might involve inclusion of prior knowledge of cancer causal variants to
reduce false positives, or look across multiple cancer genomes to understand patterns of
earlier versus later mutations from a data-driven perspective.

Another explanation is that these associations might point towards some shared etiological
or pathophysiological characteristics. Smoking is a well-known risk factor for lung cancers,
leading to consistent genetic lesions observable in the genomes of lung cancer tumors.
Smoking is also a substantial risk factor for bladder cancer10, which is the top match in our
results, and is also known to be associated with increased risk of various leukemia’s and
lymphomas11. Therefore the computed similarity between the lung cancer genome and these
cell lines might have a basis in shared common genetic lesions due to smoking. It is also
known that individuals affected by Hodgkin’s lymphoma have an increased risk of lung
cancer and non-Hodgkin lymphomas12, suggesting a possible shared molecular
pathophysiology among the various forms of cancer. Therefore, despite the fact that many of
the matches are not of the same tumor type as the lung cancer genome, it is possible that
they still might serve as functional surrogates for personalized clinical investigation.

To gain functional support for the plausibility of these cell line associations, we clustered
tumors based on their response to various chemotherapies (Figure 2). Based on
chemotherapy response profiles, we find that non-small cell lung cancer model tumors
(Lewis lung) cluster significantly with both each other and other non-lung tumor types. A
scatterplot of the chemotherapeutic profile similarity between a NSCLC tumor and leukemia
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is shown in Figure 3. Although the cell lines used in the DTP screening data set are not
precise matches for the cell lines in the GSK data set, we can draw support for the notion
that unrelated cancers such as lymphomas or leukemias could serve as functionally relevant
clinical surrogates for lung cancer tumors.

We find additional support for a plausible functional relationship through investigation of
the variants driving the similarity between the lung cancer genome and cell lines. The best
match in our data set was a bladder carcinoma cell line (J82). The gene associated variants
shared between the lung cancer genome and the J82 cell line are shown in Table 2. Although
all of these shared loci are intronic, it’s still possible that they could be disrupting gene
function through an effect on alternative splicing, or might serve as surrogate markers for
mutational disruption of other loci in the same gene through linkage disequilibrium. Among
these genes we find several known to be associated with cancers. PTPRT, a protein tyrosine
phosphatase receptor, is a signaling molecule known to be implicated in oncogenic
transformation in several different cancers13, including colon cancer14,15, glioma16, and
melanoma17. NELL1 and NELL2, growth factor like protein thought to be involved in
regulation of cell growth, has also been associated with multiple cancer types, including
esophageal adenocarcinoma18, colon cancer and Burkitt’s lymphoma19. TUSC3, a putative
tumor suppressor gene, has been associated with pancreatic cancer20, prostate cancer21 and
ovarian cancer22. It’s possible that these pleiotropic oncogenes are driving the similarity
relationship between the lung cancer genome and J82 based on common patterns of
oncogenic mutation. Several other genes underlying this similarity are not known to be
oncogenic, however variants in BMP6, COL6A3, C7, GABRG3 and NRG3 are known to be
associated with various complex and Mendelian diseases.

We acknowledge several limitations in our approach. Foremost, we recognize that since the
GSK cell lines were profiled by SNP microarray, that the analysis was appreciably
constrained to only the loci measured on the array platform. Future work might employ
sophisticated imputations algorithms to expand the genotype profiles in the GSK data set,
but ideally full genome sequencing data for these cell lines would likely be necessary for
clinical application of this approach. We also acknowledge that the DTP chemotherapeutic
profiling data can only offer indirect support for functional associations between these cell
lines, as many of the cell lines profiled in the GSK data set are not represented in the NCI
DTP screening data set. Efforts are needed to comprehensively characterize the
chemotherapetuic response profiles of these cell lines and to provide a machine-readable
representation of these data in the public domain.

Future work in this area will incorporate improved similarity metrics that give added
importance to somatic variations more likely to play a causal role in tumorigenesis or
metastasis, such as mutations in evolutionary conserved regions, or in loci known to act as
expression quantitative trait loci (eQTLs) for genes associated with oncogenesis. More
importantly, future work should incorporate experimental validation of predicted cell line
matches to test whether or not the predicted cell line match exhibits clinical characteristics
(e.g. chemotherapeutic response) similar to the individual tumor genome to which it was
matched. Developments in this area will provide novel directions in personalized oncology
that leverage the clinical, economic, and scientific benefits of well studied and characterized
commercial cancer cell lines.
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Figure 1.
Distribution of genetic profile similarity scores between the lung cancer genome and GSK
cancer cell lines.
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Figure 2.
Hierarchical clustering of tumors profiled by the National Cancer Institute Developmental
Therapeutics Program based on their chemotherapeutic inhibition response profiles. Values
at the inner nodes represent bootstrap p-values estimated by multiscale bootstrap resampling
using 1,000 boostrap replicates.
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Figure 3.
Comparison of the chemotherapeutic response profiles between a model of non-small cell
lung cancer tumor model and a leukemia characterized in the NCI DTP data. The points
represent the inhibition proportion (treatment/control) for a compound.
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Table 1

Cancer cell lines from the GSK genomic profiling data set with genetic profiles significantly similar to the
individual NSCLC genome based on mIS scores.

Cancer Type Cell Line mIS score P-value

Carcinoma of Bladder J82 0.84 2.3×10−2

Acute T Cell Lymphoblastic Leukemia of Hematopoietic and lymphatic system CCRFCEM 0.83 3.3 ×10−2

Lymphoma of Hematopoietic and lymphatic system SR 0.83 3.3 ×10−2

Hodgkin Lymphoma of Hematopoietic and lymphatic system RPMI6666 0.83 3.3 ×10−2

Lung Adenocarcinoma NCIH1975 0.82 4.8×10−2

Lung Adenocarcinoma NCIH2228 0.82 4.8×10−2

Atypical Carcinoid Tumor of Lung NCIH720 0.82 4.8×10−2

Small Cell Lung Carcinoma of Lung NCIH524 0.82 4.8×10−2

Burkitt Lymphoma of Hematopoietic and lymphatic system MC116 0.82 4.8×10−2

Burkitt Lymphoma of Hematopoietic and lymphatic system 1A2 0.82 4.8×10−2

Carcinoma of Uterus KLE 0.82 4.8×10−2

Sarcoma of Bone SW1353 0.82 4.8×10−2

Carcinoma of Uterus RL952 0.82 4.8×10−2

Myeloma of Hematopoietic and lymphatic system HuNS1 0.82 4.8×10−2

Carcinoma of Breast MT3 0.82 4.8×10−2

Acute T Cell Lymphoblastic Leukemia of CEMC1 0.82 4.8×10−2
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Table 2

Gene-associated variants driving the similarity score between the personal lung cancer genome profile and the
top cell-line match bladder carcinoma (J82). Both the lung cancer genome and J82 exhibit somatic variation at
these positions and share at least one variant allele.

dbSNP rsID Gene region Gene symbol Gene description

rs169124 intronic BMP6 bone morphogenetic protein 6

rs13378247 intronic ENOX1 ecto-NOX disulfide-thiol exchanger 1

rs11182675 intronic NELL2 NEL-like 2 (chicken)

rs7824149 intronic NECAB1 N-terminal EF-hand calcium binding protein 1

rs938726 intronic EIF2C2 eukaryotic translation initiation factor 2C, 2

rs10983337 intronic ASTN2 astrotactin 2

rs639839 intronic NRG3 neuregulin 3

rs16907794 intronic NELL1 NEL-like 1 (chicken)

rs2425562 intronic PTPRT protein tyrosine phosphatase, receptor type, T

rs2837583 intronic DSCAM Down syndrome cell adhesion molecule

rs10852799 intronic DNAH9 dynein, axonemal, heavy chain 9

rs8024401 intronic GABRG3 gamma-aminobutyric acid (GABA) A receptor, gamma 3

rs9555507 intronic MYO16 myosin XVI

rs10483422 intronic NPAS3 neuronal PAS domain protein 3

rs11158839 intronic SLC8A3 solute carrier family 8 (sodium/calcium exchanger), member 3

rs9620769 intronic TTC28 tetratricopeptide repeat domain 28

rs13112477 intronic C4orf22 chromosome 4 open reading frame 22

rs6720773 intronic COL6A3 collagen, type VI, alpha 3

rs10932540 intronic VWC2L von Willebrand factor C domain-containing protein 2-like

rs7550703 intronic HHAT hedgehog acyltransferase

rs1881410 intronic LOC730124 similar to hCG2041586

rs4730038 intronic LHFPL3 lipoma HMGIC fusion partner-like 3

rs2642484 intronic CNTNAP2 contactin associated protein-like 2

rs7819262 intronic TUSC3 tumor suppressor candidate 3

rs2910639 intronic ADAMTS12 ADAM metallopeptidase with thrombospondin type 1 motif, 12

rs16870537 intronic C7 complement component 7
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