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Abstract
Background—Many clinical trials are designed to test an intervention arm against a control arm
wherein all subjects are equally eligible for all interventional components. Factorial designs have
extended this to test multiple intervention components and their interactions. A newer design
referred to as a ‘standardly-tailored’ design, is a multicomponent interventional trial that applies
individual interventional components to modify risk factors identified a priori and tests whether
health outcomes differ between treatment arms. Standardly-tailored designs do not require that all
subjects be eligible for every interventional component. Although standardly-tailored designs
yield an estimate for the net effect of the multicomponent intervention, it has not yet been shown
if they permit separate, unbiased estimation of individual component effects. The ability to
estimate the most potent interventional components has direct bearing on conducting second stage
translational research.

Purpose—We present statistical issues related to the estimation of individual component effects
in trials of geriatric conditions using factorial and standardly-tailored designs. The medical
community is interested in second stage translational research involving the transfer of results
from a randomized clinical trial to a community setting. Before such research is undertaken, main
effects and synergistic and or antagonistic interactions between them should be identified.
Knowledge of the relative strength and direction of the effects of the individual components and
their interactions facilitates the successful transfer of clinically significant findings and may
potentially reduce the number of interventional components needed. Therefore the current
inability of the standardly-tailored design to provide unbiased estimates of individual
interventional components is a serious limitation in their applicability to second stage translational
research.

Methods—We discuss estimation of individual component effects from the family of factorial
designs and this limitation for standardly-tailored designs. We use the phrase ‘factorial designs’ to
describe full-factorial designs and their derivatives including the fractional factorial, partial
factorial, incomplete factorial and modified reciprocal designs. We suggest two potential
directions for designing multicomponent interventions to facilitate unbiased estimates of
individual interventional components.

Results—Full factorial designs and their variants are the most common multicomponent trial
design described in the literature and differ meaningfully from standardly-tailored designs.
Factorial and standardly-tailored designs result in similar estimates of net effect with different
levels of precision. Unbiased estimation of individual component effects from a standardly-
tailored design will require new methodology.
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Limitations—Although clinically relevant in geriatrics, previous applications of standardly-
tailored designs have not provided unbiased estimates of the effects of individual interventional
components.

Discussion—Future directions to estimate individual component effects from standardly-
tailored designs include applying D-optimal designs and creating independent linear combinations
of risk factors analogous to factor analysis.

Conclusion—Methods are needed to extract unbiased estimates of the effects of individual
interventional components from standardly-tailored designs.

Introduction
Interventions for geriatric conditions such as injurious falls [1] or disability [2] differ from
those corresponding to single diseases because typically more than a single interventional
component is used. Accordingly, the interventions often consist of components to modify a
number of selected risk factors. To improve generalizability of their clinical trials, geriatric
researchers often establish broad inclusion criteria so that a participant need not have all the
risk factors or pre-existing conditions corresponding to the multiple interventional
components to be eligible. Constraining participants to those having all risk factors limits
inference to persons with all risk factors. Such a restriction would make recruitment for
trials of interventions consisting of multiple components for geriatric health syndromes
much more expensive.

Of the many issues to consider in the design of such trials, [3], one of the most important is
how to assign individual interventional components. Clinical trials of multifactorial geriatric
conditions commonly assign individual components of the intervention based on a priori risk
factor assessment. For example in the FICSIT fall prevention trial postural hypotension was
one of seven risk factors and was defined as a drop of ≥20 mm Hg drop in blood pressure
when moving from a lying position to standing [4]. Its corresponding interventional
components were postural exercises, elevation of patient’s head when in bed, and review
and adjustment of medication. This method of assigning the individual interventional
components on an ‘as needed’ basis has been referred to as a ‘standardly-tailored’ (ST)
design. These differ from ‘customized’ designs in following a protocol for the assessment of
the risk factor and assignment of a predetermined intervention component. Some
‘customized’ designs allow for changing the intervention throughout the trial, which is not
the case with ST designs. While ST designs are clinically relevant and yield an estimate for
the net effect of the multicomponent intervention, it has not yet been shown if individual
component effects can be separately estimated in an unbiased manner. The ability to
estimate the most potent interventional components has direct bearing on conducting second
stage translational research [5].

A topic of great interest to the medical community, second stage translational research
involves the transfer of results from a randomized clinical trial (RCT) to a more general
setting and is also known as the as the T2 application phase [6,7]. Before second stage
translational research is undertaken, synergistic and or antagonistic interactions between the
individual component effects should be identified in addition to their main effects.
Knowledge of the relative strength and direction of the effects of the individual components
and their interactions facilitates the successful transfer of clinically significant findings and
may potentially reduce the number of interventional components needed. A large scale
example of second stage translational research is the Connecticut Collaboration for Fall
Prevention which has been described elsewhere [8,9].
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In this paper, we review a variety of factorial designs that facilitate the estimation of
component effects, and contrast them with ST designs, which pose significant challenges to
the unbiased estimation of the effects of individual interventional components. We use the
phrase ‘factorial designs’ to describe full-factorial designs and their derivatives that include
the fractional factorial, partial factorial, incomplete factorial, and the modified reciprocal
design.

Estimation of individual component effects
Traditionally, RCTs test interventional components that all subjects can potentially receive.
For example, if the two interventional components A and B are to be studied, design options
include: (1) three 2-arm trials (A vs control, B vs control and A + B vs. control), (2) a single
3-arm trial (A vs. B vs control), and (3) a 2 × 2 full-factorial design (A alone, B alone, A +
B, and neither treatment). The three design options are differentiated by the number of
participants needed to have the same precision in effect estimates and whether or not
interactions can be estimated [10]. Because the interventional component effects are
estimated separately in option 1 (e.g., A vs control and B vs control), comparisons among
components (e.g., A vs B) cannot be made directly. In the single 3-arm design interventional
component estimates are not independent because they are based on the same comparison
group and although interactions cannot be estimated, comparisons between A and B may be
made. In the full factorial, however, the interventional component effects are independent so
that main effects and interactions can be separately estimated. Another strength of factorial
designs is that when sample sizes are the same for each arm they are balanced (e.g., every
factor appears an equal number of occasions) [10]. Although balanced factorial designs
efficiently estimate the main effects by averaging across other effects, their sample sizes
grow geometrically as additional interventional components are added.

A key element of these three different design strategies is eligibility to be randomized to a
treatment arm. For the three 2-arm trials, a particular subject could be eligible for just one of
the trials (subjects that are not candidates for receiving B would only be eligible for the trial
A vs control). In the case of the single 3-arm trial, subjects have to be eligible to receive
intervention A or B, but not A + B. In the full factorial design each subject must be eligible
for intervention A, B and their combination.

As the number of risk factors requiring intervention increases in a geriatric health syndrome,
there may be a prohibitively small number of subjects eligible for any particular treatment
combination. This affects the generalizability of the results, which depend on the sample in
which the trial was conducted. In the falls prevention trial FICSIT [4] there were seven
interventional components. If this had been a full factorial design, then there would have
been 27 = 128 treatment arms and the results would have been generalizable only to older
persons with all seven risk factors.

Another consideration is that factorial designs may be inappropriate for clinical trials when
some components are known a priori to have a qualitative interaction or are contraindicated
for some participants [11]. McAlister et al. [12] review the use of full factorial designs and
caution that their appropriate use assumes independence between the interventional
components. They emphasize that substantive interactions between two interventional
components bias the estimated effects of the individual components.

Partial factorial designs
As used in the clinical trial literature, the term ‘partial factorial design’ has been used to
refer to a trial where the study population is randomized on at least a single factor of interest
and a subset of the study population is randomized to one or more factors. The choice of
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how to restrict the random assignment when using partial factorial designs has been driven
by economic, geographic, or clinical constraints. The Women’s Health Initiative [13],
CREATE-ECLA [14], and OASIS trials [15] are well-known trials based on partial factorial
design.

The Women’s Health Initiative [13] (WHI) had three embedded clinical trials: the Dietary
Modification Trial (DM), the Hormone Replacement Therapy Trial (HRT), and the Calcium
with Vitamin D trial (CaD). These trials tested interventions aimed at the prevention and
control of diseases commonly experienced by postmenopausal women. After determining
eligibility, women of ages 50–79 were invited to join a single intervention trial, i.e., DM or
HRT, or both. In the DM trial 48,835 women were randomized to either a low fat or control
diet. The HRT trial had two separate interventional components depending on whether or
not the woman had an intact uterus. At the first and second year anniversary of their
assignment within the DM and HRT trials, each woman was screened for eligibility for the
CaD trial. The design of the WHI therefore resulted in some women being randomized to a
single intervention (one trial), some randomized to two interventions (two trials), and some
randomized to three interventions (three trials). Therefore the design used different,
overlapping groups of women to estimate the separate effects of the DM and the individual
components of the HRT and CaD interventions.

The CREATE-ECLA randomized controlled trial [14] addressed myocardial infarction
related to a specific segment of the electrical signal controlling heart pumping as measured
by angiogram. Stability of this segment of the heart signal, known as the S-T segment, is
associated with lower mortality and better ventricular activity [16]. The CREATE-ECLA
randomized controlled trial [14] used a partial 2 × 2 factorial design with two separate
randomized assignments of treatment. The first randomization assigned all patients to either
treatment (glucose–insulin–potassium infusion) or control while the second randomization
applied only to those subjects residing in India and China. This latter subset of patients were
therefore randomized to double-blind therapy with reviparin or matching placebo in addition
to the treatment assignment they received in the first go-round.

The OASIS-6 trial [15] evaluated the effect of fondaparinux on mortality and reinfarction in
patients with myocardial infarction characterized by elevation of the previously described S-
T segment of the heart’s controlling electrical signal. The primary design was a full factorial
where all patients were stratified by indication for use of unfractionated heparin. The partial
factorial was formed by a subset of these patients who were also randomly assigned to
receive glucose–insulin–potassium infusion to evaluate association with mortality and
nonfatal cardiac arrest.

Fractional factorial designs
One possible approach to the problem when there are a large number of components of an
intervention is to consider a fractional factorial design [17,18]. This type of design has been
advocated [19,20] but has rarely been used in Phase III medical trials [21,22]. A fractional
factorial design is one in which only a specifically selected subset (fraction) of the treatment
combinations from the full factorial design is used. The fraction of the treatment
combinations is chosen by selecting one or more defining contrasts [23], that define which
interactions are confounded with the main effects [17]. Confounded effects cannot be
estimated separately or distinguished from one another because the experimental levels of
each of the confounded terms are identical in the design matrix of the experiment. Typically,
interactions of more than two factors are considered to be harmlessly confounded (e.g., have
negligible effects) whereas the confounding of main effects and two-way interactions needs
to be carefully considered. The resolution of a design indicates the highest order of

Allore and Murphy Page 4

Clin Trials. Author manuscript; available in PMC 2012 October 22.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



interaction that is not confounded with other interactions of the same order [17]. For
example, in a resolution III design the estimates of main effects are confounded with those
of potentially important two-factor interactions. Fractional factorial designs are based
around a defining contrast so that the pattern of confounding can be precisely defined a
priori. When there is not an a priori allocation to treatment arms, an inefficient, unbalanced
trial can result that leads to effect estimates with ill-defined patterns of confounding. This
results in a very limited ability to separate the estimates of main effects from those of
interactions of interest.

An example of a 1/2 fractional factorial resolution IV design for an intervention to prevent
nursing home acquired pneumonia is provided in Table 1. In these designs the main effects
are not confounded with any two-factor interactions, but are confounded with three-factor
interactions and two-factor interactions are confounded with each other. This design is based
on four factors that were found to be risk factors for nursing home acquired pneumonia in an
observational study [24]. The four modifiable risk factors are lack of Pneumococcal
vaccination, lack of oral care, problems with swallowing, and feeding the patient when
seated <90°. This fractional design allows for estimation of all four main effects while using
only 8 treatment arms compared to the 16 treatment arms needed for a full factorial design.
The price of this smaller experimental design is that the estimates of the four main effects
are each confounded with that of a three factor interaction and the two-factor interactions are
confounded with other two-factor interactions. So although the fractional factorial eliminates
the larger sample sizes of the full factorial, it requires that same baseline assumption that all
participants possess all risk factors and therefore eligible for assignment to all treatment
arms. It also assumes that confounding of higher order interactions with main effects adds
negligible bias. For example, in Table 1 the main effect of Pneumococcal Vaccination is
confounded with the three-way interaction Oral Care × Swallowing Therapy × Feeding
Position. Also, the investigator a priori must decide about the confounding of two-way
interactions. For example, in Table 1 the two-way interaction Pneumococcal Vaccination ×
Oral Care is confounded with the two-way interaction Swallowing Therapy × Feeding
Position. As the number of factors (components) increases, confounding as well as its
consequent risk for biasing estimates grows considerably. We refer the interested reader to
texts that provide detail on these designs [10,25].

Incomplete factorial and modified reciprocal control
There is a variant of the factorial design called the incomplete factorial design [11] that
specifically addresses effect estimation when there are ethical considerations or problematic
combinations of components. Suppose that a multicomponent intervention had three
components where each corresponded to a different medication. As is common in HIV/
AIDS or cancer trials, a treatment arm where participants receive all three medications or
specific combinations of them may be toxic. Therefore, a full factorial design is not
appropriate and so an incomplete factorial excludes problematic treatment arms. The
challenge with this design is obtaining unbiased estimates of individual component effects
[11]. However, methods for estimating the component variances, covariances and bias of
their estimates of component effects have been developed [11,26]. This design has been
used in agriculture [27] and pharmacology, but has not been used in medical trials. A
hypothetical example of a geriatric trial using an incomplete block design for fall prevention
might contain exercise and medication components and would exclude the use of anti-
hypertensive medications associated with risk of injurious falls for older patients.

Another variant that could be considered is a modified reciprocal control design, which is
applicable when the sample population does not have all the same risk factors. In this design
subjects with the same set of risk factors are randomized, as in a full factorial design. That
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is, a participant with two modifiable risk factors may be randomized to receive
interventional components for one of their two modifiable risk factors and serve as a control
for the effect estimate of the other [28,29] (Table 2). However, when analyzing this design
we must assume that the estimated effect of component A on all subjects eligible to receive
it, is independent of all other interventional effects. For example in Table 2, subjects with
risk factor combinations AB and AC are used in the estimation of the effect of the
intervention component to treat A. We assume that the coexisting risk factor, either B or C,
or the corresponding interventional component, has negligible influence on the estimated
effect of component A. This form of design has not been published in the medical literature
possibly due to the complications of its application.

Standardly-tailored designs
In trials designed to address multifactorial geriatric health syndromes, participants rarely
have all risk factors, but rather some subset of them. Consequently, participants are not
randomly assigned to all or some pre-planned combination of interventional components as
in a factorial design. In the ST design participants randomized to the intervention arms are
given only those interventional components that correspond to the risk factors that she or he
possesses at the time of enrollment (Figure 1). Although we limit our examples in this article
to dichotomous risk factors, the same techniques can be directly extended to ordinal
categories. To create ordinal categories of risk from continuous risk factors, such as
measures of vision, hearing, and blood pressure, clinical justification or methods such as
classification and regression trees can be used to determine cut-points [30].

Randomization in standardly-tailored designs
Clinical trials use randomization to control for both measured and unmeasured factors that
have an effect on the treatment comparison. The level at which randomization can occur
varies from individual participant to group (i.e., clustering at the level of physician, ward, or
site). Following their randomized assignment to intervention or control arm in a ST design,
those in the intervention arm receive only those interventional components corresponding to
the risk factors they have. An important consideration is that the control arm must have the
same balance of risk factors and their combinations as the intervention arms. Thus,
randomization based on stratification of risk factors present is often the preferred form of
randomization. This stratified randomization is depicted in Figure 1.

A major issue in estimating individual component effects is determining the appropriate
comparison group. For example, if an individual component effect were to be estimated
from a ST design, only those participants in the control arm possessing the corresponding
risk factor should constitute the comparison group. This comparison group differs from one
consisting of all participants who did not receive the component, because in the latter case
participants in the control arm not possessing the risk factor are not candidates for the
interventional component.

Comparing estimation of effects in factorial and standardly-tailored
designs

In this section, we demonstrate how factorial and ST designs respectively provide estimates
representative of net intervention and individual interventional components based on a
prospective study of three specific risk factors associated with falls of older persons within a
three year follow-up period. The three risk factors are impairment in manual dexterity,
impaired ability to perform chair lifts, and presence of depression. Occurrence of each of
these dichotomous risk factors is based on exceeding a threshold value on a continuously
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measured variable. Because this study was observational without intervention, we make a
few assumptions to convey the concepts relevant to effect estimation. We refer to the effect
of net intervention as that pertaining to an indicator variable showing whether a subject has
one or more of the three risk factors. Any subject with none of the three risk factors has a
value of 0 for the indicator of net intervention. All re-sampling and analyses of data were
performed with SAS statistical software version 9.1. 3 [31].

For demonstration purposes, we illustrate the effects pertaining to individual risk factors as
if they were actual individual interventional components. These interpretations allow us to
demonstrate how analysis of the data gathered per the two design types respectively estimate
interventional effects in a well studied multi-factorial geriatric syndrome.

The data set used to illustrate the analyses presented in Tables 3 (factorial) and 4 (ST
design) is based on 831 observations with no missing values from an original cohort of
1103. The 831 complete observations were stratified into 8 subgroups representing the risk
factor combinations 1 through 8 indicated in both tables. Table 3 analyzes data based on an
assumed factorial design of the data collection process. Sampling with replacement was used
to iteratively create 1000 samples of 40 observations from each risk factor combinations.
Bootstrapped estimates of the coefficients of Poisson regression of number of falls per
subject over a 3 year follow-up period were obtained from the 1000 data sets. In Table 3
effect estimates are presented for Net Intervention, as well as for the distinct risk factors.
Because of the assumed independent assignment of the risk factors, the factorial design only
requires the same number of subjects for risk factor combination 1, i.e., subjects with no risk
factors. Note that in Table 3 Net Intervention does not have a significant association with
probability of falling at the 5% significance level. However, Chair lift impairment and
depression have significant individual associations with probability of falling.

In Table 4 we assume that the interventional components, i.e., risk factors, are assigned on
an ‘as needed’ basis implying an ST design. As in the analysis of Table 3 we sample with
replacement from the 8 risk factor combinations to iteratively produce 1000 data sets
consisting of 40 subjects from risk factor combinations 2 through 8. For purposes of
estimating Net Intervention from an equal number of control and treatment subjects, we
resample 280 subjects from risk factor combination 1. Note that the assumed independence
of risk factor assignment in Table 3 required only 40 subjects from risk factor combination
1, an advantage of the factorial design. Due to the larger number of subjects used to
calculate the effect of Net Intervention in Table 4, its 95% confidence interval is smaller
while remaining insignificant.

To summarize, Tables 3 and 4 highlight the differences in how factorial and ST designs
respectively estimate interventional effects. The factorial is more efficient and allows
unbiased estimates of Net Intervention, as well as individual interventional components with
smaller sample sizes. Because the factorial requires a condition typically untenable in
interventions for multicomponent geriatric syndromes, i.e., independent assignment of
interventional components corresponding to specific risk factors, it has limited utility in
these circumstances. In contrast analysis based on the ST design in Table 4 requires an
overall larger sample size and does not permit unbiased estimation of effects of individual
interventional components. For interventions consisting of several interventional
components that respectively target specific risk factors of geriatric syndromes, it is often
more useful and less expensive due to its less restrictive assumptions regarding treatment
assignment.
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Future directions for estimation of individual interventional components
Standardly-tailored designs will continue to be employed because of their clinical relevance
in geriatric and second stage translational research. However, the complexity introduced by
their correlated effect estimates is not easily resolved. We suggest two potential directions
for extending ST designs to allow the unbiased estimate of individual component effects.
We first suggest that the set of optimal experimental designs commonly used in the
engineering disciplines [32] may permit an unbiased separation of the individual estimates
of correlated factors. Note that the optimal designs used in engineering are substantively
different from the ‘optimal designs’ sometimes referred to in the clinical trial literature. In
the clinical trials literature, the phrase ‘optimal design’ typically describes adaptive
sampling schemes that provide the investigator with the flexibility to optimize their test
resources [33]. In contrast, the optimal class of engineering designs are appropriate when not
all combinations of the components are ethical or possible, or when there are resource or
implementation limitations which restrict the number of component combinations in the
trial, or when analysis requires either a nonstandard linear or nonlinear model.

In the world of engineering design, experiments are typically laid out in a sequential fashion
where the first one is a screening experiment that identifies the crucial main effects and two-
factor interactions. The pharmaceutical literature presents examples [34–36] of Phase II
clinical trials that use D-optimal designs [32] to pick the group of factor combinations, or
time points in longitudinal trials [37] that optimize characteristics, such as minimum
covariance, of specific model coefficients. Unlike factorial designs, D-optimal designs do
not require independent (orthogonal) interventional components, thus parameter estimates
may be correlated. D-optimal design minimizes the covariance of the components estimates,
which is the same as maximizing the determinant of the design matrix; hence the ‘D’ in the
name is from determinant.

D-optimal designs are selected by algorithms where the user chooses the total number of
intervention component combinations that can be included in the trial consisting of all
possible combinations of various components that one could apply in the trial and the form
of the model. Next, an algorithm selects the optimal set of component combinations from
those specified. Optimal design methods have yet to be applied to estimates of individual
component effects from ST designs.

Our second suggestion for extending the ST design’s ability to yield unbiased estimates of
individual interventional components is based on identifying statistically independent linear
combinations of the individual risk factors and their corresponding interventional
components. In order to accommodate the lack of random assignment of risk factors in ST
designs, we start with a simplifying assumption. We assume that for each modifiable risk
factor under consideration there is only a single component for which we want to estimate
an interventional effect on a final outcome. Because a considerable obstacle to estimating
the effect of individual interventional components separately is the correlation among risk
factors they are intended to modify, a systematic grouping of risk factors according to their
inter-relationships may be worthwhile [1,3,38,39]. We therefore suggest that a promising
area of research may be found in the application of factor analysis to the correlated risk
factors in multicomponent interventional trials.

Suppose that a medical condition, such as fall-related injury, is associated with a number of
modifiable risk factors. From pilot or epidemiologic studies, risk factors associated with fall-
related injury might include measures of gait speed, balance, lower body strength, and use of
a specific medication. Whether these risk factors are continuous or categorical, the
techniques of factor analysis may yield statistically independent linear combinations of the
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original risk factors. Furthermore, assume that some of these linear combinations can be
interpreted as combinations of specific risk factors, e.g., patients with impairment of gait
speed and impairment of lower body strength with no other risk factors. A second such
combination might be patients with poor balance and using a specific medication. Assuming
that only two of the interventional components have significant association with probability
of falling, these two statistically independent linear combinations might be solved to yield
unbiased estimates of the two significant interventional components.

There are strengths and limitations to such an approach. The main strength is that
unconfounded estimates of discrete interventional components applied to risk factors for a
health outcome of interest, e.g. fall-related injury, could hypothetically be derived. A second
strength is that this approach has a natural conceptual alignment with the ST design where
interventional components would be given to participants according to their study arm
assignment and possession of specific risk factors.

The limitations include a requirement of a pilot study to estimate the existence of such linear
combinations or risk factors in the target population. However, this information might be
retrieved from Phase II trials that have already determined which components merit
consideration in Phase III testing. Furthermore, the method assumes the existence of linear
combinations of the risk factors that can be interpreted and assigned to specific study
participants. Sampling plans for such an assignment procedure would need to be developed
with associated formulae for power and sample size calculations.

In summary, we suggest the application of optimal designs from the engineering literature
and the assignment of interventional components based on factor analysis of risk factors as
two potential methods for obtaining unbiased estimates of individual interventional
components in ST designs. Both approaches assume an initial pilot study of central
importance. From this pilot or Phase II trial, optimal design assumes that the important
interventional components have been identified. Likewise the assignment of interventional
components based on factor analysis of risk factors assumes that the pilot study is a
representative sample of the larger study population. In either approach, bias in the final
effect estimates necessarily depends on the validity of the assumed accuracy of estimates
derived from the pilot or Phase II study.

Conclusions
The clinical trial literature shows that the vast majority of multicomponent trials are
designed with full factorial assignment of interventional components which, by assuming
their independence, facilitates the estimation of individual effects. Because there are many
geriatric medical syndromes that are multifactorial in nature and effectively treated by
intervening upon several correlated risk factors, ST designs have been developed to evaluate
the net interventional effect. We suggest two possible directions for unbiased estimation of
the effect estimates of individual interventional components from ST designs. Each
approach requires a well-designed initial pilot or Phase II study. These estimates are
assumed to adequately approximate the larger study population and are used in subsequent
experiments to yield the desired estimates.
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Figure 1.
Conceptual example of standardly-tailored design

Allore and Murphy Page 12

Clin Trials. Author manuscript; available in PMC 2012 October 22.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Allore and Murphy Page 13

Table 1

Design matrix for a 1/2 fractional factorial of resolution IV for four components of a multifactorial
intervention to prevent nursing home acquired pneumonia [24]. 0 denotes that the component is absent and 1
that the component is present

Components of the intervention

Treatment
combination

Pneumococcal
vaccination
A

Oral
care
B

Swallowing
therapy
C

Feeding position
of <90 degrees
D

1 0 0 0 0

2 1 0 0 1

3 0 1 0 1

4 1 1 0 0

5 0 0 1 1

6 1 0 1 0

7 0 1 1 0

8 1 1 1 1

The confounding pattern is:

Pneumococcal vaccination = Pneumococcal vaccination × (Oral Care × Swallowing Therapy × Feeding Position).

Oral Care = Oral Care × (Pneumococcal vaccination × Swallowing Therapy × Feeding Position).

Swallowing Therapy = Swallowing Therapy × (Pneumococcal vaccination × Oral Care × Feeding Position).

Feeding Position = Feeding Position × (Pneumococcal vaccination × Oral Care × Swallowing Therapy).

Pneumococcal vaccination × Oral Care = (Pneumococcal vaccination × Oral Care) × (Swallowing Therapy × Feeding Position).

Pneumococcal vaccination × Swallowing Therapy = (Pneumococcal vaccination × Swallowing Therapy) × (Oral Care × Feeding position).

Oral Care × Swallowing Therapy = (Oral Care × Swallowing Therapy) × (Pneumococcal vaccination × Feeding position).
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