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Abstract
We describe a crowd-sourcing based solution for handling large quantities of data that are created
by e.g., emerging digital imaging and sensing devices, including next generation lab-on-a-chip
platforms. We show that in cases where the diagnosis is a binary decision (e.g., positive vs.
negative, or infected vs. uninfected), it is possible to make accurate diagnosis by crowd-sourcing
the raw data (e.g., microscopic images of specimens/cells) using entertaining digital games (i.e.,
BioGames) that are played on PCs, tablets or mobile phones. We report the results and the
analysis of a large-scale public BioGames experiment toward diagnosis of malaria infected human
red blood cells (RBCs), where binary responses from approximately 1000 untrained individuals
from more than 60 different countries are combined together (corresponding to more than 1
million cell diagnoses), resulting in an accuracy level that is comparable to those of expert medical
professionals. This BioGames platform holds promise toward cost-effective and accurate tele-
pathology, improved training of medical personnel, and can also be used to manage the “Big
Data” problem that is emerging through next generation digital lab-on-a-chip devices.

The internet revolution can be traced back to the invention of the transistor. It was the
integration of transistors into electronic chips, and subsequently into computational systems
that led to the development of computers and the internet. For over three decades, the
number of transistors in integrated circuits has been doubling approximately every 18
months, a trend that is dubbed as the Moore’s Law. Quite interestingly, a similar trend
seems to exist for the number of pixels installed on mobile phone cameras. In other words
the megapixel count of mobile phones has been following Moore’s Law since the wide-scale
introduction of camera phones in 2002 with 0.3 megapixels, reaching 41 megapixels in
2012.1 The massive volume of these consumer electronics components, reaching billions,
has brought a phenomenal reduction in cost and unprecedented levels of access to such
advanced digital devices despite their sophisticated hardware and software capabilities.

As a result of this revolution in digital electronics, we are now seeing a paradigm shift in
imaging and sensing technologies with ultra-portable, cost-effective and high-throughput
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lab-on-a-chip platforms providing innovative solutions for e.g., point-of-care and
telemedicine applications, among others.2–18 Cost-effectiveness and portability of these
emerging digital imaging and sensing technologies through lab-on-a-chip platforms will
allow wide-scale generation of large amounts of biomedical and environmental data even in
traditionally resource-limited and remote parts of the world. The richness of this data will
surely provide new opportunities for better understanding various phenomena such as global
spatio-temporal patterns of various diseases and health conditions, helping us relate such
patterns to their causes, potentially also influencing our global health and environmental
policies. On the other hand, such massive amounts of data that will be continuously created
by the next generation digital imaging, sensing, and lab-on-a-chip technologies will also add
to our “Big Data” problem, which can fundamentally be related to the fact that the
performance, training, and the number of available human experts (e.g., medical personnel,
data analysts) do not scale as fast as Moore’s Law.

In this work, we introduce a platform that aims to tackle this emerging Big Data problem
through entertaining games that crowd-source the digital data of interest (e.g., microscopic
images of specimens) to minimally trained humans/gamers for diagnostic decision making
or labelling. These digital games (termed BioGames – see Fig. 1) can be played all around
the world on PCs, tablets or mobile phones. The individual responses of the gamers are
collected using secure servers for analysis and decoding of the final decisions and the
labelling of the original data.

At the centre of the BioGames platform lies crowd-sourcing, which has recently emerged as
a powerful strategy for tackling computationally difficult scientific problems.19–24 The basic
idea behind a crowd-sourcing platform is to first break the task of interest into smaller pieces
that can each be completed in a relatively short amount of time; and second to distribute
these pieces of the problem to individual humans through a convenient medium, such as the
internet; and finally to combine the collective responses of the individual participants to
yield an optimal solution. A promising approach to distributing the data and finding human
volunteers has been the use of entertaining computer games.21,25,26 In this approach the
scientific or computational problem is embedded into a digital game and then distributed to
gamers. The individual gamers may then cooperate, compete, or play independently to solve
parts or the entire problem of interest.

Along the same lines, we have recently proposed a crowd-sourcing-based solution for
diagnosing or labelling bio-medical images.24 In this small scale experiment (involving ~30
gamers), we showed that it is conceivable to achieve accurate diagnosis results by asking
multiple individuals to label human RBC images that are potentially infected with the
malaria parasite Plasmodium falciparum. In this manuscript, we expand on our earlier work
and report the results and the related analysis of a large-scale public BioGames experiment
toward diagnosis of malaria infected human RBCs, where binary responses from
approximately 1000 minimally trained individuals from 6 different continents that have
collectively diagnosed more than 1 million RBCs are combined, resulting in a diagnostic
accuracy level that is comparable to those of expert medical professionals examining the
same set of images (See Fig. 1).

We chose malaria for this public BioGames experiment since it is a disease that still afflicts
a large number of people around the globe, and is most prevalent in impoverished and
remote locations of the world. Furthermore, the binary nature of malaria diagnosis makes it
suitable for the proposed BioGames approach. According to the World Health Organization,
there were an estimated 174 million cases of malaria in 2010 resulting in 655 000 deaths,
where 81% of the cases and 91% of the deaths occurred in Africa.27 Furthermore,
approximately 86% of the global death toll has been in children under the age of 5.
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Toward diagnosis of malaria using BioGames, we have designed a computer game in which
a gamer is presented with multiple game frames containing a grid of RBC images (see Fig.
1). These images are taken from Giemsa stained thin blood smear samples using traditional
bright-field microscopes with 100× objective-lenses. The Giemsa stain typically causes the
malaria parasite to appear with a bluish colour, helping its diagnosis. Each gamer is given a
brief online tutorial of what malaria infection looks like and is asked to kill or bank what s/
he thinks are infected and healthy cells respectively in the frames that are presented
throughout the game. Within each frame, we also include a set of control cells, i.e., RBC
images whose labels (infected or healthy) are known to the game. The purpose of these
control images is to allow us to determine the performance and error rates of each individual
gamer as s/he is going through the frames. We use these performance numbers when
combining and weighing the responses coming from multiple gamers. Stated differently,
those gamers who are found to be highly accurate through these control images will be given
more weight in the decision process compared to other gamers who perform poorly during
the same games.

In our decoding strategy, we take a tele-communications analogy and start by assigning the
labels 0 and 1 to correspond to healthy and infected cells, respectively. Using the control

images, we compute the error probabilities associated with each gamer as  where

 is the label that gamer k has provided for the ith cell image, xi is the true label of the
image, and l ∈ {0,1}. Assuming we have M gamers and a prior , then we can
compute the maximum a posteriori probability (MAP)24 estimate zi for the ith RBC as:

(1)

Given that we do not necessarily know the parasitemia level of the RBCs presented to the
gamers, we assume equal prior probabilities for the infected and healthy cells, thus making
the first term in the maximisation argument in eqn (1) irrelevant. Based on this decoding
scheme, each gamer is essentially treated as a “repeater” in a noisy tele-communication
channel, and using a MAP scheme we estimate the correct label for each unknown image in
the game.24

We made our BioGames interface available to the public on May 3, 2012, and as of August
4, 2012 we have had more than 2150 gamers from 77 countries, who registered on our
servers generating more than 1.5 million individual cell diagnoses. Our image database
contained approximately 8500 individual RBC images taken with different optical
microscopes under various imaging conditions. Since labelling the full dataset (i.e., 8500
images) takes more time than what most gamers are willing to commit on average, it was
expected that not all the gamers will diagnose the full set of images. For the purposes of data
analysis and diagnosis of unknown RBC images, we only used the data collected from the
gamers who managed to at least label 100 cells. This threshold is mainly to have sufficient
statistics for estimating the gamer performance levels, but it also helps us to identify and
select the “committed” gamers, yielding a total of 989 committed gamers (from 63
countries) with varying accuracy levels as shown in Fig. 2.

The ground truth labels for the images used in BioGames were obtained by asking a set of 9
medical experts to digitally label them and then taking their consensus responses. Based on
this, we were able to quantify the individual performances of our gamers as well as their
collective MAP decision estimates. We monitored the performance of the individual gamers
using every 25th cell in this database as part of our control images. Fig. 3 shows the
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deviation of these accuracy estimates (based on control images) from the “true” accuracies
of the gamers (based on all 8500 images). The distribution of these deviations is super-
Gaussian and is concentrated close to zero, which implies that our control images (even
though they are quite rare within the entire image set) provide sufficiently accurate sampling
to represent each gamer’s overall error probability.

Combining the responses of these 989 gamers using MAP estimation,24 we were able to
achieve an accuracy of 98.13% when compared to the ground truth data (generated by the
consensus of 9 medical experts). This number on its own, however, can be misleading due
the fact that there are significantly more uninfected cells in the database as compared to
infected ones (which is naturally expected since typical parasitemia for a malaria infected
patient is less than 5%). Some other important metrics include: the Positive Predictive Value
(PPV), the Negative Predictive Value (NPV), and the False Positive Rate (FPR) (see Fig. 4
for definitions). In our BioGames experiments, the PPV was 76.85%, meaning that more
than three quarters of the cells that were labelled as infected, were indeed infected. We also
achieved an NPV of 98.78%, such that almost all of the cells labelled as negative are
correctly labelled as such.

In Fig. 4 we also report the change of the above discussed performance metrics as a function
of the effective crowd size, which we define as the minimum number of times that all of the
cells in the dataset have been diagnosed by the gamers. Since not all of the gamers
diagnosed the complete set of images, the maximum effective crowd size that was achieved
in our public BioGames experiment was 51 with some cells being diagnosed up to 450 times
due to the overlap that existed among the ranges of cells diagnosed by different gamers. It is
important to note that both the overall accuracy and the PPV are increasing as the effective
size of the crowd increases. Furthermore, as desired, the FPR is consistently decreasing with
larger crowd sizes (see Fig. 4). These experimental results validate the efficacy of our
BioGames approach toward obtaining highly accurate diagnostics results and image labels
with large-enough crowds of minimally trained individuals, that are physically scattered
across several continents.

We should also emphasise that this distributed BioGames platform can be extended to
scenarios where a binary diagnosis is no longer the case. It is possible to systematically
combine results of n-ary decisions in an optimal fashion to produce a more accurate overall
result/decision. However, a possible issue in such a more complicated n-ary scenario is the
increased number of crowd decisions that may be required for accurate diagnosis, making
certain tasks (especially the ones that demand real-time decisions) impractical for crowd-
sourcing purposes.

Looking forward, the BioGames concept could help us better manage the Big Data problem
emerging with the introduction of next generation imaging, sensing and lab-on-a-chip
devices which all benefit from ubiquitous digital communications technologies (e.g., mobile
phones, tablet PCs, etc) for wide-scale generation of massive amounts of biomedical and
environmental data, even in resource poor settings and remote locations. Through intelligent
crowd-sourcing and digital gaming strategies, we can potentially harness the power of
human crowds and their innate visual pattern recognition and learning abilities to better sort,
classify, diagnose, and manage this emerging Big Data.

Our grand vision is to further develop this BioGames interface into a generic telemedicine
and telepathology platform, further extending it to other medical diagnostics tasks. In
addition to generating remote biomedical diagnosis through engaging games, the presented
platform can serve as an information hub for the global healthcare and environmental
research community. This digital hub will allow for the creation of very large databases of
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microscopic images that can be used for the purposes of training experts and automated
computer vision algorithms. It can also serve as an analysis tool for health-care and
environment related policy makers toward better management and/or prevention of
epidemics, pandemics and disasters.

In conclusion, here we described how the task of binary image-based diagnosis can be
crowd-sourced to minimally trained individuals and yet yield accurate results. We reckon
that under many circumstances this methodology is more practical than the use of automated
computer algorithms for the same purpose since the human visual system offers a very low-
cost and highly superior pattern recognition platform for such image understanding tasks.
We demonstrated our BioGames results for images taken with traditional bright-field
microscopes, but given that the task of diagnosis is independent of the imaging modality, as
long as enough detail and resolution is present in the image, the proposed approach is
applicable to other imaging modalities. This makes it a viable approach for managing the
large quantities of data that will be created by our next generation lab-on-a-chip imaging and
sensing devices that are rapidly emerging for especially point-of-care diagnostics and
telemedicine applications through ubiquitous digital communications platforms such as
mobile phones, tablet PCs etc.
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Fig. 1.
Left: The designed game can be played on multiple platforms. The user is asked to kill or
bank infected and healthy cells, respectively. Right: Geographic locations of gamers that
have generated the diagnoses so far; each balloon indicates an individual gamer. A blue
balloon indicates a gamer with more than 100 submitted cell diagnoses, and a red balloon
indicates a gamer with less than 100 submitted cell diagnoses. Since its public launch in
May 2012, we have had more than 2,150 gamers from 77 countries, who registered on our
servers generating more than 1.5 million individual cell diagnoses.
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Fig. 2.
Histogram of the overall accuracy levels of the 989 individual gamers who managed to label
more than 100 cell images.
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Fig. 3.
Distribution of the deviation from the true accuracies of those estimated using the control
images; the mean is at −0.014 and the variance is 0.026. The green curve is that of a Normal
distribution with the same variance as the deviations and a mean of 0.
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Fig. 4.
The performance results obtained through combining responses of 989 gamers. The
“effective crowd size” is the minimum number of times that every cell in the dataset has
been diagnosed. Accuracy ≜ (TP + TN)/(TP + TN + FP + FN), Sensitivity ≜ TP/(TP + FN),
Specificity ≜ TN/(TN + FP), PPV ≜ TP/(TP + FP), NPV ≜ TN/(TN + FN), FPR ≜ FP/(TN
+ FP), where TP, TN, FP, and FN correspond to the number of true positive, true negative,
false positive, and false negative labels respectively.
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