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This paper on the fluoroquinolone resistance epidemiology stratifies the data according to the different prescription patterns by
either primary or tertiary caregivers and by indication. Global surveillance studies demonstrate that fluoroquinolone resistance
rates increased in the past years in almost all bacterial species except S. pneumoniae and H. influenzae, causing community-
acquired respiratory tract infections. However, 10 to 30% of these isolates harbored first-step mutations conferring low level
fluoroquinolone resistance. Fluoroquinolone resistance increased in Enterobacteriaceae causing community acquired or healthcare
associated urinary tract infections and intraabdominal infections, exceeding 50% in some parts of the world, particularly in
Asia. One to two-thirds of Enterobacteriaceae producing extended spectrum β-lactamases were fluoroquinolone resistant too.
Furthermore, fluoroquinolones select for methicillin resistance in Staphylococci. Neisseria gonorrhoeae acquired fluoroquinolone
resistance rapidly; actual resistance rates are highly variable and can be as high as almost 100%, particularly in Asia, whereas
resistance rates in Europe and North America range from <10% in rural areas to >30% in established sexual networks. In general,
the continued increase in fluoroquinolone resistance affects patient management and necessitates changes in some guidelines, for
example, treatment of urinary tract, intra-abdominal, skin and skin structure infections, and traveller’s diarrhea, or even precludes
the use in indications like sexually transmitted diseases and enteric fever.

1. Introduction

Nalidixic acid—a byproduct of chloroquine synthesis—was
marketed during the 1960s for oral treatment of urinary
tract infections and is still available by prescription. Several
quinolones were invented since then, including flumequine
bearing a fluorine atom at position C-6, which was active
against nalidixic acid resistant Enterobacteriaceae. However,
development of newer fluoroquinolones did not progress sig-
nificantly till it was demonstrated that substitutions at the C-
6 and C-7 positions improved antibacterial activity and phar-
macological properties [1]. Since then, fluoroquinolones
have become established for treatment of urinary, res-
piratory, gastrointestinal, urogenital, intra-abdominal, and
skin/skin structure infections in outpatients and hospitalised
patients. Despite millions of prescriptions in the first two
decades of their use, the emergence of quinolone resistance
during treatment was uncommon except in Staphylococcus
aureus particularly in methicillin-resistant S. aureus and

P. aeruginosa. Resistance to fluoroquinolones emerged rapid-
ly in these two species, predominantly due to clonal spread
among nursing home residents and immunocompromised
patients [2]. However, since the mid 1990s quinolone
resistance started to increase in almost all Gram-positive
and Gram-negative species and minimal concentrations
(MICs) inhibiting 90% of the strains studied varied species
specifically over a broad range from≤0.015 up to≥128 mg/L
[3–5] thus indicating that resistant subpopulations were fre-
quent already two decades ago but passed almost unnoticed.
Recent surveillance studies demonstrate that resistance rates
continue to increase thus affecting patient management and
necessitating a change in some current treatment guidelines
[6, 7], or even precluding the use of fluoroquinolones in
certain indications as will be discussed below [8, 9].

This paper summarizes data from local, national, inter-
national, and global surveillance studies of antimicrobial
resistance combining the complementary approaches of
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routine surveillance (the active investigation of results gen-
erated in the course of routine clinical care) and targeted
surveys (one-time or periodic study protocols to address
specific scientific or public policy needs not adequately
addressed by routine diagnostic test results). Data generated
in the course of global, longitudinal surveillance studies
are complemented with national and regional data. Only
those studies using standardized test methods and defined
susceptibility-/resistance-criteria according to national—or
preferably CLSI—(formerly NCCLS) breakpoint definitions
were selected. Many articles quoted in this paper originate
from the author’s files; others were chosen from searches
on Pubmed. Articles summarized in recent reviews were
excluded from this synopsis.

Large global surveillance studies comprising centers in
Asia, Asia/Pacific region, Japan, North, Central, and South
America, and the EU have the strength that large numbers
of pathogens are sampled and that standardized methods
of data collection, susceptibility testing and data interpre-
tation are used. Therefore, surveillance programmes like
SENTRY (a global, longitudinal study on the susceptibility of
pathogens causing blood-stream infections, community-and
hospital acquired RTIs, skin and soft tissues, and UTIs, spon-
sored by Bristol Meyers Squibb, recently switched to a study
on the susceptibility of Gram-positive pathogens to dapto-
mycin and comparators), MYSTIC (meropenem yearly sus-
ceptibility test information collection, a global, longitudinal
surveillance study designed to evaluate the prevalence and in-
vitro antimicrobial susceptibility of isolates from intensive
care units, neutropenia units, cystic fibrosis units, or non-
specialist centres where meropenem is used, sponsored by
Astra Zeneca), SMART (study monitoring antimicrobial
resistance trends, a study on the susceptibility of intra-
abdominal aerobic and anaerobic clinical isolates, spon-
sored by Merck), PROTEKT (prospective resistant organism
tracking and epidemiology for the ketolide telithromycin,
sponsored by Aventis Pharmaceuticals), GLOBAL (global
landscape on the bacterial activity of levofloxacin) and the
“Alexander Project” (an international study that began in
1992 and involved initially 6, later 27 countries, sponsored by
GlaxoSmith Kline), data from major European programmes
(e.g., European Antimicrobial Resistance Surveillance System
(EARSS); ECO. SENS (E. coli sensitivity)) and national pro-
grammes (e.g., NAUTICA (North American Urinary Tract
Infection Collaborative Alliance; the National Nosocomial
Infections Surveillance System (NNIS)/National Healthcare
Safety Network (NHSN) established by the Centers for
Disease Control and Prevention in the US) are used as
one major source of information. The second source of
information constitute national or regional studies meeting
the above mentioned criteria. The scope and design as well
as the strengths and weaknesses of surveillance studies have
been critically reviewed previously [10–12].

2. Mode of Action and
Mechanisms of Resistance

2.1. Interaction with Bacterial Type II Topoisomerases. Flu-
oroquinolones are the only class of antimicrobial agents

in clinical use that are direct inhibitors of bacterial DNA
synthesis. Fluoroquinolones inhibit two bacterial enzymes,
DNA gyrase and topoisomerase IV, which have essential
and distinct roles in DNA replication. The quinolones bind
to the complex of each of these enzymes with DNA; the
resulting topoisomerase-quinolone-DNA ternary complex
subsequently leads to the generation of double-stranded
breaks in DNA and blocks progress of the DNA replication
enzyme complex. Ultimately, this action results in damage to
bacterial DNA and bacterial cell death [13–16].

Resistance to quinolones occurs by mutation in chro-
mosomal genes that encode the subunits of DNA-gyrase
and topoisomerase IV (altered target mechanism), and that
regulate the expression of cytoplasmic membrane efflux
pumps or proteins that constitute outer membrane diffusion
channels (altered permeation mechanism). Several excellent
and comprehensive reviews have been published summa-
rizing the current knowledge about the mode of action
and resistance mechanisms of fluoroquinolones; the reader
is kindly referred to these publications for further reading
(e.g., [16–21]). Furthermore, reduced target expression has
been described as another mechanism leading to low level
quinolone resistance [22].

2.2. SOS Response and Autoinduction of Fluoroquinolone Re-
sistance. Repair mechanisms are activated as a consequence
of inhibition of bacterial type II topoisomerases. Any DNA-
damage triggers the production of various repair proteins by
activating an SOS gene network [23–27]. The SOS system
is composed of more than 40 genes and is controlled by
regulatory proteins RecA and LexA. RecA provides a signal
for induction of SOS response, while LexA functions as
a repressor; binding the gene repressor LexA unmasks its
autoproteolytic activity, so that the 40 SOS genes are no
longer repressed. The LexA binding site is located in the
sequence upstream from qnrB (but not qnrA or qnrS), so
that qnrB is regulated by the SOS-system, too, in response to
DNA damage [28]. In addition, it has been shown recently
that the SOS response promotes qnrB expression [29].
The peptide QnrB protects bacterial DNA-topoisomerases
from quinolone inhibition and provides low-level quinolone
resistance (see below Section 2.3. “plasmid mediated flu-
oroquinolone resistance”). The Qnr-determinants facilitate
the emergence of high-level resistance. In E. coli, this latter
effect depends on the increased mutation ability conferred
by the nonessential polymerases Pol II, Pol IV, and Pol V
on LexA-cleavage-mediated derepression of their respective
genes (polB, dinB, and umuDC; 106). Thus, qnrB-mediated
quinolone resistance and increased mutation ability are
two events triggered by the same signal, namely, the SOS
response. Quinolone resistance gene qnrB is upregulated by
ciprofloxacin in a RecA/LexA-dependent manner, so that
quinolone resistance development is an integral part of their
mode of action in qnrB harboring bacteria. Ciprofloxacin
resistant mutants could be elicited much more frequently
in LexA positive wild-type strains than in LexA mutant
strains [30, 31]. Vice versa, preventing LexA cleavage renders
bacteria unable to evolve resistance to fluoroquinolones
[30, 31]. Furthermore, SOS response induces persistence to
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fluoroquinolones [32]. These results support the notion that
fluoroquinolones are not only mere selectors of resistant
variants but that bacteria themselves play an active role in
the mutation of their own genomes. Quinolone resistance is
not only acquired via target site mutations, but also via the
SOS system by derepression of genes whose products increase
mutation rates. In general, interference with bacterial stress
response may reduce the emergence of resistance [33].
Furthermore, it was shown recently that ciprofloxacin stim-
ulated SOS independent recombination of divergent DNA
sequences in E. coli. Thus, fluoroquinolones increase genetic
variation via a second, SOS independent mechanism [34].
This mechanism, too, may favour acquisition, evolution, and
spread of resistance determinants.

Not only DNA damaging agents like quinolones trigger
the SOS response. Beta-lactams interfering with penicillin
binding protein 3 [35, 36], zidovudine or trimethoprim [37],
and rifampin [30] activate the SOS gene network as well.
These data demonstrate that induction of SOS response by
any of these drug classes facilitates persistence and evolution
of resistance in general. Thus, it may be speculated that these
agents, too, may affect quinolone activity and/or resistance
development via the SOS promoted expression of qnrB.
Furthermore, the SOS system contributes to the spread of
antibiotic resistance by promoting horizontal dissemination
of antibiotic-resistance genes [38] or mutations.

2.3. Plasmid Mediated Fluoroquinolone Resistance. The gen-
etic information for target site or efflux resistance mech-
anisms is commonly chromosomally encoded. However,
the emergence of plasmid-mediated and thus transferable
fluoroquinolone resistance has also been reported; several
mechanisms are known: 1. Qnr, 2. Aminoglycoside acetyl-
transferase AAC(6′)-Ib-cr, 3. OqxAB, QepA [39–44].

The emergence of plasmid-mediated quinolone resis-
tance was first found in strains of Klebsiella pneumoniae in
one region of the United States in 1998 [45] and shown to
be due to a member of the pentapeptide repeat (PPR) family
of proteins Qnr (later named QnrA). In the following years,
several distantly related plasmid mediated Qnr determinants
were described in Enterobacteriaceae (QnrB, QnrC, Qnr
D, QnrS) [46, 47]. They have been identified worldwide
and are almost always associated with the production of
expanded spectrum β-lactamases [48–50]. Qnr-like peptides
(sharing an amino-acid identity with QnrA of 16 to 22%)
have been found in the Gram-positive bacteria Mycobac-
terium tuberculosis, M. smegmatis, and M. avium [51], E.
faecalis [52], and in E. faecium, Listeria monocytogenes, C.
perfringens, C. difficile [53]. Recently, a new chromosomally
encoded quinolone resistance gene of the PPR family has
been identified in Stenotrophomonas maltophilia and has thus
been named Smqnr [54]; a smaqnr gene has been found in
Serratia marcescens [55].

Qnr interacts with DNA-gyrase and topoisomerase IV to
prevent quinolone inhibition [39, 56]. Qnr protein causes
nalidixic acid resistance and reduced susceptibility to
or low-level fluoroquinolone resistance [56]. Qnr-genes
have been found in ciprofloxacin-susceptible isolates as
well as quinolone resistant isolates, suggesting that their

presence promotes higher level resistance due to chromoso-
mal mutation, as has been shown in the laboratory. There-
fore, the presence of qnr genes in clinically relevant species
of both, Gram-positive and Gram-negative bacteria may
foster quinolone resistance development. Furthermore, qnrA
and qnrB genes are usually integrated into integrons which
harbor other antibiotic resistance genes such as β-lactamases
or aminoglycoside inactivating enzymes. Although qnrS-
genes are not harbored by integrons, they are associated with
transposons containing TEM-1 type β-lactamases [57]. Con-
sequently, the association of genes encoding for quinolone
resistance and resistance to other drug classes like β-lactams
and aminoglycosides favour the selection and dissemination
of fluoroquinolone resistant strains by chemically unrelated
drug classes, and vice versa, of β-lactam or aminoglycoside-
resistant strains by fluoroquinolones (the close correlation
between extended spectrum β-lactamases (ESBL) produc-
tion and quinolone resistance is discussed in the chapters on
fluoroquinolone resistance).

Qnr genes were also found on the chromosome of an
environmental water bacterium, Shewanella algae. Other qnr
homologs have been found in the genome sequences of
several Vibrio spp. and Photobacterium profundum suggesting
that water-borne Vibrionaceae may have been the source
of and may constitute a reservoir for the qnr genes [58–
60]. Recently it was demonstrated in vitro that the plasmid
borne Shewanella algae qnr gene could be transferred to
Enterobacteriaceae [58].

Another plasmid-encoded quinolone resistance deter-
minant was identified, a variant of the aac(6 ′)Ib gene
encoding an aminoglycoside acetyltransferase. The bifunc-
tional aminoglycoside and fluoroquinolone active variant
AAC(6′)-Ib-cr catalyzes acetylation of both drug classes [61].
The variant enzyme has acquired the ability to acetylate
ciprofloxacin and norfloxacin and reduces ciprofloxacin’s
activity fourfold [62, 63]. Moxifloxacin and levofloxacin are
not acetylated due to the absence of a piperazinyl substituent
at position C-7. Interestingly, the first ciprofloxacin resistant
clinical isolate (S. marcescens) was isolated from a patient
treated in the pre-quinolone era with a β-lactam and
an aminoglycoside; the pre- and post therapy MICs of
ciprofloxacin were 0.06 and 4 mg/L, respectively. This strain
produced an aminoglycoside acetyltransferase and showed
changes in the outer-membrane composition [64]. AAC(6′)-
Ib-cr may be more widespread than Qnr-determinants. Both,
Qnr- and AAC(6′)-Ib-cr-production are associated with the
ESBL production, thus, representing a second mechanism of
co-selection of drug-resistance due to exposure to chemically
unrelated agents.

Most recently, a third type of plasmid-mediated quino-
lone resistance has been identified: the quinolone efflux
pumps OqxAB and Qep, [42–44, 65, 66]. The OqxAB-
and QepA-proteins confer resistance to hydrophilic fluoro-
quinolones like norfloxacin, ciprofloxacin, and enrofloxacin,
causing a 32- to 64-fold increase in MICs [65–68]. QepA
extrudes in addition to quinolones a narrow range of agents
such as erythromycin, ethidium bromide, and acrifli-
avine; OqxAB exports a wider range of agents like ethid-
ium bromide, tetracyclines, chloramphenicol, trimethoprim,
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olaquindox, and the desinfectants like triclosan [57, 68, 69].
The problem is that the qepA gene and an aminoglycoside
ribosome methyltransferase are part of a transposable ele-
ment [66], so that there is a potential of selection of QepA
determinants by aminoglycosides and vice versa amino-
glycoside resistance by quinolones; the same holds true for
aac(6′)Ib gene mediated resistances. Extrusion of chemically
unrelated agents by efflux-pumps represents a third mech-
anism of cross-resistance. In conclusion, fluoroquinolone
resistance can emerge even in the absence of exposure to
this drug class as several coselection mechanisms favour the
emergence of quinolone resistance.

Additional, unknown mechanisms of quinolone resis-
tance must exist as known chromosomally-and plasmid-
mediated resistance mechanisms plus the presence of the
multidrug efflux pump AcrAB were detected in just 50–70%
of high-level quinolone resistant E. coli clinical isolates with
MICs up to 1,500-fold higher than expected [70].

2.4. Additional Resistance Mechanisms. Any antibacterial
agent interacting with an intracellular target must traverse
the bacterial cell-wall and cytoplasmic membrane to reach
the target. Once taken up, most antibacterials are actively
effluxed. Therefore, fluoroquinolones, too, are affected by
permeation barriers and efflux pumps, either in association
with target modifications or on their own.

As mentioned above, many Gram-positive and Gram-
negative fluoroquinolone-resistant mutant strains do not
show any mutation in the quinolones resistance determining
region (QRDR). For example, 70% of E. coli mutants recov-
ered from besifloxacin selection plates were characterized by
the absence of classical QRDR mutations [71] and 61% high-
level ciprofloxacin-resistant isolates of E. coli accumulated
lower levels of ciprofloxacin than the wild type, in addition to
the gyrA mutations found in all of them [72]. Furthermore,
chemically unrelated substances like cyclohexane, salicylate,
and tetracycline affected fluoroquinolone susceptibilities of
E. coli, too; 21 of 57 high level fluoroquinolone-resistant
clinical isolates of E. coli showed tolerance to cyclohexane,
suggesting an elevated broad spectrum efflux activity [73].
Multiple antibiotic resistance (mar) genes cause an efflux
of a variety of chemically unrelated compounds including
different drug classes of antibacterials [74] and are affected
by a variety of chemically unrelated substances. The mar
genes regulate accumulation and thus intracellular concen-
trations of quinolones by altering the expression of porins
and efflux pumps [72, 74]. Another efflux pump, AcrAB,
extrudes quinolones out of the bacteria. The pump is partly
controlled by the mar gene and appears to be the major
mechanism of resistance for mar mutants [75]. Salicylate
and tetracycline induce MarA production, a positive reg-
ulator of acrAB transcription, so that salicylate stimulates
fluoroquinolone resistance selection. Resistance may be seen
with mar expression alone or in combination with type II
topoisomerase mutations [74]. The combination of AcrAB
overexpression with topoisomerase mutations causes high
level fluoroquinolone resistance; over 60% of high-level
ciprofloxacin-resistant isolates had an increased production
of AcrA [76–78].

Additional nontopoisomerase resistance mechanisms
that are not under mar control can change quinolone resis-
tance patterns. The nfxB gene codes for an altered outer
cell membrane protein F, thereby decreasing quinolone entry
into the cell [79]. In addition, soxRS gene products, which are
involved in bacterial adaptation to superoxide stress, affect
fluoroquinolone activity, too [73].

Various combinations of target enzyme alteration, dim-
inished antibiotic accumulation, and efflux are often seen
in fluoroquinolone-resistant E. coli, other Enterobacteriaceae
and nonfermenters [72, 80]. Cross-resistance between fluo-
roquinolones and antibacterials of chemically unrelated drug
classes is associated with the increased expression of efflux
pumps because of their limited substrate specificity. For
example, MexAB confers resistance to nonfluorinated and
fluoroquinolones, tetracycline, and chloramphenicol, Mex
CD confers resistance to fluoroquinolones, erythromycin,
trimethoprim, and triclosan, Mex EF confers resistance
to the latter plus chloramphenicol, imipenem, and tri-
closan, and Mex XY confers resistance to fluoroquinolones,
erythromycin, and aminoglycosides. Several comprehensive
reviews have summarized the impact of fluoroquinolone-
extrusion and resistance [80–83]. Consequently, a fluoro-
quinolone resistant or even multidrug-resistant phenotype
can easily be selected by an exposure to a broad range
of chemically unrelated drug classes, thus, representing the
fourth type of cross-resistance.

These examples illustrate the complexity of fluoroquin-
olone resistance mechanisms, selection by fluoroquinolones
and coselection of resistance by chemically unrelated classes
of antibacterials and antiseptics.

3. Fluoroquinolone Resistance Epidemiology

3.1. Urinary Tract Infections. The first quinolone used clin-
ically, that is, nalidixic acid, was classified as an “urinary
antiseptic;” previous nonfluorinated quinolones were almost
exclusively used for treatment of lower urinary tract infec-
tions (UTIs). The fluorinated quinolones are characterized
by more marked antibacterial activity against uropathogens,
so that ciprofloxacin resistant E. coli strains isolated from
female outpatients were almost nonexistent (<1%) till the
mid-1990s; resistance to ciprofloxacin increased slowly from
1.2% in 1998 to 2.5% in 2001 [84]. The same holds
true for uropathogenic E. coli isolated from male and in-
patients, respectively, with a trend towards higher resistance
rates among elderly patients [85, 86]. However, the NAU-
TICA (North American Urinary Tract Infection Collabo-
rative Alliance) study revealed that ciprofloxacin resistance
increased to 5.5% in 2004 [87]. Likewise, uropathogens
studied between the years 1996 and 2009 in the province
of British Columbia demonstrated an increase in fluoro-
quinolone resistance. The resistance rates in E. coli and
K. pneumoniae increased from <2% in 1996 to ≥20% in
2009; the resistance rates of fluoroquinolones for P. mirabilis
remained almost constant throughout the years at ≤2%.
Enterococci demonstrated frequently resistance against flu-
oroquinolones although resistance rates decreased between
2002 and 2009 [88].
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3.1.1. Community Acquired Urinary Tract Infections. Data
summarized in Table 1 demonstrate that fluoroquinolone
resistance ranges from 2.2% to 69% for strains isolated from
patients with uncomplicated, community acquired UTI
(CAUTI) and even up to 98% for strains from patients with
complicated CAUTIs. Likewise, ESBL production ranged
from 2.6% to 100%. Both, fluoroquinolone resistance and
ESBL production were highest in the Asia-Pacific region and
moderate to low in Europe and North America. The clonality
of the isolates has rarely been examined, although high num-
bers of ESBL producers may indicate that a few clones
may predominate amongst the isolates studied (see below,
Section 3.1.3). Furthermore, data summarized in Table 1
indicate that on the one hand the relative numbers of
ESBL producers per centre is high whereas on the other
hand the total numbers of isolates is still quite small.
For example, 100% of the ESBL positive strains were
fluoroquinolone-resistant; but this corresponds to 11.8% of
the total number of isolates studied [89]. The high relative
figures of fluoroquinolone resistant ESBL-producers—
which are often mentioned in the abstract instead of the total
numbers—may mask the prevalence of fluoroquinolone
resistance in uropathogens.

The risk for acquisition of CAUTIs caused by ESBL-
positive E. coli and the distribution of the ESBL enzyme
types was determined in a prospective cohort study [90]. A
total of 510 patients with CAUTIs caused by Gram-negative
bacteria were included in the study. ESBL producers were
detected in 6.3% of uropathogenic E. coli isolated from
uncomplicated UTIs and 17.4% of E. coli isolates from
complicated UTIs (P < 0.001), most of which (90.2%) were
found to harbour CTX-M-15. According to multivariate
analysis, more than three urinary tract infection episodes in
the preceding year (OR 3.8, P < 0.001), use of a β-lactam
antibiotic in the preceding 3 months (OR 4.6, P < 0.001)
and prostatic disease (OR 9.6, P < 0.004) were found to
be associated with ESBL positivity. The percentages of iso-
lates with simultaneous resistance to trimethoprim-sulpha-
methoxazole, ciprofloxacin, and gentamicin were found to
be 4.6% in the ESBL negative group and 39.2% in the ESBL
positive group (P < 0.001) [90].

Comprehensive reviews of the worldwide emergence of
ESBL producing Enterobacteriaceae indicate that 1st their
numbers increase continuously, 2nd ESBL production is
diverse, scatters geographically, and originates from both,
community associated-as well as healthcare associated infec-
tions [91–93], 3rd most of the community isolates are multi-
resistant, [92, 94], 4th many isolates are often genetically
related and clonal spread has been reported frequently [95–
101], 5th the pandemic multiresistant, community associ-
ated clone ST 131 is highly prevalent and contributes to 30%
to 60% to all fluoroquinolone resistant E. coli [93, 102].

Clearly, the continuously increasing prevalence of ESBL-
producing Enterobacteriaceae isolated from out-patients is
alarming. However, several studies indicate that the peva-
lence of ESBL-producing, fluoroquinolone-resistant CAUTI-
pathogens may be low. The ECO. SENS (E. coli sensitivity)
project is a Pan-European survey of the antimicrobial sus-
ceptibilities of pathogens from uncomplicated UTIs. Data

published in 2003 demonstrate that overall ciprofloxacin
resistance in the 2,478 E. coli strains collected amounted to
2.3%, ranging from 0% in Austria and Sweden to 5.8% and
14.7% in Portugal and Spain, respectively. Ciprofloxacin-
resistance rates in P. mirabilis, Klebsiella spp. and other
Enterobacteriaceae were 2.1%, 1.0%, and 0.8%, respectively
[103]. The ARESC (Antimicrobial Resistance Epidemiologi-
cal Survey on Cystitis) study revealed that in uropathogens
collected in nine European countries and Brazil from 2003
to 2006 ciprofloxacin resistance in E. coli was recorded in
>10% of all the isolates in Brazil, Spain, Italy, and Russia; in
the remaining European countries, ciprofloxacin resistance
ranged from 1.4% in France to 6.7% in Poland [104–
106]. As national parts of the ARESC study, 335 and 650
uropathogens, respectively, were isolated most recently from
German and Spanish patients with uncomplicated cystitis;
fluoroquinolone resistance amounted to 7.7% and 11.9%,
respectively [107, 108], thus, indicating that fluoroquinolone
resistance did not increase as compared to the previous study
period. ESBL production was neither specified in the ECO.
SENS nor the ARESC study.

3.1.2. Healthcare Associated Urinary Tract Infections. Fluoro-
quinolone resistance ranged from 6.3% to 62% in Gram-
negative strains and 20% and 100% of the methicillin-sus-
ceptible S. aureus (MSSA) and methicillin-resistant S. aureus
(MRSA), respectively, as well as 59% of the Enterococci
isolated from patients with complicated, healthcare asso-
ciated UTI (HAUTI) (Table 1). In general, uropathogens
from patients admitted to tertiary care hospitals are less
fluoroquinolone susceptible than those from out-patients.
Clearly, patients admitted to tertiary care hospitals suffer
from chronic diseases, urologic surgery, recurrent infectious
diseases necessitating antibacterial therapy prior to the actual
study, and so forth, so that one or several risk factors favor
development of resistance. High rates of fluoroquinolone
resistance were found in patients with HAUTIs evaluated in
the emergency department [109, 110] and in nursing home
residents [111]. Horizontal transmission of one, or few pre-
dominating clone(s) in nursing home residents is frequent
[2].

3.1.3. Association between Fluoroquinolone Resistance and
Production of Extended Spectrum β-Lactamases. Although
production of extended spectrum β-lactamases (ESBLs) was
not analysed in these studies, it may well be that the increase
in both, fluoroquinolone resistance and ESBL-production,
are closely associated [112]. ESBLs gained prominence and
started to spread among uropathogens in North America
at the time when these surveillance studies have been per-
formed.

Since the early 1990s, E. coli isolates that produce CTX-
M type ESBLs have emerged as a serious cause of UTIs
in the community [113–116]. E. coli strains that produce
CTX-M ESBLs, primarily found in community sources, are
becoming widely prevalent worldwide [95–97, 113]. For
example, in Spain a threefold rise in community-onset UTIs
caused by ESBL-producing E. coli over a 3-year period from
0.47% (17 of 3,617 isolates) in 2000 to 1.7% (44 of 2,600
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isolates) in 2003 was reported, 31% of which (or 0.54%
of the total isolates) were resistant to ciprofloxacin [117].
A nationwide study performed in Spain in 2000 revealed
that 93% of the ESBL-producing K. pneumoniae strains were
isolated from inpatients, whereas 51% of ESBL-producing
E. coli strains were isolated from outpatients [118]. Risk
factors for the acquisition of ESBL-producing E. coli in
non hospitalised patients with uncomplicated urinary tract
infections (uUTIs) were diabetes mellitus (odds ratio (OR) =
5.5), previous fluoroquinolone use (OR = 7.6), previous
hospital admission (OR = 18.2), and older age in male
patients (OR = 1.03) [119]. A prospective cohort study in
510 patients with CAUTIs caused by Gram-negative bacteria
revealed that ESBL producers were detected in 6.3% of
uropathogenic E. coli isolated from uncomplicated UTIs
and 17.4% of E. coli isolates from complicated UTIs (P <
0.001), most of which (90.2%) were found to harbour CTX-
M-15 [19]. According to multivariate analysis, more than
three urinary tract infection episodes in the preceding year
(OR 3.8, P < 0.001), use of a β-lactam antibiotic in the
preceding 3 months (OR 4.6, P < 0.001) and prostatic
disease (OR 9.6, P < 0.004) were found to be associated
with ESBL positivity. The percentages of isolates with simul-
taneous resistance to trimethoprim-sulphamethoxazole,
ciprofloxacin, and gentamicin were found to be 4.6% in the
ESBL-negative group and 39.2% in the ESBL-positive group
(P < 0.001) [90]. As the CTX-M type is most common
among the CAUTI pathogens it is conceivable that many
of these isolates may be genetically related. More than
two thirds of unduplicated E. coli strains isolated from
patients admitted to nine different Portuguese hospitals
in three different regions were ESBL producers; all of
the CAUTI pathogens produced the CTX-M-15 type β-
lactamase. Three quarters of the ESBL producers belonged
to one genetic cluster, indicating countrywide dissemination
of one single clone [120]. An analysis of selected E. coli
strains isolated in eight European countries during 2003 to
2006 from patients with uncomplicated cystitis displaying
reduced ciprofloxacin susceptibility revealed that 55 different
biochemical profiles could be distinguished; although this
finding indicates a substantial heterogeneity, about one third
of all isolates belonged to two clonal groups O25:H4-ST
131 and O15:K52:H1. ESBL production was detected in
8.1% of all isolates, CTX-M-15 being the most common;
strains belonging to the two predominant clonal groups had
ciprofloxacin MICs of 16 and ≥32 mg/L, respectively [91,
102, 121]. Point source dissemination of ESBL-producers
is frequent in patients with uUTIs. E. coli ST 131 was the
most predominant group and accounted for 23.1% and
46%, respectively, of ESBL-positive isolates overall [91,
102]. Nearly all ST 131 isolates were ciprofloxacin resistant.
The intercontinental pandemic spread of the ciprofloxacin-
resistant E. coli O25:H4:ST 131 clonal group producing
CTX-M-15 has been described worldwide in hospital and
community settings [122, 123]. The sudden worldwide in-
crease of ESBL-producing E. coli is mostly due to the single
CTX-M-15 positive clone ST131; foreign travel to high-
risk areas, such as the Indian subcontinent, play in part a
role in the spread of this clone across different continents

[124]. The isolation of a multidrug-resistant E. coli strain of
sequence type ST 131 from an 8-month old girl with severe
septic arthritis and contagious osteomyelitis and her healthy
mother demonstrates that within household transmission
contributes to the dissemination of the ST 131 clonal group,
too [125]. Furthermore, plasmid-mediated fluoroquinolone
resistance determinants including CTX-M-15 were common
in areas of high fluoroquinolone consumption [126] and in
nursing home residents in whom a single multiresistant clone
spread [127].

3.1.4. Risk Factors for and Impact of Prescribing Habits on
Emergence of Fluoroquinolone Resistance. The impact of
prescribing of ciprofloxacin on the emergence of fluoro-
quinolones resistance in uropathogenic E. coli was analysed
in 72 general practices in the west of Ireland. Over a 4.5 year
period (from April 2004 to September 2008) susceptibility
and prescribing data were collected and analyzed by a mul-
tilevel model with ciprofloxacin-resistance as outcome and
prescribing as predictor. The analysis revealed that in “mean”
practices with one prescription per month ciprofloxacin
resistance was low (3%) whereas in practices with 10
prescriptions per month ciprofloxacin resistance amounted
to 5.5% [128]. Analogous effects were noted in patients with
CAUTI monitored over a 6-year period in Denver, Colo, USA
[129]. In 1999, the initial therapy of uUTI was switched
to levofloxacin. The prescriptions increased from 3.1 to
12.7 per 1,000 visits; in parallel, fluoroquinolone resistance
increased from 1% to 9%. Risk factors for the acquisition
of fluoroquinolone resistant E. coli were hospitalization (or
for each week of hospitalization = 2.0), and levofloxacin
use winthin the previous year (OR 5.6). Similar risk factors
were identified by others, too [130–134]. Additional factors
favoring the selection of resistant uropathogens are poor
adherence to treatment guidelines [135] and dispensing of
antibacterials without prescription [136].

Another aspect is worth mentioning and relevant for
prescribing policies, hygiene strategies, and resistance statis-
tics. A study on the evolution of quinolone resistance in
Barcelona, Spain from 1992 to 1997 revealed that the pre-
valence of fluoroquinolone resistance in the feces of healthy
people was unexpectedly high, 24% in adults and 16% in
children, although not used in the pediatric population
[137, 138]. The carriage rate was higher than the fluoro-
quinolone resistance rates among patients with healthcare
and community acquired infections (8.3% and 9% in 1992
versus 18% and 17% in 1996, resp.). Increasing fluoro-
quinolone resistance rates in commensal E. coli in children
were found in North as well as South America, Africa,
and Asia, too [139–145]. Among pediatric blood-stream
isolates there was an association between fluoroquinolone
resistance and ESBL production [141]. Similarly, the Chinese
isolates from pediatric patients are characterized by a high
prevalence of plasmid-mediated quinolones resistance; 4.1%
were positive for qnr and 8.2% for aac(6 ′)-Ib-cr genes
known to confer low level fluoroquinolone resistance or
to inactivate ciprofloxacin, but not moxifloxacin [145].
Isolates from children had relatively high prevalences of
ciprofloxacin resistance in the 1990s already although the
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use of ciprofloxacin in pediatric populations was approved
for treatment of inhalational anthrax (post exposure) in
August 2000 and for treatment of cUTI in March 2004. The
fluoroquinolone resistance in children could be due to the
transmission of resistant isolates between adults and children
in families, daycare, or school settings and in previous years
to the use of fluoroquinolones in poultry populations. These
findings demonstrate that spread of fluoroquinolone resis-
tance due to environmental contamination as well as person
to person transmission contributes to an increase in the
numbers of resistant isolates independent from selection of
resistant strains in diseased patients; this phenomenon may
bias resistance statistics. Analogues findings will be reported
below for RTI-pathogens. Furthermore, these findings indi-
cate that treatment of fluoroquinolone-naı̈ve patients, that
is, those who should not have been treated in previous years
because of their age, may nevertheless carry primed bacteria
which may develop high-level fluoroquinolone resistance
quite rapidly during treatment.

Conclusion. These data demonstrate that most of the uro-
pathogens causing uncomplicated UTIs in outpatients
are still susceptible to fluoroquinolones, but considerable
regional differences in drug susceptibility patterns exist with
alarming rates of fluoroquinolone-resistant and/or ESBL-
producing uropathogens in the Asia-Pacific region and
India. Because of the very close correlation between ESBL-
production and fluoroquinolone resistance in uropathogenic
Enterobacteriaceae, fluoroquinolone susceptibility is still
high in all those geographic regions in which ESBL produc-
ing Gram-negative community-acquired uropathogens are
infrequent. Pathogens causing HAUTIs or cUTIs in nursing
home patients are less susceptible to fluoroquinolones.
Because of the considerable variability of susceptibility pat-
terns in different countries, local epidemiological data are
critical in the empiric management of UTIs, in particular in
patients with risk factors and nursing home residents. Fur-
thermore, fluoroquinolones exert a MRSA selective potential
and exhibit negative epidemiological effects resulting in the
selection of multiresistant pathogens. Therefore, fluoro-
quinolones should be used with caution even in patients with
CAUTI and in particular in patients with HAUTI [146–148].

3.2. Respiratory Tract Infections

3.2.1. Community Acquired Respiratory Tract Infections.
Although a number of significant pathogens like Haemo-
philus influenzae, Moraxella catarrhalis, Mycoplasma pneu-
moniae, Chlamydia pneumoniae, and Legionella pneumophila
are associated with community acquired respiratory tract
infections (CARTIs) in all age groups [149–151], S. pneu-
moniae is the most frequent one. In the past, three major
RTI surveillance studies, the Alexander Project [152], the
RTI component of SENTRY [153], and PROTEKT (prospec-
tive resistant organism tracking and epidemiology for the
ketolide telithromycin, sponsored by Aventis Pharmaceuti-
cals) [154] have provided invaluable data on global antimi-
crobial resistance in CARTI-pathogens. Penicillin resistance
rates in pneumococci varied from 71% in South Korea,
57% in Hong Kong, and 40% to 50% in France, Spain,

and Japan, whereas no penicillin-resistance was detected in
Indonesia or the Netherlands [155–161]. Likewise, macrolide
resistance among RTI pathogens varied from 0% to 41%
[155, 157]. In Taiwan, penicillin and/or macrolide and/or
trimethoprim/sulfamethoxazole-resistance amounts to 72%,
92%, and 76%, respectively [162]. Interestingly, even in
these “hot spots” of penicillin- and/or macrolide and/or
trimethoprim/sulfamethoxazole resistance like Asia or Spain
where fluoroquinolone use is high and low doses are
administered frequently, rates of fluoroquinolone resistance
remain low.

It is important to note that in the studies quoted below
the definitions of ciprofloxacin and levofloxacin resistance
are based on two different resistant breakpoints, that is,
≥4 mg/L for ciprofloxacin and ≥8 mg/L for levofloxacin.

No levofloxacin-resistant pneumococci were detected in
eight Asian countries from 2002 to 2004 [163, 164]. In
Taiwan, only 0.6% of pneumococcal isolates collected from
2000-01 were resistant to levofloxacin [154]; by 2003, 3% of
isolates in Taiwan were resistant to levofloxacin [162]. From
192 pneumococcal isolates collected in China from 2001 to
2002, 6.8% were resistant to levofloxacin; 4.2% were resistant
to moxifloxacin [160, 165]. In 2008, 6.5% of S. pneumoniae
isolated from hospitalized patients in Bangkok, Thailand,
were resistant to ofloxacin [166]. A national surveillance
study in Japan from 1994 to 2002 revealed that levofloxacin
resistance rates were below 2% and were stable throughout
the observation period; however, an increase in levofloxacin
resistance rates from 0% in 1998 to 9.5% in 2000, and 4.8%
in 2002 was found among penicillin-resistant pneumococci
[161]. Recently, four highly levofloxacin-resistant pneumo-
cocci (MIC > 32 mg/L) were detected in Japan among 345
strains collected in Gifu prefecture from May 2006 to July
2006 [167]. Also in Spain, fluoroquinolone resistance rates
remain low, ranging from 0.6 to 7% for ciprofloxacin [168–
172]. A recent nationwide susceptibility study collected in
34 laboratories 2,559 S. pneumoniae isolates from patients
with community acquired pneumonia (CAP); only 2.2% and
0.5% of these isolates were ciprofloxacin and levofloxacin
resistant [173].

Fluoroquinolone resistance is rare in North America.
Surveillance studies in the United States from 1987 to
2009 demonstrated low rates of resistance (0.1 to 1.3%)
to levofloxacin [174–195] and to moxifloxacin (0.1%; 216).
From 27,828 isolates of S. pneumoniae collected in the
US during 4 consecutive respiratory seasons from 1998 to
2002, only 1.3% were levofloxacin-resistant [181] although
ciprofloxacin has been used in the US since 1987 and has
thus exerted a selective pressure on S. pneumoniae. Likewise,
the prevalence of fluoroquinolone resistance in Canada
remained low from 1998 to 2009. Although total per capita
outpatient use of fluoroquinolones increased during this
10-year period, levofloxacin and moxifloxacin resistance
remained unchanged at <2% in the >26,000 isolates collected
[196]. However, a trend for rising levofloxacin resistance
from <0.5% to >3% was noted in some regions of North
America [85, 179, 180, 190, 191]. The GLOBAL (global land-
scape on the bacterial activity of levofloxacin) surveillance
programme is an intiative intended to detect susceptibility
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changes in CARTI pathogens in Europe and Asia [196].
Results from the programme revealed that the susceptibility
profiles of 2,395 S. pneumoniae isolated from 1997 when
the study was initiated till 2007 remained unchanged, that
is, ≥96% in Asia and ≥98.6% in Europe [196]. Analogous
data were obtained in the course of the Alexander Project,
collecting isolates from Europe, Middle East, Asia, South
and North America [157, 197]. Likewise, the MOXIAKTIV
study (a german multicenter study with 29 participating
laboratories) demonstrated that 99.3% of the pneumococci
were moxifloxacin and levofloxacin susceptible and the MICs
of moxifloxacin were as low as those of the prelaunch
isolates [198]. These in vitro findings are mirrored by the
low prevalence of fluoroquinolone-resistant strains isolated
from patients with pneumococcal pneumonia. In 1.2% of
the isolates a first step mutation was detected and 6.7%
exhibited an efflux phenotype, despite high fluoroquinolone
usage [199].

Increasing fluoroquinolone resistance in pneumococci
paralleled increased usage of fluoroquinolones in general
or 2nd generation quinolones in particular [178, 199–
201]. Occasionally, fluoroquinolone resistance resulted in
clinical failures in patients with pneumococcal pneumonia
having been previously treated empirically with oral fluo-
roquinolones [160, 185, 202–204]. In total, there were 20
ciprofloxacin and levofloxacin treatment failures reported
till January 2005 and reviewed by Fuller and Low [204].
A pretherapy isolate was available in five cases only with
MICs ranging from 1 mg/L to 16 mg/L; MICs for the during-
therapy isolates ranged from 4 mg/L to >32 mg/L [204].
Thus, the question cannot be answered if resistance may
have developed during therapy resulting in clinical failure.
This question was recently addressed by Orr et al. [205]
who investigated in a tertiary referral hospital in England in
865 patients the incidence and epidemiology of levofloxacin-
resistant pneumococci. In six patients a shift towards reduced
levofloxacin-susceptibility or -resistance was recorded. Five
patients had acquired a new distinct strain and one patient
only harboured the same clone [205]. This study revealed
that levofloxacin pneumococcal resistance still is uncommon
and that in vivo fluoroquinolone resistance development
is very rare. If it does occur, strain replacement accounts
for the majority of cases. A limitation of this study is
that all isolates of S. pneumoniae from any body site were
eligible for inclusion in the study, irrespective of whether
the patient has been treated with a fluoroquinolone or not.
Furthermore, hospital guidelines recommend to treat severe
community acquired pneumonia with levofloxacin plus
intravenous benzylpenicillin [205]. High-level levofloxacin-
resistance (MIC > 8 mg/L) developed under levofloxacin-
treatment in eight out of 164 patients with chronic obstruc-
tive pulmonary disease whose pretherapy isolates were
suceptible [206]. A fatal outcome was described in another
patient with chronic obstructive pulmonary disease who
was infected with a S. pneumoniae strain with a preexisting
parC mutation; the MIC of levofloxacin for this strain was
1 mg/L, so that the mutation passed unnoticed and the
strain was classified as susceptible [207]. A P. aeruginosa
infection was treated successfully with oral ciprofloxacin in

another COPD patient in whom a ciprofloxacin resistant but
moxifloxacin-susceptible (MIC 0.125 mg/L) S. pneumoniae
strain was isolated subsequently; this strain harbored a parC
mutation [208].

The prevalence of first-step fluoroquinolone-resistant
S. pneumoniae mutants is increasing [195, 200, 208].
Although the subtle changes in MICs of 3rd generation
fluoroquinolones for primed bacteria remained within the
susceptible range in most CARTI-isolates, many isolates
contained a single gyrA or parC mutation, which prime
the bacteria to acquire additional mutations within the
quinolone resistance determining region (QRDR) conferring
high-grade fluoroquinolone resistance [209–211]. Three up
to 30% of clinical pneumococcal isolates contain mutations
in the gyrA and/or parC loci [179, 209, 212, 213].

These data demonstrate that many pneumococcal iso-
lates with first-step fluoroquinolone resistance may pass
unnoticed in routine susceptibility testing because of the
high resistance breakpoints. This theory has been proven
by two in vitro screening tests [214, 215]. Previously, the
resistant breakpoints for ciprofloxacin and levofloxacin were
>4 mg/L and >8 mg/L, respectively. Actually, the resistant
breakpoints of ciprofloxacin and levofloxacin for S. pneu-
moniae defined by EUCAST are >2 mg/L. The EUCAST
provides two comments in this context: 1st, wild type S.
pneumoniae are not considered susceptible to ciprofloxacin,
and 2nd the breakpoints for levofloxacin relate to high dose
therapy. However, high levofloxacin doses, that is, 750 mg
once or 500 mg twice daily, are rarely administered, so that
an extrapolation from the categorization “susceptible” due
to in vitro breakpoint based susceptibility testing to an
advise on therapy in the patient is limited. Two case reports
describing levofloxcin treatment failures confirm the limited
predictability of routine in vitro susceptibility testing. First,
a 71-year-old male patient was hospitalized due to pneumo-
coccal pneumonia. The pretherapy isolate was levofloxacin
susceptible with a MIC of 2 mg/L although it had a point
mutation in gyrA. The patient was treated with 500 mg iv
for 13 days; on day 4 intravenous clarithromycin was added
and on day 14 treatment was changed. Initial treatment
with levofloxacin failed due to an acquisition of a second
mutation in parC resulting in a MIC of 16 mg/L [216].
Second, a 79-year-old male patient was hospitalized with
bacteremic pneumonia caused by levofloxacin susceptible S.
pneumoniae with a MIC of 1 mg/L. The patient was treated
with 500 mg levofloacin iv. After initial improvement fever
reappeared on day 4, so that amoxicillin was added; but
the clinical condition failed to improve and the patient died
one day later. This pathogen had a preexisting mutation in
parC; the post-therapy isolate had an additional mutation in
gyrA [207]. Both patients had apart from the advanced age
additional risk factors like COPD and others.

These clinical examples confirm that first step mutants
of S. pneumoniae are 1st phenotypically considered to be
susceptible and 2nd are primed to acquire additional QRDR
mutations conferring high-grade fluoroquinolone resistance
resulting in clinical failure [217]. As most first step mutants
pass routine susceptibility testing unnoticed they are not
effectively detected in surveillance studies, so that these may



Interdisciplinary Perspectives on Infectious Diseases 11

be biased. Consequently, routine susceptibility testing of
suspicious cases at least should be modified, for example,
by using a second fluoroquinolone like ciprofloxacin as an
indicator for the acquisition of a first mutation. Furthermore,
it should be considered to use a more potent antipneu-
mococcal fluoroquinolone than levofloxacin, for example, a
“respiratory fluoroquinolone” like a C-8-methoxyquinolone.

Recently, fluoroquinolone-resistant streptococci were
isolated from children. Ciprofloxacin-resistant S. pneumo-
niae were detected in 28% of 847 children of 6 to 60
months of age living in rural Vietnam, about half of which
were treated previously with antibacterial agents except
fluoroquinolones. This finding could be due to the trans-
mission of already fluoroquinolone-resistant strains within
the household from adults to children [218]. Furthermore,
ciprofloxacin resistance rates increased significantly (P <
0.01) between 1997 and 2006 from 0% to 4.5% in Canadian
children aged 0 to 15 years [189]. Elderly are also prone
to acquire resistant pneumococci. High fluoroquinolone
resistance rates (>10%) were recorded in adults ≥65 years
old and in patients who acquired pneumococcal infections
in nursing homes [178, 190, 193, 201]. A random sample
of surveillance isolates collected in the USA between 1998
and 2003 revealed that 16.2% of isolates were recovered from
nursing home patients and 6.4% from non-nursing home
patients [219].

The emergence of levofloxacin-resistant S. pneumoniae
strains was noted in South Africa where fluoroquinolones
are used to treat multidrug resistant tuberculosis. A survey
of 21,521 invasive pneumococcal isolates identified between
2000 and 2006 in South Africa detected levofloxacin-
resistance (MIC ≥ 4μg/mL) in only 12 cases (<0.1%) [220].
All were HIV-infected children; nine were on therapy for
tuberculosis; 10 isolates (83%) were serotype 19F, suggesting
clonal spread. Furthermore, levofloxacin-resistant pneumo-
cocci were detected in >50% of asymptomatic carriers (irre-
spective of prior exposure to fluoroquinolones). These data
suggest that the use of fluoroquinolones to treat multidrug-
resistant tuberculosis is a risk factor for endemic and clonal
spread of fluoroquinolone-resistant pneumococci. Further-
more, horizontal gene transfer may have transformed low-
level into high-level levofloxcin-resistant strains [221].

Multiresistant serotype 8 pneumococci (approx. 62%
were coresistant to erythromycin, levofloxacin, and tetracy-
cline) causing invasive disease were significantly more fre-
quent in HIV-infected patients than in non-HIV patients
admitted to a tertiary care hospital in Madrid, Spain [222],
thus indicating that multiresistant pneumococci are a cause
for concern in HIV patients.

Despite the global emergence of first- and second step
fluoroquinolone-resistant S. pneumoniae, the prevalence of
resistance in pneumococci isolated from patients suffer-
ing from CARTI remained low. Several factors may have
contributed to this phenomenon: 1st, more potent “respi-
ratory fluoroquinolones” like the C-8-methoxyquinolones
moxifloxacin and gatifloxacin, or gemifloxacin may have
replaced the previous fluoroquinolones in the treatment of
CARTIs. 2nd, treatment guidelines may have been adapted
recommending the use of a second agent like benzylpenicillin

in, for example, elderly or patients with other risk factors.
3rd, information about patient history and previous antibi-
otic use is crucial for determining appropriate empirical
therapy [190, 223]. 4th, acquisition of some parC and gyrA
mutations may impose a fitness cost to the first step fluoro-
quinolone-resistant strains, although equivocal data have
been generated [224–226].

Haemophilus influenzae is generally highly susceptible to
fluoroquinolones; global surveillance studies demonstrated
that susceptibility to fluoroquinolones remained at or near
100% [197, 227–230]. Resistant isolates have been recovered
occasionally [230–237]. For example, during the 1997
through 1998 SENTRY-programme four (0.13%) fluoro-
quinolone-resistant H. influenzae strains were identified
[238]. The strains were genetically distinct and had different
gyrA mutations. Furthermore, clonal outbreaks of fluoro-
quinolone-resistant H. influenzae were observed in long-
term care facilities [239–241] and in elderly in Japan [242].

Because of the occurrence of fluoroquinolone-resistant
strains, Hirakata et al. [243] screened a total of 400 H.
influenzae strains isolated in 138 hospitals throughout Japan.
The strains were consistently very susceptible to cipro-
floxacin with MICs ranging from ≤0.03 to 0.25 mg/L; the
majority of strains was inhibited by ciprofloxacin concen-
trations ≤0.03 mg/L. Therefore, the authors examined the
strains (n = 37 out of 400) with MICs 0.06 mg/L and high-
er for QRDR mutations. From these, one ciprofloxacin-
resistant isolate (MIC = 16 mg/L) and 31 ciprofloxacin-
susceptible isolates (MICs, 0.06 to 0.5 mg/L) had amino acid
changes in their QRDRs. Moreover, 9.8% of the 363 highly
ciprofloxacin-susceptible isolates (MICs ≤ 0.03 mg/L) had
mutations in their QRDRs, particularly in the case of β-
lactamase positive amoxicillin-clavulanate resistant isolates
[243].

These data clearly demonstrate that—in analogy to S.
pneumoniae—many fluoroquinolone-susceptible H. influen-
zae have acquired QRDR mutations; these strains pass
routine susceptibility testing unnoticed, but are primed to
mutate further. Routine susceptibility testing of suspicious
cases at least should be modified, for example, by using
nalidixic acid as an indicator for the acquisition of a first
mutation [228, 244]. The presence of H. influenzae with
reduced levofloxacin-susceptibilities in kindergarten chil-
dren in Hong Kong is alarming; the MICs of nalidixic
acid and levofloxacin were 64–128 mg/L and 0.125 mg/L,
respectively [245]. Likewise, the report about a levofloxacin
treatment failure in a patient with H. influenzae pneumonia
is worrying. The 71-year-old patient has been treated with
500 mg levofloxacin once daily; after 7 days the clinical
condition had not improved and therapy was changed.
Levofloxacin MICs for H. influenzae isolated from blood-
cultures and bronchial aspirates at day 7 amounted uni-
formly to 16 mg/L and all the isolates had changes in the
QRDR [246].

M. catarrhalis remains fluoroquinolone susceptible to
almost 100%, although resistant strains have been detected
in a very few single cases [197, 228, 229, 231, 247]. Two
treatment failures with clonally unrelated resistant strains
have been reported in patients at risk [248].
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Conclusion. The three major pathogens causing CARTI are
fluoroquinolone-susceptible to almost 100%. However, first-
step mutants have been detected frequently not only in
treated patients but also in healthy individuals and even chil-
dren. Such isolates are primed to mutate to high-level fluo-
roquinolone resistance during subsequent fluoroquinolone-
treatment.

3.2.2. Nosocomial Respiratory Tract Infections. In treatment
guidelines and reviews, nosocomial pneumonia is fur-
ther differentiated into healthcare associated pneumonia
(HCAP), hospital acquired pneumonia (HAP), and ven-
tilator associated pneumonia (VAP) [249–254]. Bacterial
pathogens most frequently associated with HCAP, HAP, and
VAP are methicillin-susceptible and -resistant S. aureus
(MSSA, MRSA), Pseudomonas aeruginosa, H. influenzae,
K. pneumoniae, E. coli, and occasionally S. pneumoniae
and Acinetobacter spp. [255]. Resistance surveillance studies
differentiating the origin of isolates tested according to pneu-
monia categories are almost nonexistent; resistance-rates are
quoted in very general terms even in some of the guide-
lines quoted above. Therefore, information compiled below
summarises susceptibility data for invasive pneumococci or
pathogens isolated from sputa obtained preferably from
ICU-patients. S. pneumoniae isolated from patients with
invasive as well as noninvasive diseases in eight European
countries and Latin America were examined in the Pneu-
moWorld Study from 2001 to 2003. Susceptibility testing
revealed that fluoroquinolone resistance rates ranged from
0% in Austria, Switzerland, and Belgium to 0.9% in Germany
and 1.2 to 1.3% in Italy and Portugal [256]. From the
bacteraemic pneumococci isolated from 1999 to 2007 in the
UK and Ireland, 14.3% were resistant to ciprofloxacin [257].
Rates of levofloxacin-resistance in invasive S. pneumoniae
collected by the Centers for Disease Control and Preven-
tion (CDC) Active Bacterial Core Surveillance Program
Network (ABCS) remained stable throughout the years at
about 0.3% to 0.43% [258, 259]. This finding contradicts
reports of seven-valent pneumococcal conjugate vaccine-
driven expansion of fluoroquinolone resistant clones [164,
260, 261]; others have hypothesized that a decrease in flu-
oroquinolone resistance among invasive pneumococci may
be due to reduction of absolute numbers of isolates within
the vaccine serotypes [262]. Nevertheless, the potential for
the clonal expansion and dissemination of fluoroquinolone-
resistant strains obtained from the ABCS program has been
demonstrated [175]. Clonal spread of levofloxacin resistance
in invasive S. pneumoniae isolates was identified in Madrid,
Spain [176]. Likewise, clonal spread of levofloxacin-resistant
pneumococci could be demonstrated in strains from Hong
Kong, whereas strains collected in Okinawa, Japan, were not
clonally related [177].

All S. pneumoniae blood-isolates sampled in 2005-2006
and 2008 from Canadian emergency room- and ICU patients
were ciprofloxacin susceptible [263, 264]. Ciprofloxacin-
resistance among MSSA- and MRSA-blood isolates collected
in 2008 amounted to 8% and 81.6%; ciprofloxacin-resistance
in respiratory isolates was 11%, and 95.6%, respectively

[264]. All H. influenzae blood-isolates were ciprofloxacin-
susceptible [263]. Ciprofloxacin-resistance rates in E. coli,
P. aeruginosa, and K. pneumoniae isolated from blood were
21.6%, 16%, and 4.3%, respectively. Eight percent of these
E. coli isolates were ESBL producers. Ciprofloxacin resistance
in respiratory isolates of E. coli, P. aeruginosa, and K.
pneumoniae was 31.7%, 18.4%, and 4.5%, respectively [264].
Pathogens isolated from ICU patients not categorized in
patients with/without nosocomial RTIs showed variable
fluoroquinolone resistance [265]. Pathogens were collected
in the USA (283 sites), Canada (87 sites), France (63 sites),
Germany (169 sites), and Italy (48 sites) from January 2000
till December 2002. Pneumococci were highly susceptible in
all geographic regions. In MSSA and MRSA, fluoroquinolone
resistance varied from 4.8% in Canada to 8% in Germany,
and from 90.6% in France to 9.6% in Germany, respectively.
In E. coli, fluoroquinolone resistance ranged from 6.5% in
France to 12.7% in Italy; resistance in K. pneumoniae ranged
from 7.2% in Canada to 9.9% in Italy; resistance in P.
aeruginosa ranged from 22.9% in Germany to 76.7% in Italy
[265]. In ten Asian countries, ciprofloxacin resistances in P.
aeruginosa, E. coli, and K. pneumoniae isolated from HAP-
and VAP-patients ranged from 4–44%, 26–80%, and 13–68%
[266]. Similar rates were reported for Gram-negative species
isolated from Indian VAP-patients [267].

Fluoroquinolones have in the past shown good activity
against A. baumannii [268]; however, over the past decade
there has been a constant rise in fluoroquinolone- and
multidrug resistance [269, 270]. Fluoroquinolone resistance
in Acinetobacter spp. isolated from HAP- and VAP-patients
in ten Asian countries varied from 23.2 to 92% [250]. Flu-
oroquinolone resistance in Acinetobacter spp. isolates from
North American and European ICU-patients with/without
nosocomial RTIs ranged from 25.9% in Canada to 76.7%
in Italy [265]. Fluoroquinolone resistance in A. baumannii
isolates sampled from sputa and tracheal aspirates of ICU
patients in a tertiary care hospital in Ankara amounted to
86% [271].

Conclusion. Pneumococci and haemophilia isolated from
HCAP, HAP, and VAP patients are almost all fluoro-
quinolone-susceptible. MSSA and in particular MRSA
are frequently fluoroquinolone-resistant. Enterobacteriaceae
and nonfermenters are variably fluoroquinolone-resistant,
so that the regional resistance pattern has to be considered
prior to the use of a fluoroquinolone in the treatment of
nosocomial pneumonias.

3.2.3. Cystic Fibrosis. One of the most striking aspects of
natural history of P. aeruginosa and its association with cystic
fibrosis (CF) is the adaptation and heterogeneity exhibited
by the organisms as colonisation of the lung develops to
a chronic state. In the early stages of colonisation the P.
aeruginosa population is usually homogeneous with respect
to colonial morphology, antigenicity and drug susceptibility.
Later, however, considerable heterogeneity is observed and
the P. aeruginosa population shows a considerable degree
of heterogeneous antimicrobial susceptibility with MICs
ranging over a broad range from hyper susceptibility to
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high-level resistance [272–275]. P. aeruginosa being heterore-
sistant to all relevant antibacterials including ciprofloxacin
have been described by these authors. For example, the MIC
of ciprofloxacin for one genetically homogeneous isolate
as determined by routine methods was 0.5 mg/L prior to
ciprofloxacin therapy; however, population analysis revealed
that hypersusceptible subpopulations were present at high
frequencies and subpopulation with MICs up to 16 times the
MIC for the entire population were present at frequencies
ranging from 2× 100 to 5× 10−2. The population analysis of
the post-exposure isolate showed that the hypersusceptible
subpopulations have been eradicated; the subpopulations
with 2 to 8 times the pre terapy MIC occurred at frequencies
of approx 1 × 10−2 and the subpopulations with 32 and 64
times the pre therapy MIC were present with frequencies
of 4- and 2 × 10−4 [275]. Consequently, there is a high
probability in CF patients that multiple subpopulations of P.
aeruginosa with a broad range of MICs will exist, so that in
principle a single MIC value for the entire population does
not exist. Therefore, selection of colonies for susceptibility
testing [276] as well as routine susceptibility testing of mixed
morphotypes of P. aeruginosa yields inaccurate results; for
example, predictability of ciprofloxacin susceptibility and
resistance of a single isolate from a CF patient was 87.0% and
41.7%, respectively [277]. Thus, the value of conventional
susceptibility-testing of bacteria isolated from CF patients
is questionable [278]. In addition, fluoroquinolone resis-
tance emerges in the first few days of therapy and viable
counts of the pathogen are reduced minimally. Therefore,
the fluoroquinolone used to treat CF patients must exert
pleiotropic effects on P. aeruginosa; ciprofloxacin, for exam-
ple, inhibits quorum sensing [279] or modulates immune
response [280, 281]. However, it was demonstrated recently
in vitro and in patients that antivirulence interventions based
on quorum-sensing inhibition with a macrolide diminish
natural selection towards reduced virulence and therefore
may increase the prevalence of more virulent genotypes
[282]. Thus, it has to be studied clinically in CF patients if
a fluoroquinolone may exert quorum sensing inhibition at
all, and if the virulence of the pathogen may be affected or
not.

Furthermore, a common feature of P. aeruginosa isolated
from CF patients is the very high prevalence of mutator (or
hypermutable) strains in contrast to those with an up to
1,000-fold lower spontaneous mutation rate of strains
isolated from patients with acute infections [283, 284].
Such hypermutator strains persisted and even amplified
(50,000-fold) in contrast to nonhypermutator strains despite
adequate, that is, administration of standard doses, exposure
to ciprofloxacin [285]. Recent studies have shown that
mutators may affect modulation of virulence factors, genetic
adaptation to the growth environment in the infected
patient, persistence and perhaps also transmissibility [286].

Conventional susceptibility testing—thus not consider-
ing the heterogeneous susceptibility pattern of the sub-
populations—of P. aeruginosa isolates from CF patients
revealed that ciprofloxacin resistance in Europe ranged from
13.7% in Bulgaria [287] to approximately 30% in the UK,
Spain, Germany, and Italy [288–291]; 37.4% of the US

isolates were ciprofloxacin-resistant [292] Mucoid strains
tended to be less ciprofloxacin susceptible than non mucoid
isolates [290]; 27.8% of the non mucoid and 35.3% of the
mucoid isolates were susceptible to ciprofloxacin.

Patients with cystic fibrosis suffer from S. aureus infec-
tions, too. MRSA carriage and infection are becoming
increasingly common among CF patients. It appears that
healthcare associated-MRSA predominate, but asymptomat-
ic community associated-MRSA colonisation may be a pre-
dictor of disease [293]. The emergence and spread of a
specific MRSA isolate in Marseille, France, is worrying.
This well-adapted multiresistant isolate is closely related to
the vancomycin resistant strain Mu50 and spreads rapidly
in CF patients [294]. This strain is also characterized by
the presence of an antibiotic inducible (e.g., imipenem,
tobramycin, ciprofloxacin) bacteriophage which may result
in high frequency transfer and the unintended promotion of
spread of virulence and resistance determinants.

The presence of hypermutable P. aeruginosa and MRSA
in CF patients is a threat to the patient and a challenge for
any antibacterial agent.

Conclusion. P. aeruginosa colonising and infecting CF pa-
tients are geno- and phenotypically highly heterogeneous, so
that any routine susceptibility testing and resistance surveil-
lance studies are misleading. It is an inevitable consequence
of therapy that preexisting resistant subpopulations will
be selected, so that resistance will develop rapidly under
treatment.

3.3. Skin and Skin Structure Infections. Acute bacterial skin
and skin structure infections (ABSSSI) are typically mono-
microbial and caused by S. aureus and S. pyogenes which are
also the most common pathogens in complicated bacterial
skin and skin structure infections (cBSSSI) which are fre-
quently polymicrobial. However, Gram-negative and anaer-
obic microbes become more prevalent. The most common
Gram-negative organisms in cSSSIs include P. aeruginosa,
E. coli, K. pneumoniae, and E. cloacae. The most common
anaerobes isolated are typically Prevotella, Bacteroides, and
Peptostreptococcus species [295, 296].

Although S. pyogenes were and are still highly susceptible
to fluoroquinolones, low incidences (≤8%) of ciprofloxacin
resistance have been found globally; fluoroquinolone resis-
tance in Japan is almost nonexistent [297–315]. In Belgium,
fluoroquinolone resistance increased from 2.8% to 13.1%
from 2003 to 2005 and decreased thereafter to 8.9% in 2006
[307]. It is important to note, that in Belgium approx. 55%
of the fluoroquinolone-resistant isolates were recovered from
children aged less than 16 years [307]. Although fluoro-
quinolones are contraindicated in children, ciprofloxacin is
often used off-label for select life-threatening conditions.
Furthermore, older and thus cheap fluoroquinolones are
used topically for treatment of otitis media with otorrhoea
through tympanostomy tubes in paediatric patients.

In the early days of fluoroquinolone development and
clinical use the fluoroquinolones were regarded as poten-
tial alternatives to MRSA therapy with a β-lactam or
vancomycin. This was due to the fact that resistance to
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fluoroquinolones has rarely emerged in the various staphy-
lococcal infection models. Especially in experimental endo-
carditis caused either by MSSA or MRSA fluoroquinolones
proved effective and were not associated with the develop-
ment of fluoroquinolone resistance in most of the models.
In addition, their in vivo activity was equivalent or even
superior to that of vancomycin or imipenem [2, 316, 317].

Unfortunately, staphylococci acquire resistance to
antibacterials quite rapidly as they are genetically highly
variable [318]. The determinant for methicillin resistance is
located on the so-called staphylococcus cassette chromosome
mec (SCCmec). Some of the SCCmec elements contain
additional genes for antibiotic resistance encoding for amin-
glycoside-, tetracycline-, and macrolide-lincosamide-strep-
togramin-resistance [319, 320]. Furthermore, HA-MRSA
tended to develop fluoroquinolone resistance more freq-
uently than MSSA [321, 322]. This phenomenon may be
due to the fact that on the chromosomal map of the S.
aureus genome the mecA gene is located between protein A
and DNA gyrase genes. Therefore, mutations in the gyrase
may have an effect on the expression of mecA in HA-MRSA
strains [323] and some cell wall associated proteins such
as protein A and fibronectin binding proteins [324, 325].
Thus, almost any antibacterial drug class has a methicillin-
resistance selective potential [326–328], so that strains of
HA-MRSA are almost always multidrug-resistant.

Therefore, fluoroquinolone resistance developed rapidly
in the early days of fluoroquinolone therapy in HA-MRSA.
Hospital admissions in the US for ABSSSI caused by fluo-
roquinolone resistant MRSA increased from 29% between
2000 and 2004 [329] to 70.3% in 2008 [330]. In addition,
fluoroquinolone-resistant HA-MRSA were spread horizon-
tally as were HA-MRSA as such, so that nowadays neither
the 2nd-nor the 3rd-generation fluoroquinolones represent
alternatives for treatment of HA-MRSA infections [5, 331–
338].

In recent years, the emergence of CA-MRSA has com-
plicated the treatment of even ABSSSI [296, 332, 333]. CA-
MRSA strains differ in several ways from HA-MRSA strains
like composition of the SCC mec, the carriage of plasmids
encoding resistance to antibacterials of other drug classes and
in their associated pathogenicity factors [336]. In contrast
to multidrug resistance usually seen in HA-MRSA strains,
antibiotic resistance in CA-MRSA is most often limited
to macrolides [319, 337–340], so that it has previously
been proposed that some 3rd-generation fluoroquinolones
could be useful in the treatment of CA-MRSA, since the
causative pathogens were usually susceptible to even cipro-
floxacin [341–346]. But recently mupirocin, tetracycline,
clindamycin, and moxifloxacin (and thus to any commer-
cially available fluoroquinolone) resistance development has
been reported [347, 348]. The clone USA 300 became the
predominant strain type in the USA and has spread to
Europe, South America, and Australia [347, 349, 350]. The
lineage USA 100 is frequent, too [351]. Fluoroquinolone
resistance in isolates recovered from a phase IV study in
patients with cSSSI in the USA and EU from 2004 to 2007 was
high; 100% of USA 100-isolates and 42.6% of USA 300 iso-
lates were resistant to gatifloxacin [351]. Community MRSA

isolates in general, and the USA 300 clone in particular
are increasingly multidrug resistant, with resistance profiles
recently broadening to include clindamycin, tetracycline,
mupirocin, and fluoroquinolone agents, in addition to the β-
lactams; occasionally, community isolates also display reduc-
ed susceptibility to vancomycin or resistance to gentamicin
or trimethoprim-sulfamethoxazole [352].

Pathogens collected from 27 USA and 28 EU medical
centers in 2009 causing cBSSSI were variably susceptible
to fluoroquinolones: levofloxacin resistance in the USA/
EU amounted to 70.3%/84.1% in MRSA, 11.1%/5.4% in
MSSA, 54.2%/52.3% in coagulase-negative staphylococci,
0.9%/0.0% in β-hemolytic streptococci, 13.6%/1.1% in
viridans streptococci, 37%/29.2% in E. faecalis, 24.7%/21.8%
in E. coli, 11%/13.3% in Klebsiella spp., and 20.8%/8.0% in
P. mirabilis [353]. These resistance rates are within the same
range as those reported in the late 1990s and 2001–2004
for Gram-negative and Gram-positive aerobic pathogens
isolated in North America, Latin America, and Europe
from skin and soft tissues [354–356], thus, indicating that
resistance rates did not change substantially over time.

Of 175 anaerobic bacteria isolated in the late 1990s
from bacterial skin and soft-tissue infections, 27% were
levofloxacin-resistant [357]. All Peptostreptococcus species
isolated from hospitalised patients with diabetic foot wound
infection were susceptible to levofloxacin and moxifloxacin;
resistance (5–7%) was found in isolates of B. fragilis, Bac-
teroides ovatus, and Prevotella species collected in 1999
to 2002. [358, 359]. Against B. fragilis, moxifloxacin’s
MIC90 was 1.0 μg/mL. Against other Bacteroides species, the
MIC90 was 2–4 μg/mL. Moxifloxacin was least active against
Fusobacterium species other than F. nucleatum (MIC90,
8 mg/L). Among anaerobic species isolated from patients
with moderate to severe diabetic foot infections from 2001
to 2004 in the USA, 24% were fluoroquinolone resistant
[356]. In detail, moxifloxacin resistance rates were: 43% B.
fragilis group, 10% Fusobacterium spp., 2% Porphyromonas
spp., Gram-positive cocci 18%, and Gram-positive rods 12%
[283]. As levofloxacin is less active against anaerobes, resis-
tance rates were correspondingly higher. Of all infection sites,
decubitus ulcer isolates had the highest resistance rates [360].

Conclusion. In principle, a 3rd generation fluoroquinolone is
well suited for treatment of polymicrobial SSSIs because of
its broad antibacterial spectrum. Fluoroquinolone resistance
rates among pathogens causing skin and soft tissue infections
is low in MSSA, and streptococci, moderate in Gram-
negative aerobes as well as Gram-positive anaerobes, and
high in CA-MRSA, HA-MRSA, and Gram-negative anaer-
obes. This heterogenous susceptibility pattern may limit the
use of fluoroquinolones in the treatment of ABSSSIs and
cBSSSIs.

3.4. Intra-Abdominal Infections. The Surgical Infection Soci-
ety and the Infectious Diseases Society of America (IDSA)
have recently published guidelines for the diagnosis and
treatment of complicated intra-abdominal infections (IAIs).
E. coli, Enterococcus spp., Bacteroides fragilis, and other Bac-
teroides species are the most common pathogens associated
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with intra-abdominal infections [7, 361]. Intra-abdominal
infections are commonly due to mixed aerobic and anaerobic
populations, so that a clinically effective regimen has to cover
both, the aerobic Enterobacteriaceae and Enterococci, as well
the anaerobic bacteria.

Several surveillance studies have demonstrated that there
is a global trend toward decreasing susceptibilities of anaer-
obes to antibacterial agents since two decades. Although
the rates of resistance show clinically important variations
between continents, countries, and counties, almost all drug
classes—except metronidazole—like beta-lactams including
the carbapenems, clindamycin and quinolones lose activity
against anaerobes. A dramatic loss of antianaerobic activity
of fluoroquinolones in particular has been noted, exceeding
50% in some parts of the world [362–367].

The continuously increasing quinolone resistance
amongst anaerobes is surprising because of a variety of
reasons: First, previous fluoroquinolones like norfloxcin,
ofloxacin, ciprofloxacin, levofloxacin were not used clinically
for treatment of anaerobic infections. Nevertheless, surveil-
lance testing in the US between 1994 and 1996, that is,
prior to the launch of the first antianaerobic quinolone
trovafloxacin, revealed that quinolone resistance ranged
from 3% to 8%. Second, quinolone resistance rates increased
in 1997 to 13%, although trovafloxacin was approved in
December 1997. Quinolone resistance continued to increase
to 15% in 1998. Despite the limited use of trovafloxacin in
1998 and its relegation to a restricted therapeutic category
in June 1999, frequencies of quinolone resistance increased
further, peaking at 25% in 2001 [360, 368]. Furthermore, it
has been speculated that third, older fluoroquinolones like
norfloxacin, ciprofloxacin, ofloxacin, and levofloxacin may
have fostered quinolone resistance development [360, 368].
However, this hypothesis is not convincing either as the
older fluoroquinolones have been heavily used since their
launch. Furthermore, the older fluoroquinolones are almost
inactive against anaerobes [369, 370]. Although very high
total concentrations are achieved in the faeces, free and thus
antibacterial active concentrations, are low as quinolones
are highly and tightly bound to cell debris, DNA, cellulose,
and other fecal matter [371]; therefore, norfloxacin,
ciprofloxacin, ofloxacin, and levofloxacin suppress growth
of fecal aerobic Gram-negative rods but do not affect
significantly the anaerobic flora. Anaerobes with increased
MICs or quinolone resistance have rarely been isolated from
patients during or shortly after a quinolone treatment
[372]. Thus, the driving forces for quinolone resistance
development are at present unknown.

Very heterogeneous data on quinolone resistance
amongst anaerobes have been reported, ranging for example
from 27% to 50% in the US [363, 373], and 44.4% in Canada
[374], 15% to 25% in Spain [275, 364, 365, 375], and 0%
to 32% in Greece [364, 365, 376]. This heterogeneity of
susceptibility data within and between countries—which
is typical for aerobic species, too—may reflect marked dif-
ferences in 1st, the patient populations from whom the
isolates were obtained (health-care versus community
acquired infections—which, however, is almost always not

specified); 2nd, prior antibiotic exposure; 3rd, the patient
populations admitted to either tertiary care-or primary care
centres; 4th, the sites of isolation; 5th, the limited number
of participating centres. Overall, 9% of the European B.
fragilis group isolates were moxifloxacin-resistant in 2002; a
moderate increase to 13.6% was noted in 2009. Geographical
differences were detected in 2009, too, with higher resistance
rates for moxifloxacin in Scandinavian (21.4%) and Eastern
(11.3%) than in Mediterranean countries (5.4%) [365].

A most recent German study with 32 participating
centers revealed that moxifloxacin MICs for anaerobes are
by one to two titration steps higher than prior to its
launch. Resistance rates ranged from 10% to 22% for various
anaerobic species except B. vulgatus, with 59% of the isolates
being resistant. It became evident, too, that resistance rates
are higher in isolates obtained from 1st, tertiary care versus
primary care centres, 2nd, patients admitted to the ICU
versus standard care, and 3rd, health care versus community
acquired infections [377].

The resistance epidemiology of quinolone resistance
among anaerobes has to be complemented with resistance
figures in Enterobacteriaceae isolated from patients with
intra-abdominal infections in order to cover the entire
spectrum of potential pathogens. In general, the situation in
Asia is alarming as resistance-rates surpass 60% of the isolates
being resistant to ampicillin-sulbactam or a quinolone and
producing ESBL [378–384]. ESBL production in E. coli, K.
pneumoniae, or K. oxytoca was highly variable in the Asia-
Pacific region ranging in total from 4.4% in New Zealand to
77.4% in India. Only 17% and 27% of the ESBL producing E.
coli and K. pneumoniae strains, respectively, were susceptible
to ciprofloxacin [379]. In Europe, 11.8% and 17.9% of the
E. coli and K. pneumoniae strains isolated from patients
with intra-abdominal infections were ESBL producers [385],
ranging from 0% in Lithuania and Switzerland to 30% in
Greece. From these, 70% or 78% and 50% or 70% of the
community or hospital acquired E. coli and K. pneumoniae
strains were ciprofloxacin resistant. In the US, ESBL pro-
duction was detected in 4.7% and 17.5% of E. coli and K.
pneumoniae isolates, respectively.

From these, 33% and 19% were susceptible to cipro-
floxacin [386]. Ciprofloxacin resistance in a worldwide col-
lection of IAI pathogens amounted to 22.8% in E. coli, and
15.6% in K. pneumoniae [387]. Both, ESBL production and
fluoroquinolone resistance remained high or even increased
in 2009-2010 in the Asia-Pacific region, Europe, North-
and Latin America; ESBL producers were more frequently
isolated from elderly [388–393]. These data confirm—in
analogy to the UTI-isolates—the very close correlation
between ESBL production and fluoroquinolone resistance
in Enterobacteriaceae causing IAI. Consequently, fluoro-
quinolone susceptibility is still high in all those geographic
regions in which ESBL-producing Gram-negative bacilli are
infrequent. Another clinically relevant finding—again in
agreement with UTIs—is that fluoroquinolone resistance
was much lower in strains isolated from patients with
community acquired intra-abdominal infections than in
those from hospital-acquired infections.
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Conclusion. Fluoroquinolone resistance is high amongst
aerobic and anaerobic intra-abdominal pathogens. There-
fore, the Infectious Diseases Society of America and the
Surgical Infection Society published a guideline in late 2009
recommending that antibacterials to be used in the empiric
treatment of even community-acquired intra-abdominal
infections including mild to moderate infections should
be active against both, aerobic and anaerobic pathogens.
Consequently, the use of quinolones should be restricted
unless resistance rates are lower than 10% [7, 361, 394].

3.5. Sexually Transmitted Diseases. Infections caused by Neis-
seria gonorrhoeae and Chlamydia trachomatis are the most
frequent ones among reportable bacterial sexually trans-
mitted diseases (STD) gonorrhoea, syphilis, and chancroid.
Infections due to Chlamydia spp. were diagnosed almost
4-times more frequently than infections due to Neisseria
spp. (409.2 cases versus 110.7 cases in the USA in 2009).
Chlamydia spp. diagnosis increased by 2.8% in 2009 as
compared to 2008, and by nearly 20% since 2006, likely
due to expanded screening. Gonorrhea cases declined by
11% overall. Syphilis cases increased, too, while chancroid
cases have declined steadily till 2001 and are fluctuating
since then. However, Haemophilus ducreyi, the causative
organisms of chancroid, is difficult to culture, so that this
condition may be substantially underdiagnosed. In general,
there were large disparities by age, race, and geographical
distribution [395–397]. Pelvic inflammatory disease (PID)
is a common and serious complication of some sexually
transmitted diseases. Two-thirds of cases are considered to
be due to sexually-transmitted infections caused by N. gon-
orrhoeae and C. trachomatis; one-third (particularly in older
women) are commonly polymicrobial. Other pathogens such
as Mycoplasma genitalium and bacterial vaginosis pathogens
(e.g., Gardnerella vaginalis, Mycoplasma hominis, Mobiluncus
spp. and other anaerobes) may cause PID, too. Actinomycetes
are part of the normal vaginal flora and a rare cause of
PID. Therefore, management of PID must take into account
in particular the three major pathogens N. gonorrhoeae, C.
trachomatis, and M. genitalium.

Coinfections with C. trachomatis and N. gonorrhoeae are
common among young heterosexual patients with gonor-
rhea. Therefore, all treatments for STD/PID should cover
both, N. gonorrhoeae and C. trachomatis as well as anaerobes
[398, 399], and M. genitalium has to be considered [397].

3.5.1. Neisseria gonorrhoeae. Initially, Neisseria spp. was
extremely susceptible to fluoroquinolones with ciprofloxacin
MICs of ≤0.008 mg/L. However, low level resistance (0.06–
0.5 mg/L) was reported shortly after its launch [400–402],
followed soon by high-level resistance (MICs of ciprofloxacin
>1.0 mg/L) associated with treatment failures [402–404].
High-level fluoroquinolone resistance is first, more likely to
emerge in areas with a high prevalence of low-level resistance;
second, it is spread intercontinentally by travellers and an
intercity spread and transmission has been reported; third,
mono-as well as multi-clonal spread of quinolone-resistant
isolates has been reported [405–407].

Typically, several different strain types can be identified
by using molecular typing methods; for example, 24 different
quinolone-resistant strain types were identified among the
isolates having caused an outbreak in California, but only
four of these were considered outbreak types and comprised
66% of all the isolates [408]. Furthermore, importation
(often repeated importation) of one or a few clone(s) and
ultimate introduction into established sexual networks have
caused the emergence and spread of resistant gonococci
rather than de novo emergence as a result of selection by
quinolone use or misuse [409].

Both, low-level and high-level fluoroquinolone resistance
has been reported from all parts of the world (reviewed in
[410]). Ciprofloxacin resistance in N. gonorrhoeae is highest
in Asia; resistance rates in China vary from 40 to 100%,
depending on the region studied [410–413]. In Korea,
ciprofloxacin resistance increased from 9% in 1992, to 84%
in 1999, and to 90.5% in 2004 and 83% in 2006 [414,
415]. In India, ciprofloxacin resistance varied from 80.7%
in 2002, 97.2% in 2004 to 88.6% in 2006 [416–418]. In
Pakistan, ofloxacin-resistance increased from 0% in 1998 to
92.5% in 2009 [419] and ciprofloxacin resistance in isolates
collected from 2007 to 2010 in Iran amounted to 53.2%
[420]. In Kenya, ciprofloxacin resistance increased from
9.5% in 2007 to 50% in 2009 [421] and ranged in other
African countries from 0% in Malawi or Mozambique to
41.9% in South Africa [422]. Quinolone resistance in the
Western Pacific Region ranged in 2009 from ≤1.5% Fiji,
Papua New Guinea and New Caledonia via 35% to 42%
in New Zealand and Australia up to >95% in Vietnam,
Philippines, and Hong Kong, [423]. Gonococcal resistance
to ciprofloxacin in the Netherlands, Italy, Greece and in
Norway exceed 40% [424–427] which is in the same range as
the data previously reported by the “European Surveillance
of Sexually Transmitted Infections” (ESSTI) [428] and by
the EUROSURVEILLANCE [429]. However, ciprofloxacin-
resistance increased to 63% in 17 European countries
participating in the European gonococcal antimicrobial
surveillance programme, 2009 [430] and was high in the
eastern part of the WHO European region, too [431]. Rates
of ciprofloxacin resistance amongst the gonococcal isolates
rose in Canada from 1.4% in 2001 to 28% in 2006/2007
[432, 433] and the US from <1% in 2001 to 6.7% in the
first half of 2006 to 14.8% in 2007, decreasing to 13.5%
and 9.6% in 2008 and 2009, respectively, increasing again
to 12.5% in 2010 [395, 434, 435]. Consequently, quinolones
are not recommended as first-line therapy of N. gonorrhoeae
infections anymore [435–438]. The emergence of multi-
drug resistant N. gonorrhoeae reduces the treatment-options
further [439–444] as such isolates are resistant to quinolones,
third generation cephalosporins, and additional agents.

3.5.2. Chlamydia trachomatis. Quinolone resistance in C.
pneumoniae has not been described clinically or even in vitro;
however, high-level resistance to ofloxacin, sparfloxacin,
and ciprofloxacin occurred in C. trachomatis upon serial
exposure to subinhibitory quinolone-concentrations [445–
449]. However, spontaneous mutation frequencies resulting
in moxifloacin resistance were very low or even nonexistent;
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exposure of C. trachomatis serovars L2 and D resulted in
emergence of quinolone resistance at a frequency of 2.0–2.2×
10−8 in serovar L2 only, whereas no resistant clones could be
elicited in serovar D [450]. It is important to note that these
experiments were performed under routine conditions, that
is, a relatively high inoculum (approx. 2.7 × 109 inclusion
forming units) was exposed to the drug, whereas the bacterial
load at the focus of infection is much lower thus reducing the
likelihood of drug-induced resistance selection. Nevertheless,
fluoroquinolone-resistant strains of C. trachomatis have been
isolated occasionally [449, 450]. Fluoroquinolone resistance
elicited in vitro in C. trachomatis serovar L2 was due
to a single nucleotide point mutation in gyrA, while no
mutations were found in gyrB, parC, or parE genes; no
QRDR mutations could be detected in the fluoroquinolone-
resistant clinical isolates [451].

3.5.3. Mycoplasma genitalium. Surveillance studies for anti-
microbial-resistance in general and fluoroquinolone resis-
tance in particular are not existent as culturing of this species
from clinical specimens is extremely difficult. Acquired
resistance to fluoroquinolones has been described in single
cases. Analysis of the gyrA and parC genes of M. genitalium
isolated from 6 men in whom levofloxacin therapy failed
[452] revealed that in one patient a ParC amino acid change
could be detected in the pre- as well as post-therapy isolate,
whereas in another patient a ParC-mutation was detectable
in the post-therapy isolate only. No QRDR mutations could
be detected in strains isolated from the remaining four
patients [453]. M. genitalium clinical isolates from 28 men
with nongonococcal urethritis positive for M. genitalium
were analyzed by PCR. QRDR-mutations were found in
five of these 28 isolates; no alterations were detected in
the remaining isolates [454]. The two studies quoted above
were performed by noncultural methods, so that no MICs
could be determined; thus, an association between QRDR
mutations and fluoroquinolone resistance and persistence
cannot be proven. Furthermore, it should be considered
that the patients in whom persisters could be isolated had
been treated with low levofloxacin doses (100 mg t.i.d. for
14 days); in addition, levofloxacin is characterized by a
moderate activity against M. genitalium while for example,
C8-methoxyquinolones are ten times as active [455, 456].

Conclusion. Resistance of N. gonorrhoeae to antimicrobials
continues to increase worldwide, although considerable
geographical variations in resistance exist. Therefore, fluoro-
quinolones are not recommended as first-line therapy of N.
gonorrhoeae infections anymore [435–438]. However, local
quinolone-treatment options based on local surveillance
data may be reasonable, because of the geographical vari-
ations in resistance. All regimens used to treat PID should
cover both, N. gonorrhoeae and C. trachomatis, so that the
use of fluoroquinolones in this indication is limited, too
[399]. In case parenteral β-lactam therapy is not feasible,
oral use of fluoroquinolones with or without metronidazole
is recommended provided treatment is based on results of
antimicrobial susceptibility testing [399].

3.6. Traveller’s Diarrhea. Enterotoxigenic and enteroaggrega-
tive E. coli (ETEC and EAEC) are the major causes of bac-
terial traveler’s diarrhea causing up to 80% of acute cases;
Shigella spp., Salmonella spp., and Campylobacter spp., as
well as viruses and protozoa cause the remainder 20% of
cases. Although widely present, the bacterial pathogens show
seasonal as well as geographic occurrence patterns [457–
460].

In the early days of fluoroquinolone treatment of gas-
trointestinal infections, ciprofloxacin and other fluoro-
quinolones were found to be highly active in vitro and
clinically effective in the treatment of traveler’s diarrhea [461,
462]. However, a study performed during 1997 indicated
that the MIC90-values of ciprofloxacin and levofloxacin for
enteropathogens collected in India, Jamaica, Mexico, and
Kenya were as low as 0.125 mg/L and 0.25 mg/L; however,
the individual MICs ranged from <0.0156 to 256 mg/L,
thus, indicating that fluoroquinolone-resistant strains have
emerged already [460]. Another study assessing the evolution
of antimicrobial resistance in EAEC and ETEC causing
diarrhea in patients who had traveled to different developing
countries, comparing two periods of time, 1994–1997 and
2001–2004 revealed that a statistically significant increase in
resistance (P < 0.01) was observed for nalidixic acid and
ciprofloxacin. Mutations in the gyrA gene were found in
all nalidixic acid-resistant isolates, whereas mutation(s) in
both gyrA and parC genes were found in the ciprofloxacin-
resistant isolates. The prevalence of quinolone-resistant
EAEC and ETEC was high among the isolates from patients
who had travelled to North Africa (50% of EAEC and 43% of
EAEC were resistant to quinolones) and among the isolates
from patients who had traveled to the Indian subcontinent
(66% of EAEC and 28% to 64% of ETEC were resistant
to quinolones). In addition, 33% of the ETEC strains from
patients traveling to South-east Asia were also quinolone
resistant [463–465]. Results for strains isolated from travelers
to India [464], Mexico, Guatemala, India [465], and Ghana
[466] confirm that fluoroquinolone resistance increased
significantly during the past decade.

Recently, ESBL-producing EAEC were isolated from
patients who had traveled to India [467]. Out of 51 EAEC
isolates five CTX-M-15 producers were identified which were
resistant to fluoroquinolones, too. Three of these five isolates
belonged to the same clonal type. ESBL-producing diar-
rheagenic E. coli strains were isolated from children under
five years of age in Nicaragua; the ciprofloxacin-MICs ranged
up to 8 mg/L [468]. Diarrheagenic E. coli, in which, however,
ESBL production has not been specified, were isolated from
children in Brazil [469] and Vietnam [470]. The isolation of
ESBL-producing diarrheagenic pathogens from children sug-
gests that such strains being frequently multidrug-resistant
are widespread in the community.

A comparison of the MIC90 values of ciprofloxacin for
stains isolated in 1997 and 2006–2008 revealed that the
susceptibilities of C. jejuni, Salmonella spp., and Shigella spp.
remained unchanged, ranging from 0.06 to 0.125 [465].
However, nalidixic acid and ciprofloxacin are frequently
used in several parts of the world for empirical treat-
ment of typhoid fever and other enteric infections, so



18 Interdisciplinary Perspectives on Infectious Diseases

that nalidixic acid-resistance was frequent in the 1990s
already; some of the nalidixic acid-resistant strains isolated
in India, Jamaica, Mexico, and Kenya were cross-resistant
to ciprofloxacin [465]. Resistance to fluoroquinolones
increased in enteropathogens other than E. coli over the past
years causing problems in all regions of the world, including
the USA and Europe [471, 472]. However, fluoroquinolone
resistance differed by race, ethnicity, age, travel, and species.
Only 0.5% of Shigella spp. strains isolated in the USA
were ciprofloxacin resistant [473]; likewise, none of the
Salmonella spp. and Shigella spp. strains isolated from
children under five years with diarrhea in rural Mozambique
were resistant to ciprofloxacin [474]. On the other hand,
nalidixic acid resistance in Shigella spp. and Salmonella spp.
strains examined in Teheran, Iran, increased from 9.2%
in 2001 to 42.3% in 2005 [475], and ofloxacin-resistant
Campylobacter spp. strains collected over a 11 year period in
Pakistan increased from 0% in 1992 to 23% in 2002 [476]. In
the UK, an increase of ciprofloxacin-resistant Campylobacter
spp. from 7% in 1995 to 37.5% in 2008 was reported [477]
and 80.5% of the Campylobacter spp. strains isolated in
five different Portuguese cities over a five year period from
2003 to 2007 were ciprofloxacin-resistant [478]. Plasmid-
mediated quinolone resistance is frequent among Salmonella
spp. and Shigella spp. [42–45].

Conclusion. The fluoroquinolones have been the most effec-
tive antibiotics for the prophylaxis and treatment of bacterial
travelers’ diarrhea pathogens, but increasing resistance to
these agents, mainly among Campylobacter species, may
limit their benefit in the future [457, 479].

4. Discussion

The emergence of resistance to fluoroquinolones in virtu-
ally all species of bacteria was recognized soon after the
introduction of these compounds for clinical use [1, 480].
During the last several years, resistance to fluoroquinolones
has remained very high among MRSA, P. aeruginosa and
anaerobes as well as in pathogens isolated from intensive
care unit-patients. More worrisome are recent reports of
an overall increase in resistance to fluoroquinolones among
bacteria causing community-acquired infections, such as E.
coli and N. gonorrhoeae. These surveillance data demonstrate
that fluoroquinolone resistance has to be associated with
particular bacterial species on the one hand and patient
populations on the other hand. This conclusion has been
drawn by Acar and Goldstein already in 1997. These
authors wrote: “The introduction of fluoroquinolones more
than 10 years ago offered clinicians orally and parenterally
administrable compounds with a broad spectrum of activity
and therapeutic results not seen before for a wide range
of infections, including complicated urinary tract infec-
tions, gastrointestinal infections, sexually tranmsmitted dis-
eases, respiratory tract infections, and chronic osteomyelitis.
Extensive use and misuse of these compounds led to the
emergence and spread of resistant strains. Widely varying
percentages of resistance to fluoroquinolones have been
associated with particular bacterial species, clinical settings,

origins of strains, geographic locations, and local antibiotic
policies” [480]. Obviously, not much has changed since then;
on the contrary, resistance rates increased to alarming high
rates. The continued increase in fluoroquinolone resistance
rates affects patient management and necessitates a change
in some current guidelines for the treatment of, for example,
urinary tract infections [145–147], or even precludes the
use of fluoroquinolones in the treatmrnt of severe intra-
abdominal infections [8] or sexually transmitted diseases
[399, 435–438]. The consequences to be drawn are discussed
indication-specifically above.

Although S. pneumoniae and H. influenzae, causing
community acquired respiratory tract infections (CARTIs),
remained highly susceptible to fluoroquinolones, 10- to 30%
of H. influenzae and S. pneumoniae causing CARTIs harbored
first-step-mutations in the quinolone resistance determin-
ing region conferring low-level fluoroquinolone resistance.
These mutants pass susceptibility testing unnoticed and
are primed to acquire high-level fluoroquinolone resistance
rapidly, thus putting the patient at risk. Implementation of
a fluoroquinolone therapy in patients harboring such first
step mutants, in particular in elderly, immunocompromised
patients, and patients with additional risk factors will likely
result in the selection of resistance, paralleled by clinical
failure.

Of major concern is the association of fluoroquinolone
resistance and ESBL-production in Enterobacteriaceae. One-
to two thirds of Enterobacteriaceae producing extended
spectrum β-lactamases were fluoroquinolone resistant, too,
thus limiting the fluoroquinolone use in the treatment of
community—as well as healthcare acquired urinary tract—
and intra-abdominal infections as well as travelers’ diarrhea
in all those geographic areas in which fluoroquinolone resis-
tance rates and/or ESBL-production is high. The remaining
ESBL-producing or plasmid-mediated quinolone resistance
mechanisms harboring Enterobacteriaceae were low-level
quinolone-resistant, thus, being primed to acquire high-level
resistance during treatment. Furthermore, fluoroquinolones
like ciprofloxacin and levofloxacin select for methicillin
resistance in staphylococci. Consequently, their clinical use
is limited in those indications in which staphylococci are
the predominant pathogens, like skin and skin structure
infections. But fluoroquinolones should be used with caution
even in the treatment of infections rarely caused by staphy-
lococci like urinary tract infections, because of the MRSA
selective potential, thus causing “collateral damage” [146].

The co-selection of fluoroquinolone resistance by β-
lactams or aminoglycosides, and vice versa β-lactam- or
aminoglycoside resistance by fluoroquinolones demonstrates
that chemically unrelated drug classes select for drug-
resistant mutants and even multidrug resistant strains, so
that the emergence and spread of such strains has compro-
mised the clinical utility of diverse antibacterials.

Successful clones of resistant bacteria are often spread
horizontally either due to poor hygiene, transfer of patients
from one ward to another or from a hospital to a nursing
home, as well as interregional migration and international
population mobility. Thus, humans are mobile vectors of
drug resistance [481]. Both, exposure of bacterial pathogens
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to antibacterials and environmental factors have a role in
the emergence and spread of resistance. Furthermore, inap-
propriate antibiotic policies, poor compliance, suboptimal
dosing, diagnostic and laboratory error, ineffective infection
control, counterfeit or altered drugs contribute to the selec-
tion of resistance. Pleiotropic factors have an impact on the
fluoroquinolone resistance epidemiology; as resistance rates
vary significantly between and within countries, antibiotic
prescribing must be viewed against this background of
diverse processes contributing to the emergence and spread
of antimicrobial drug resistance.
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[65] B. Périchon, P. Courvalin, and M. Galimand, “Transferable
resistance to aminoglycosides by methylation of G1405 in
16S rRNA and to hydrophilic fluoroquinolones by QepA-
mediated efflux in Escherichia coli,” Antimicrobial Agents and
Chemotherapy, vol. 51, no. 7, pp. 2464–2469, 2007.

[66] K. Yamane, J. I. Wachino, S. Suzuki et al., “New plasmid-
mediated fluoroquinolone efflux pump, QepA, found in an
Escherichia coli clinical isolate,” Antimicrobial Agents and
Chemotherapy, vol. 51, no. 9, pp. 3354–3360, 2007.

[67] H. B. Kim, M. Wang, C. H. Park, G. A. Jacoby, and D.
C. Hooper, “oqxAB encoding a multidrug efflux pump in
human clinical isolates of Enterobacteriaceae,” Antimicrobial
Agents and Chemotherapy, vol. 53, no. 8, pp. 3582–3584,
2009.

[68] L. H. Hansen, L. B. Jensen, H. I. Sørensen, and S. J. Sørensen,
“Substrate specificity of the OqxAB multidrug resistance
pump in Escherichia coli and selected enteric bacteria,”
Journal of Antimicrobial Chemotherapy, vol. 60, no. 1, pp.
145–147, 2007.

[69] L. H. Hansen, E. Johannesen, M. Burmølle, A. H. Sørensen,
and S. J. Sørensen, “Plasmid-encoded multidrug efflux pump
conferring resistance to olaquindox in Escherichia coli,”
Antimicrobial Agents and Chemotherapy, vol. 48, no. 9, pp.
3332–3337, 2004.

[70] S. K. Morgan-Linnell, L. B. Boyd, D. Steffen, and L. Zech-
iedrich, “Mechanisms accounting for fluoroquinolone resis-
tance in Escherichia coli clinical isolates,” Antimicrobial Agents
and Chemotherapy, vol. 53, no. 1, pp. 235–241, 2009.

[71] E. Cambau, S. Matrat, X. S. Pan et al., “Target specificity of
the new fluoroquinolone besifloxacin in Streptococcus pneu-
moniae, Staphylococcus aureus and Escherichia coli,” Journal
of Antimicrobial Chemotherapy, vol. 63, no. 3, pp. 443–450,
2009.

[72] M. J. Everett, Y. F. Jin, V. Ricci, and L. J. V. Piddock, “Contri-
butions of individual mechanisms to fluoroquinolone resis-
tance in 36 Escherichia coli strains isolated from humans and
animals,” Antimicrobial Agents and Chemotherapy, vol. 40,
no. 10, pp. 2380–2386, 1996.

[73] M. Oethinger, I. Podglajen, W. V. Kern, and S. B. Levy,
“Overexpression of the marA or soxS regulatory gene in clin-
ical topoisomerase mutants of Escherichia coli,” Antimicrobial
Agents and Chemotherapy, vol. 42, no. 8, pp. 2089–2094,
1998.

[74] J. D. Goldman, D. G. White, and S. B. Levy, “Multiple
antibiotic resistance (mar) locus protects Escherichia coli
from rapid cell killing by fluoroquinolones,” Antimicrobial
Agents and Chemotherapy, vol. 40, no. 5, pp. 1266–1269,
1996.

[75] H. Okusu, D. Ma, and H. Nikaido, “AcrAB efflux pump
plays a major role in the antibiotic resistance pheno-
type of Escherichia coli multiple-antibiotic-resistance (Mar)
mutants,” Journal of Bacteriology, vol. 178, no. 1, pp. 306–308,
1996.

[76] A. Mazzariol, Y. Tokue, T. M. Kanegawa, G. Cornaglia, and
H. Nikaido, “High-level fluoroquinolone-resistant clinical
isolates of Escherichia coli overproduce multidrug efflux
protein AcrA,” Antimicrobial Agents and Chemotherapy, vol.
44, no. 12, pp. 3441–3443, 2000.

[77] M. Oethinger, W. V. Kern, A. S. Jellen-Ritter, L. M. McMurry,
and S. B. Levy, “Ineffectiveness of topoisomerase mutations
in mediating clinically significant fluoroquinolone resistance
in Escherichia coli in the absence of the AcrAB efflux pump,”
Antimicrobial Agents and Chemotherapy, vol. 44, no. 1, pp.
10–13, 2000.

[78] H. Wang, J. L. Dzink-Fox, M. Chen, and S. B. Levy, “Genetic
characterization of highly fluoroquinolone-resistant clinical
Escherichia coli strains from China: role of acrR mutations,”
Antimicrobial Agents and Chemotherapy, vol. 45, no. 5, pp.
1515–1521, 2001.

[79] Q. C. Truong, J. C. Van Nguyen, D. Shlaes, L. Gutmann,
and N. J. Moreau, “A novel, double mutation in DNA
gyrase A of Escherichia coli conferring resistance to quinolone
antibiotics,” Antimicrobial Agents and Chemotherapy, vol. 41,
no. 1, pp. 85–90, 1997.

[80] D. C. Hooper, “Mechanism of quinolones resistance,” in
Quinolone Antimicrobial Agents, D. C. Hooper and E. Rubin-
stein, Eds., pp. 41–67, ASM Press, Washington, DC, USA, 3rd
edition, 2003.

[81] D. C. Hooper, “Efflux pumps and nosocomial antibiotic
resistance: a primer for hospital epidemiologists,” Clinical
Infectious Diseases, vol. 40, no. 12, pp. 1811–1817, 2005.

[82] F. Van Bambeke, J. M. Pagès, and V. J. Lee, “Inhibitors of
bacterial efflux pumps as adjuvants in antibacterial therapy
and diagnostic tools for detection of resistance by efflux,”
Frontiers in Anti-Infective Drug Discovery, vol. 1, pp. 138–175,
2010.

[83] L. J. V. Piddock, “Multidrug-resistance efflux pumps—not
just for resistance,” Nature Reviews Microbiology, vol. 4, no.
8, pp. 629–636, 2006.

[84] J. A. Karlowsky, L. J. Kelly, C. Thornsberry, M. E. Jones,
and D. F. Sahm, “Trends in antimicrobial resistance among
urinary tract infection isolates of Escherichia coli from female
outpatients in the United States,” Antimicrobial Agents and
Chemotherapy, vol. 46, no. 8, pp. 2540–2545, 2002.

[85] J. A. Karlowsky, C. Thornsberry, D. E. Peterson, D. C.
Mayfield, and D. F. Sahm, “Antimicrobial resistance among
Escherichia coli urinary tract isolates in the United States: a
current view provided by electronic surveillance,” Infectious
Diseases in Clinical Practice, vol. 10, no. 2, pp. 87–92, 2001.

[86] K. Gupta, D. Scholes, and W. E. Stamm, “Increasing pre-
valence of antimicrobial resistance among uropathogens
causing acute uncomplicated cystitis in women,” Journal of
the American Medical Association, vol. 281, no. 8, pp. 736–
738, 1999.

[87] G. G. Zhanel, T. L. Hisanaga, N. M. Laing et al., “Antibiotic
resistance in Escherichia coli outpatient urinary isolates: final
results from the North American Urinary Tract Infection
Collaborative Alliance (NAUTICA),” International Journal of
Antimicrobial Agents, vol. 27, no. 6, pp. 468–475, 2006.

[88] AMR Trends Report Epidemiological services. British Co-
lumbia Centre for Disease Control, “Antimicrobial resistance
trends in the province of British Columbia,” AMR Trends
Report, 2009, http://www.bccdc.ca/.

[89] M. E. Kim, U. S. Ha, and Y. H. Cho, “Prevalence of anti-
microbial resistance among uropathogens causing acute
uncomplicated cystitis in female outpatients in South Korea:
a multicentre study in 2006,” International Journal of Antimi-
crobial Agents, vol. 31, supplement 1, pp. 15–18, 2008.
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[170] E. Pérez-Trallero, C. Fernandez-Mazarrasa, C. Garcı́a-Rey
et al., “Antimicrobial susceptibilities of 1,684 Streptococcus
pneumoniae and 2,039 Streptococcus pyogenes isolates and
their ecological relationships: results of a 1-year (1998-1999)
multicenter surveillance study in Spain,” Antimicrobial Agents
and Chemotherapy, vol. 45, no. 12, pp. 3334–3340, 2001.

[171] M. I. Morosini, E. Loza, R. Del Campo, F. Almaraz, F.
Baquero, and R. Cantón, “Fluoroquinolone-resistant Strepto-
coccus pneumoniae in Spain: activities of garenoxacin against
clinical isolates including strains with altered topoiso-
merases,” Antimicrobial Agents and Chemotherapy, vol. 47,
no. 8, pp. 2692–2695, 2003.

[172] C. Garcı́a-Rey, L. Aguilar, and F. Baquero, “Influences of
different factors on prevalence of ciprofloxacin resistance in
Streptococcus pneumoniae in Spain,” Antimicrobial Agents and
Chemotherapy, vol. 44, no. 12, pp. 3481–3482, 2000.
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and B. De Barbeyrac, “Sequencing of gyrase and topoi-
somerase IV quinolone-resistance- determining regions of
Chlamydia trachomatis and characterization of quinolone-
resistant mutants obtained in vitro,” Antimicrobial Agents and
Chemotherapy, vol. 42, no. 10, pp. 2474–2481, 1998.

[446] I. Morrissey, H. Salman, S. Bakker, D. Farrell, C. M. Bébéar,
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