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Abstract
Because randomization of participants is often not feasible in community-based health
interventions, non-randomized designs are commonly employed. Non-randomized designs may
have experimental units that are spatial in nature, such as zip codes that are characterized by
aggregate statistics from sources like the U.S. census and the Centers for Medicare and Medicaid
Services. A perennial concern with non-randomized designs is that even after careful balancing of
influential covariates, bias may arise from unmeasured factors. In addition to facilitating the
analysis of interventional designs based on spatial units, Bayesian hierarchical modeling can
quantify unmeasured variability with spatially correlated residual terms. Graphical analysis of
these spatial residuals demonstrates whether variability from unmeasured covariates is likely to
bias the estimates of interventional effect.

The Connecticut Collaboration for Fall Prevention is the first large-scale longitudinal trial of a
community-wide healthcare intervention designed to prevent injurious falls in older adults. Over a
two-year evaluation phase, this trial demonstrated a rate of fall-related utilization at hospitals and
emergency departments by persons 70 years and older in the intervention area that was 11 per cent
less than that of the usual care area, and a 9 per cent lower rate of utilization from serious injuries.
We describe the Bayesian hierarchical analysis of this non-randomized intervention with emphasis
on its spatial and longitudinal characteristics. We also compare several models, using posterior
predictive simulations and maps of spatial residuals.
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Introduction
Second-stage translational public health interventions often entail the dissemination of new
information to communities in ways designed to facilitate people's adoption of constructive
behaviors. In addition to relevant clinical knowledge, community-based interventions often
involve elements of learning theory, psychology, and sociology. Because of the concerns of
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policy, logistics, and feasibility, community-based interventions are often necessarily
restricted to non-randomized designs. Non-randomized designs are vulnerable to bias from
unmeasured sources of variability that have not been theoretically balanced as in a
randomized trial.

Sometimes these non-randomized designs are based on geographical units, such as school
districts, census tracts, or zip code tabulation areas (ZCTAs) [1]. The analysis of such
`spatial' entities is increasingly based on Bayesian hierarchical spatial models that go beyond
traditional regression approaches. Because covariate information on individual participants
is often limited, the model is supplemented with spatial random effects that account for all
variability not explained by the covariates. Mapping these spatial residuals allows for a
comparison between study arms of a non-randomized design to graphically assess potential
biases contributed by the unmeasured variables.

The Connecticut Collaboration for Fall Prevention (CCFP) was a non-randomized,
longitudinal trial which ran from October 2001 through October 2006 and compared two
regions of Connecticut (CT) to test whether dissemination of the evidence of proven efficacy
[2, 3] for reducing the rate of fall-related injury among older people was effective at the
community level. For each six-month interval, counts of fall-related outcomes and
population at risk were obtained from the Connecticut Hospital Association and Medicare
denominator files [4], respectively, with ZCTA-level estimates of covariates provided by the
U.S. Census [5]. The study was divided into a three-year `intervention' phase allowing for
dissemination of educational materials and their subsequent integration within clinical
practice, and a two-year phase of formal `evaluation'. CCFP used a quasi-experimental
design that compared a treatment area receiving the intervention and a usual care area which
did not. As shown in Figure1, the intervention region consisted of 58 contiguous ZCTAs in
north central CT (i.e. the greater Hartford region) while the usual care area comprised a
discontinuous stretch of 53 ZCTAs along the southern coastline (i.e. the I-95 corridor from
Norwalk to New London).

The discontinuity in the usual care area was necessary to prevent the contamination of the
intervention because the catchment areas of healthcare providers from both study arms
overlapped in that south-central coastal region. The design of the study arms balanced
aggregate characteristics of important explanatory variables and a two-year pre-intervention
analysis verified that baseline rates of fall-related events were not significantly different.
The design, content, and pre-intervention analysis of the CCFP are described elsewhere [6,
7].

During the two-year evaluation phase of the CCFP, adjusted rates of serious fall-related
injury and fall-related use of medical services were respectively 9 per cent and 11 per cent
lower in the intervention region relative to usual care [8]. From a community health
perspective, the 11 per cent relative reduction in the use of fall-related medical services
translated into approximately 1800 fewer medical treatment events and avoidance of
commensurate physical distress. Based on an average acute care cost of $12 000 per event,
this decrease in medical treatment represents a potential savings of $21 million in health
care costs [9]. These findings suggest that in addition to conserving precious medical
resources, the dissemination of evidence about fall prevention may well prevent falls and
related physical hardship.

In this paper we describe the analytical model used to evaluate the CCFP intervention and
discuss ways of checking model fit. These include the Deviance Information Criterion [10],
posterior predictive simulations, and maps of spatial residuals that quantify spatially related
variability not captured by the ZCTA-level covariates. We use these criteria to demonstrate
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their utility for evaluating non-randomized interventions and for appraising potential
models.

Description of analysis
For CCFP, units of analysis were the age–gender subgroups of ZCTAs whose outcome was
the number of fall-related utilizations (f jklt), where the indices j, k, l, and t respectively
indicate the ZCTA, age, gender, and time period under consideration. We assumed a Poisson
distribution as follows:

where Ejklt are the internally standardized expected fall counts and μjklt the log relative risk
of fall-related utilization. For CCFP the latter term was modeled as follows,

(1)

where the three terms on the right-hand side in parentheses collectively evaluate the
intervention. Respectively, I j is the treatment applied to ZCTA j (0 if usual care, 1 if
intervention), P(t) is the phase of the study at time (t) (0 for dissemination and 1 for the
evaluation), and I j P(t) represents the treatment-by-phase interaction. The remaining terms
on the right-hand side adjust the estimated effect of intervention. Among the fixed effect
covariates, Fj is the average fall-rate of ZCTA j over the two-year pre-dissemination phase,
Ak is age group (1, 2, 3, or 4 corresponding to ranges of 70–74, 75–79, 80–84, and 85 years
and older), Gl is gender (0 if male, 1 if female), and Xj is a vector of ZCTA-level covariate
information whose specific covariates are defined in the row of Table I labeled `Clinical'.
Thus μ is an intercept, and the other fixed effects are spatial regression coefficients where
the combined values of the Ak and Gl define the eight age–gender subgroups.

The last two terms in the right-hand side of (1) are random effects that account for potential
bias from non-randomized designs based on our correlated geographical units (ZCTAs).

First, the random effects  account for the unstructured heterogeneity of each ZCTA's sub-
population for the eight specific age and gender combinations within each six-month time

period t. More specifically, we assume  where  is a precision term allowing
for unstructured heterogeneity on a statewide basis. This is an enhancement of the model

used by Waller et al. (1997) who calculated a random effect  for the unstructured
heterogeneity of each spatial unit within each time period [11]. Complementing the terms

for unstructured heterogeneity, the random effects  account for the spatial variability of
ZCTA j not captured by other model terms for each six-month time period t. The use of
these two types of random effects provides a rigorous accounting of unmeasured variability,
accommodates experimental units which have few or no falls, and allows for maps showing
the geographical distribution of the unmeasured variability. This Bayesian hierarchical
approach also provides appropriate levels of shrinkage for parameters corresponding to units
with very large or very small outcome counts.

Suppressing the (t) superscript for the moment, we now describe the distribution of the
spatial random effects [12]. Suppose the spatial random variable ϕj is observed at J areal
locations, to define the vector ϕ=(ϕ1,…ϕj)T Assuming the ϕj form a Markov random field
[13], the J full conditional distributions of the ϕj are defined as
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(2)

where i ~ j denotes that region j is a neighbor of region i, i.e. i and j are spatially adjacent,
and τj are precision terms determining the degree of spatial clustering. The full conditional
distributions then uniquely determine the joint distribution of the vector φ=(ϕ1, …J)T as
follows [14]:

(3)

where B is an J × J matrix with bjj=0, Dτ =Diag(τj) and is usually taken as τcD where τc>0
is a spatial clustering parameter, D is a diagonal matrix, and α is a smoothing parameter of
value between 0 and 1 that controls spatial dependence. Contingent upon the weighting
matrix W (defined in next paragraph) being row stochastic, it has been shown that
constraining |α|<1 preserves propriety of the joint distribution of (3) [15]. This joint
distribution is known as the conditional autoregressive (CAR) formulation [13].

Different values of α, D, and B provide various CAR model structures. The most popular
CAR implementation is the pairwise difference formulation in which α=1 and D=Diag(mj)
where mj is the number of neighbors of region j, and B=D−1W where W is a weighting
matrix whose values wij define the neighbors of each region. In this same CAR
implementation, W is specifically an adjacency matrix for the map (i.e. wjj=0 and wij=1 if i
~ j and 0 otherwise) [16]. The joint distribution of φ=(ϕ1, …ϕJ)T then becomes

4

which is improper because of the singularity of [τc(D–W)].

We chose the CAR model of (4) as implemented in WinBUGS software, which employs
Gibbs sampling (see Section 3.4.1 in Carlin and Louis [17]). We initially assigned separate
precision terms for each study arm, i.e. τc(I) and τc(UC) for the intervention and usual care
arms respectively, which produced higher values of the DIC and nearly complete overlap of
the credible intervals for the main effects in (1) as well as for τc(I) and τc(UC). For purposes
of better fit and model parsimony we retained a single spatial distribution (τc) in the
candidate models. The fixed model effects were given flat priors and the precision terms τH
and τc were given gamma priors whose parameters were assigned mildly informative values
to expedite Markov chain Monte Carlo (MCMC) convergence. Five Markov chains
initialized at disparate values were each run for 6000 iterations with convergence confirmed
by the Gelman–Rubin statistic as modified by Brooks [18, 19]. Following burn-in, an
additional 5000 iterations were run to obtain estimates of posterior distributions of all model
parameters.

Defining four candidate models
Because model selection is often a matter of concern in the analysis of non-randomized
interventions, we examined four models that are defined in Table I.

The four models were conceived as follows. In addition to adjustment for each ZCTA's pre-
intervention rate of fall-related utilization, the fixed effects model consists of only those
fixed effects necessary for evaluating the intervention (indicators for intervention, phase,
and their interaction) with strata defined by the age–gender subgroups and adjustment for
ZCTA-level pre-intervention fall rates. The random effects model contains all the terms of
the fixed-effects model as well as the two random effects on the right-hand side of (1). The
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clinical model augments the random effects model with five ZCTA-level covariates defined
in Table I that were deemed essential for clinical plausibility, and generated the results
formally reported for the CCFP intervention [8]. Finally, the statistical model is simply the
clinical model pruned back to achieve the minimal relative value of the deviance
information criterion (DIC) [10]. The DIC is a generalization of the Akaike Information
Criterion (AIC) that can be applied to Bayesian hierarchical models. Note that the latter
three models, i.e. the random effects, clinical, and statistical, have comparable values of the
DIC with the lowest pertaining to the statistical model. In stark contrast, the DIC of the fixed
effects model is 1000 points higher than values from the models containing random effects.
This highlights the very tangible improvement in model fit afforded by the addition of the
two random effects to the fixed effects model.

In Table II we present posterior estimates of the parameters needed to evaluate the
intervention, i.e. β, δ, and ε, as well as the precision terms τc and τH. Note that the three
models containing the random effects, i.e. the random effects, clinical, and statistical,
yielded significant, negative associations of comparable magnitude between the intervention
and the rate of fall-related outcomes in the CCFP. On the contrary, the fixed effects model
yielded a non-significant negative association of about half the magnitude of the three
models containing random effects. The precision term τH is more than double the τc,
indicating that the spatial random effect due to the clustering of each ZCTA with its adjacent
neighbors has greater variability than the undefined heterogeneity across the age-gender
strata of the ZCTAs.

Two criteria for Bayesian hierarchical model checking
Table I shows that the statistical model had lowest DIC followed in increasing order by the
clinical, random effects, and fixed effects models. We further evaluate the four candidate
models using two criteria enabled by Bayesian hierarchical methods, namely posterior
predictive simulation (see Chapter 8 of Gelman and Hill [20]) and maps of spatial residuals.
Note that neither of these techniques is possible with traditional regression approaches.
Posterior predictive simulation provides an arguably more rigorous appraisal of the
predictive ability of a specific model than traditional goodness-of-fit statistics. Vectors
consisting exclusively of the model coefficients for the fixed effects are randomly sampled
from their posterior distributions and then multiplied by the design matrix of the explanatory
variables to yield the log relative risk of falls. Poisson draws then convert these model
coefficients into posterior simulations of the original outcome data. Descriptive statistics are
calculated from a large sample of such simulations and compared against the corresponding
statistics of the actual outcome data.

Figure 2 is a histogram of the counts of fall-related utilizations for the age-gender subgroups
in the CCFP analysis from the last six months of the study. In order to check across a
representative range of outcome values, we examine each model's performance in predicting
the proportion of units with values of 0, 3, 10, 15, 25, and 35 falls. Note that because the
frequency of units with 25 units is strikingly small compared to its neighboring values, this
value will be problematic for models to replicate.

The second criterion is mapping of the spatial residuals to see whether there is a gross
imbalance in the unmeasured, spatial variability between the study arms. Analogous to
residual plots from regression models, maps of spatial residuals provide conceptual insight
regarding assumptions and model fit. We expect better models to have fewer `outliers'
among the spatial residuals, as well as a balanced distribution between study arms. This
graphical evidence speaks to the uncertainty regarding imbalance of unmeasured covariates
in a non-randomized design.
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Results of posterior predictive simulations
In Table III we present the results of posterior predictive simulations from the four candidate
models. The top half of the table compares the proportion of units with the following
outcome values, 0, 3, 10, 15, 25, and 35, in the recorded data from the last six months of
CCFP with the corresponding proportions yielded by samples of 1000 randomly generated
posterior predictive models. A floor function was utilized in the R-based simulations across
all three models so that model predictions were rounded down to the nearest integer value.
The 95 per cent credible intervals of the proportion of units with the specific predictive
values show how well each of the candidate models covered the true proportion of outcome
values in the data.

Not surprisingly, all models under-predict the proportion of units with 25 falls, which clearly
contradicts the localized trend of the frequency distribution depicted in Figure 2. Note
however that the clinical and statistical models present lower bounds of their respective
credible intervals for Prop(25) that are closer to inclusion of the observed value of Prop(25)
than those of the fixed and random effects models. Otherwise, the clinical and statistical
models exhibit consistently good coverage with slight gains in precision for the statistical.
On the contrary, the fixed effects model under-predicts the proportion of units with 0 falls,
i.e. the mode of the distribution, while the random effects model over-predicts the
proportion of units with three outcomes. This is consistent with the DIC's suggestion that the
fixed effects, random effects, clinical, and statistical models exhibit progressively better fit.

The lower half of Table III compares overall distributional characteristics of the posterior
predictive simulated values from the four models. The fixed effects, clinical, and statistical
models have very similar ability to describe the distribution across a range of percentiles,
whereas the random effects model underestimates the inter-quartile range.

Maps of spatial residuals
Maps of standardized values of the spatial residuals from the random effects and statistical
models are depicted in Figures 3 and 4 respectively. Because the clinical model yielded a
map nearly identical to that of the statistical model, and because the fixed-effects model
does not contain spatial residuals, corresponding maps for these two models are not
presented. In Figures 3 and 4 we are looking for evidence of imbalance in the distributions
of standardized spatial residuals between the study arms, and wish to see a fairly random
distribution of the values as evidence that small-scale variability is being accommodated by
our spatial random effects. Overall, the two maps show the random effects and statistical
models presenting fairly random distributions of unmeasured spatial variability across the
study arms and do not suggest any gross imbalance that might be indicative of important
covariates missing from the model. In both maps all but one of the significant standardized
residuals (values ≥ 2 in absolute value) occur in the intervention arm, where several ZCTAs
have highly negative standardized residuals and a single ZCTA has a highly positive
standardized residual.

The magnitudes of the significant standardized residuals reflect the models' tendencies to
respectively over- and under-predict the fall rates of these particular ZCTAs. The highly
positive standardized residual came specifically from the town of Bolton, which with 416
persons of age 70 and older in 2003 had one of the smallest populations at-risk in the entire
dataset. Even a handful of additional falls will cause a very significant shift in the local fall
rate in such a small at-risk population. It is also plausible that the significant standardized
residuals reflect a more variable spatial distribution of the fall rate due to highly localized
differences in the implementation of the intervention.
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Concluding remarks
In this paper we have shown the specific analytical model (the clinical model) used to
evaluate a non-randomized, longitudinal trial on fall prevention and have compared four
alternative models using criteria facilitated by hierarchical Bayesian analysis. Notice that the
hierarchical Bayesian approach has provided additional tools not available from traditional
regression approaches. The DIC is a special form of the AIC which can be used to evaluate
the relative fit of multi-level models within a Bayesian framework. The spatial residuals and
posterior predictive checks are directly enabled by the hierarchical Bayesian approach.
These tools and the model checking they facilitate are of special importance in the
evaluation of community health interventions, which typically preclude randomized designs
because of constraints on data gathering or administration of the intervention.

While it must be noted that the techniques demonstrated here do not address the issue of
causality, they demonstrate that a significant array of informative techniques exist that lend
themselves to the analysis of non-randomized designs. Future work is needed to expand the
use of these tools in a way that will strengthen claims of causality for interventions applied
in the context of non-randomized designs. Building on the strengths demonstrated in this
paper, it is foreseeable that the combination of hierarchical Bayesian with traditional
techniques for adjusting the bias in non-randomized designs, such as propensity scores, will
yield feasible approaches in this increasingly valuable area of statistical research.
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Figure 1.
Connecticut Collaboration for Fall Prevention.
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Figure 2.
Histrogram of fall-related utilization among age-gender strata within zip code tabulation
areas during last 6 months of Connecticut Collaboration for Fall Prevention.
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Figure 3.
Standardized spatial residuals from random effects model.
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Figure 4.
Standardized spatial residuals from statistical model.
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Table I

Four candidate models to evaluate the CCFP.

Model* Model terms
† Value of Deviance Information Criterion.10

μj,k,l,t =μ+(I jβ+P(t)δ+I j P(t)ε)+F j ρ+Akυ+Glγ

Fixed effects
‡ I j is intervention (0=usual care, 1=intervention)

P(t) is phase at time t (0=intervention, 1=evaluation)

I j P(t) is the interaction of intervention and phase at time t 1230

Fj is the pre-intervention fall rate of ZCTA j

Ak is age group (ordinal 1–4 in five year increments)

Gl is gender (0=male, 1=female)

Random effects
‡ 130

ϕj
(t)

 is ZCTA level spatial variability

θjkl
(t)

 is ZCTA specific age–gender stratum (nominal 1–8)

Clinical
§ μj,k,l,t =Random Effects+XjΩ 125

where XjΩ includes ZCTA-level specific values for :

Proportion 65+ households with income ≤15000

Proportion 65+ households with income ≤75000

Proportion 65+ persons living in institutions

Proportion 65+ non-institutionalized with physical disability

Proportion 65+ self-reported race as non-white

Statistical
§ μj,k,l,t =Random effects+XjΩ 119.6

where XjΩ includes ZCTA-level specific values for :

Proportion 65+ households with income ≤15000

Proportion 65+ persons living in institutions

*
Four candidate models for evaluating effectiveness of the intervention from the CCFP where observations are ZCTA in either an intervention or

usual care area, which were respectively exposed and not-exposed to a treatment to prevent falls among older persons.

†
Stratified analysis where model terms define analytical units as specific age-gender subgroups with indices defined as follows: j =ZCTA,

k=ordinal age, l=binary gender, and t =six-month period of observation (ordinal) over a five-year period and where μj,k,l,t is the rate of fall-related

utilization for specific ZCTA-level age–gender subgroup and time period.

‡
Terms in parentheses on right-hand side of model collectively evaluate intervention.

§
Proportions are ZCTA-level estimates obtained from the U.S. Census of 2000.
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Table II

Posterior distributions of parameters from four models of fall utilization data from the CCFP.

Parameter Factor Model Mean 95% credible interval

β Intervention Fixed effects −0.02349 (−0.04858,0.00124)

Random effects −0.04294 (−0.07435,−0.01134)

(0=Usual Care, 1=Intervention) Clinical −0.04769 (−0.07822, −0.01562)

Statistical −0.05122 (−0.08222, −0.02039)

δ Study phase Fixed effects 0.08566 (0.05931,0.1122)

Random effects 0.08848 (0.0552,0.1203)

(0=Dissemination, 1=Evaluation) Clinical 0.08864 (0.05706,0.1224)

Statistical 0.0892 (0.05674,0.1216)

ε Interaction of Intervention and Study Fixed effects −0.06708 (−0.09985,−0.0336)

Random effects −0.07411 (−0.1161,−0.03082)

Phase Clinical −0.07409 (−0.1193,−0.0291)

(1=Intervention during evaluation, 0=otherwise) Statistical −0.07597 (−0.1193,−0.03445)

τ C Precision for spatial Random effects 8.304 (5.032,12.76)

clustering Clinical 8.221 (5.044,12.43)

Statistical 8.219 (5.055,12.8)

τ H Precision for undefined heterogeneity Random effects 20.48 (15.81,26.4)

undefined heterogeneity Clinical 20.24 (15.94,25.98)

Statistical 20.43 (15.65,26.38)
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