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Humans take into account their own movement variability as well as potential consequences of different movement outcomes in planning
movement trajectories. When variability increases, planned movements are altered so as to optimize expected consequences of the
movement. Past research has focused on the steady-state responses to changing conditions of movement under risk. Here, we study the
dynamics of such strategy adjustment in a visuomotor decision task in which subjects reach toward a display with regions that lead to
rewards and penalties, under conditions of changing uncertainty. In typical reinforcement learning tasks, subjects should base subse-
quent strategy by computing an estimate of the mean outcome (e.g., reward) in recent trials. In contrast, in our task, strategy should be
based on a dynamic estimate of recent outcome uncertainty (i.e., squared error). We find that subjects respond to increased movement
uncertainty by aiming movements more conservatively with respect to penalty regions, and that the estimate of uncertainty they use is
well characterized by a weighted average of recent squared errors, with higher weights given to more recent trials.

Introduction
Humans take uncertainty into account when planning and exe-
cuting movements, including movements around obstacles (Sa-
bes and Jordan, 1997; Sabes et al., 1998) or toward targets whose
location is uncertain (Körding and Wolpert, 2004; Tassinari et al.,
2006). Humans also take visuomotor uncertainty into account
when planning a fast-reaching movement under risk (Trommer-
shäuser et al., 2003a,b, 2006; Maloney et al., 2007). In these ex-
periments, humans reach under a time constraint at a visual
display consisting of a target region and neighboring penalty re-
gion. On each trial, hits on the target that meet the time con-
straint yield financial rewards and hits on the penalty yield losses.
Human performance in these tasks nearly optimizes expected
gain. Humans change movement strategy in response to changing
uncertainty when movement uncertainty is changed artificially in a
virtual environment (Trommershäuser et al., 2005), using a visuo-
motor reflex (Hudson et al., 2010), or is naturally larger in one di-
rection than another (Gepshtein et al., 2007). In choosing when to
move, humans also choose a near-optimal trade-off of motor and
visual uncertainty (Battaglia and Schrater, 2007).

However, the foregoing work addresses steady-state behavior
and leaves open many questions about what sort of dynamic
adjustment or learning drives these changes. This contrasts work
on gain optimization in more abstract decision tasks, such as
“bandit” tasks (Bayer and Glimcher, 2005; Sugrue et al., 2005;

Daw et al., 2006; Behrens et al., 2007). There, participants’
choices and associated neural signals are well characterized by a
process that dynamically tracks an estimate of the mean gain
expected for an option, as embodied by reinforcement learning
models using delta rules or reward gradients (Sutton and Barto,
1998). The role of uncertainty in learning tasks has also been a
question of sustained interest. Although there are reported neural
correlates of uncertainty (e.g., by Behrens et al., 2007; Li et al.,
2011) and even of “risk prediction errors” suggesting a mecha-
nism for how these are learned (Preuschoff et al., 2008), it has
been relatively difficult to verify these hypothesized learning dy-
namics behaviorally. This is because, in these tasks, uncertainty
about the mean payoff tends to contribute only indirectly to be-
havior, such as by controlling the step sizes for updates (Courville
et al., 2006; Behrens et al., 2007; Li et al., 2011) or the degree of
exploration (Daw et al., 2006; Frank et al., 2009).

In this study, we use reinforcement-learning methods to study
dynamic strategic adjustment in a visuomotor decision task in
which subjects must cope with movement consequences whose
uncertainty changes over time. In our task, the gain-optimizing
strategy is determined by the uncertainty (i.e., variance) in the
movement endpoint, not its mean, offering an opportunity to
examine how humans learn second-order statistics from feedback
when these statistics have relatively direct behavioral consequences.
Indeed, straightforward application of a mean-estimating reinforce-
ment rule to our task predicts a qualitatively different pattern of
results, and thus offers a crucial comparison point for ensuring we
are isolating behavioral adjustments related to changing uncertainty.

Materials and Methods
Stimuli and procedure
Subjects performed a rapid reaching movement and attempted to hit a target
region displayed on a touchscreen while, on a subset of trials, avoiding a
partially overlapping penalty region (Fig. 1). Subjects began each trial with
their right index finger pressing the CTRL key of a keyboard firmly
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attached to a table. A fixation cross was displayed for 1 s, followed by
the target display. Subjects could begin the reach at any time after
stimulus display but were constrained to complete the movement
within 400 ms.

The target was a green outlined rectangle, 182 � 64 mm, located 37
mm left or right of the center of the display, viewed from a distance of 40
cm. On target-only trials, only the green rectangle was displayed. On
penalty trials, an overlapping solid red penalty rectangle of the same size
was displayed, displaced left or right of the target rectangle by one-half its
width (Fig. 1 A). The display background was black.

Task-relevant variability was manipulated by adding a horizontal per-
turbation to the movement endpoint. When the finger reached the screen
within the time constraint, two small squares were displayed: a white
square at the actual endpoint of the movement (with horizontal position
xhit), and a blue square (with horizontal position xfb) shifted horizontally
from that position by a random amount: xfb � xhit � � (Fig. 1 B). Al-
though this is perhaps a somewhat unnatural task, our focus here is on
how subjects contend with changing variability, as we already know that
subjects can change strategy with changing uncertainty. You might think
of the perturbed movement endpoints as analogous to typing or playing
a game on a cell phone touchscreen for which the feedback you receive
often appears inconsistent with the location you thought you touched.

The movement perturbation � was normally distributed with zero
mean and a SD, �pert, that could change from trial to trial. �pert followed
a “sample-and-hold” trajectory. The initial value of �pert was chosen
randomly and uniformly from a range of 3.7–18.4 mm. �pert remained
constant for an epoch that lasted for 75–150 trials; the epoch length was
chosen randomly and uniformly over that range. At the end of the epoch,
a new value of �pert and epoch length were chosen similarly, and so on
until the end of the block of trials.

Subjects participated in one training and two experimental sessions.
The training session consisted of 300 target-only trials. Experimental

sessions consisted of 420 trials, including 140
target-only trials and 280 penalty trials, with
equal numbers of trials with the target on the
left or right, and for penalty trials, equal num-
bers of trials with the penalty region to the left
or right of the target. Both training and exper-
imental sessions began with an additional 12
warm-up target-only trials; the data from the
warm-up trials were not analyzed.

Reward feedback was based on the position
xfb of the shifted, blue square. If the square fell
within the target region, the subject earned one
point (4¢). If it fell within the penalty region,
they lost five points. In the overlap region, both
the reward and penalty were awarded. Move-
ments that failed to meet the time constraint
resulted in a 10 point penalty. If subjects began
the movement before the stimulus was dis-
played, the trial was rerun. Subjects were given
feedback at the end of every trial with the re-
sults of that trial and were told their cumulative
score at the end of each session. Note that, since
the rewards are fixed, most of our qualitative
conclusions (although not, quantitatively, the
ideal-observer analysis for maximizing ex-
pected gain) are robust to nonlinearity in the
utility of the outcomes (e.g., risk sensitivity or
loss aversion).

Apparatus
The experiment was controlled by a PC and
stimuli were presented on an ELO Touchsys-
tems ET1726C 17 inch CRT display with
touchscreen, with claimed positional measure-
ment accuracy SD of 2 mm. Stimulus timing
and display were controlled using the Psycho-
physics Toolbox package (Brainard, 1997;
Pelli, 1997).

Subjects
Seven subjects (four females; three males) ran in the experiment includ-
ing one author (M. S. Landy). All had normal or corrected-to-normal
vision. All but one (J.M.F.) were right-handed and all used the right hand
to perform the reaches. Subjects signed a consent form approved by the
New York University University Committee on Activities Involving Hu-
man Subjects. They were paid a base fee plus a bonus based on perfor-
mance in the task. Bonuses ranged from $2.80 to $14.44 for a single
practice or experimental session.

Ideal-performance model
We treat ideal performance as the choice of an aim point that results in
maximum expected gain. Such a strategy must take into account the stimu-
lus display (the locations of payoff and penalty regions), the reward and
penalty values, as well as the total task-relevant uncertainty. For our task,
both the target and penalty regions are large vertical rectangles, so tall
as to be impossible to miss in the vertical direction. Thus, this is
effectively a one-dimensional task, and we only model the choice of
horizontal aim point xaim. On any given trial, movement uncertainty
has two components: the subject’s own motor uncertainty �motor and
the experimenter-imposed outcome uncertainty �pert, resulting in
overall uncertainty as follows: �overall � ��pert

2 � �motor
2 . In reaching

tasks such as these, we find endpoint distributions to be well approximated
by a Gaussian distribution (Trommershäuser et al., 2005), and so, for the
purposes of modeling ideal behavior in this task, we assume that, when a
participant aims at location x, endpoints will be distributed as a Gaussian
with variance �overall

2 .
If the participant had precise knowledge of �overall, then they could

select an ideal strategy for the task (i.e., choose an aim point that maxi-
mized expected gain, providing the best trade-off between maximizing
hits on the target while minimizing occasional hits on the penalty re-

Figure 1. Stimuli and task. A, The initial stimulus display consisted of a green outlined target region and an overlapping red
penalty region (here shown as outlined black and solid gray, respectively). Participants performed a speeded reach with the right
hand, attempting to hit the target while avoiding the penalty region. B, After the movement was complete, a small white square
indicated the reach endpoint. A small blue square was also displayed, randomly displaced horizontally away from the reach
endpoint (here shown as open and filled squares, respectively). The participant received one point (4¢) for each endpoint within
the target region and lost five points for hitting the penalty region. Slow movements (�400 ms) led to a 10 point penalty.
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gion). Figure 2 illustrates the computation of the optimal aim point xopt

for this “omniscient” observer who somehow has knowledge of the value
of �overall for the current trial. Figure 2 A shows the distribution of move-
ment feedback locations xfb resulting from a particular value of xaim

(indicated by the vertical black line through all three panels). The
experimenter-imposed gain function is shown in Figure 2 B, with the
corresponding probabilities of hitting the target or penalty indicated by
the black and gray cross-hatching in Figure 2 A, respectively. The ex-
pected gain for this aim point is indicated by the black square in Figure 2C
and is computed as the sum of the target and penalty values weighted by
the respective probabilities as follows:

EG�xaim) � 1 � P�hit target � xaim,�overall� �

5 � P�hit penalty � xaim, �overall�. (1)

Figure 2C shows expected gain as a function of aim point. The aim point
corresponding to the peak of the curve (the black circle) is the optimal
strategy xopt.

Figure 3 shows the optimal strategy xopt as a function of overall noise
variance. As one might expect, increased noise leads an optimal omni-
scient participant to aim further away from the penalty region. In this
figure, the vertical lines bound the region of �overall

2 values that occurred in
our study (across participants and epochs).

Analyses of dynamic learning
We are interested in determining how strategy on a given trial is deter-
mined based on the outcomes of previous trials. The model of ideal
performance described above suggests that subjects should track the vari-
ance of recent perturbations, and then (by analogy with the informed
ideal observer) choose an aim point, on each trial, that is linear in their
current variance estimate.

Accordingly, in our task, large perturbations should drive (variance-
estimating, gain-optimizing) participants to adopt large variance esti-
mates, and thus aim far from the penalty area; small perturbations should
have the opposite effect. Such a strategy can be equivalently described in
terms of trial-to-trial relative behavioral adjustments. To wit, an unex-
pectedly large perturbation (relative to the previous variance estimate)
should drive a participant to increase their variance estimate and thus
subsequently aim further away from the penalty area, relative to previous
aim points.

Importantly, a large perturbation should have this effect regardless of
whether that perturbation drove the reinforced location xfb toward or
away from the penalty. Even if the current aim point is outside the target,
and yet a large perturbation led to an “undeserved” reward, the variance-
tracking optimal strategy would treat the large perturbation as evidence
for large uncertainty, possibly moving the aim point even further outside
the target on the next trial, even though the previous aim point was
rewarded. A strategy based on tracking the mean perturbation, analo-
gous to a reinforcement learner, will instead adjust aim points to com-
pensate for the average perturbation, aiming closer to the center of the
target (and thus closer to the penalty) after trials with large perturbations
that move the reinforced location xfb further away from the penalty.
(Because the position of the penalty is randomly to the left or right of the
target, we conduct all our analyses using coordinates for x in which
positive values indicate the direction away from the penalty region,
rather than left or right.) Note that this will be the qualitative direction of
update even in a variance-sensitive version of the mean-tracking ap-
proach in which the variance estimate controls the step size for the up-
date (Dayan and Long, 1998; Dayan et al., 2000; Courville et al., 2006;
Preuschoff and Bossaerts, 2007).

To contrast these two approaches—tracking the variance versus track-
ing the mean perturbation—and to verify that aim points were related to
variance rather than mean tracking, we will compare strategies that com-
pute aim points based on the average of recently experienced squared
perturbation (an estimator for the variance) with those that track the
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Figure 2. Expected gain and optimal strategy. A, Illustration of the distribution of perturbed
reach endpoints xfb for reaches with aim point xaim (indicated by the black vertical line).
B,Experimenter-imposedrewards(black)andpenalties(gray).Theprobabilityofhittingthetarget or
penalty is indicated by the black and gray cross-hatching in A. C, Expected gain as a function of
aim point. The black square indicates the expected gain for the example in A. The black circle
corresponds to the optimal aim point xopt resulting in maximum expected gain.
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Figure 3. Optimal aim point xopt as a function of overall variance. The vertical lines indicate
the range of experienced overall variance in our experiments across participants and epochs.
Optimal aim point is approximately a linear function of variance.
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average of the perturbations themselves (the mean). We consider models
that compute the aim point xaim as a linear function of the statistics of
recently experienced perturbations. As an approximation to the ideal
model, this tractable approach is justified in that within the range of
values of �overall

2 that confronted participants, the optimal aim point was
approximately a linear function of �overall

2 (Fig. 3), and hence of �pert
2 as

well.
Regression analyses. We will begin by examining a particularly simple

model in which the current aim point is based solely on the most recently
experienced perturbation. For such a prediction to be made, the current
trial must be a penalty trial (participants should aim at the center of the
target on target-only trials). Thus, we will regress the current reach end-
point on penalty trials against either the previously experienced pertur-
bation or squared perturbation. Participants only experience the
perturbation on trials in which the finger arrived at the display screen
before the time-out; for trials in which the reach was too slow, the
perturbed location was not displayed. In subsequent analyses, we will
examine models that base the strategy on more than one previously
experienced perturbation (on more than one previous trial). To com-
pare these models on an equal basis, all models are fit only to penalty
trials in which there were at least 15 previously experienced pertur-
bations in the same session (excluding warm-up trials).

We will also determine whether current strategy is based on a longer
history than merely the most recently experienced perturbation. To do
so, we will conduct “lagged regressions” in which, instead of using only
the most recently experienced squared perturbation as a regressor, we
will include the eight most recently experienced squared perturbations as
regressors.

In our analyses, the dependent variable is the movement endpoint of
each trial, and the explanatory variables are previously experienced per-
turbations that might contribute to a subject’s variance estimate. This is
motivated by the form of the ideal strategy conditional on knowing the
variance. However, because the movement endpoints arise in sequence,
they could be sequentially correlated with one another in a way not fully
accounted for by the perturbations (Lau and Glimcher, 2005). Such
autocorrelation could arise, for instance, as a result of other sorts of
higher-level strategic adjustment. This is problematic because in ordi-
nary least-squares regression analysis, one underlying assumption is that
the dependent variables are independent of one another, conditional on
the explanatory variables. To ensure correct statistical estimation in the
presence of potential autocorrelation, we use a technique analogous to
that used by Lau and Glimcher (2005), who pointed out the problem in
the context of a similar analysis of a reinforcement learning task. To
predict the movement endpoint for trial n, in addition to the regressors
relevant to the analysis (e.g., the squared perturbation of the previous
trial), we also include as nuisance regressors the movement endpoints
from previous penalty trials, thereby allowing the model to account ex-
plicitly for any residual autocorrelation.

To determine the number of previous trials to include, we first ran the
lagged regression described above with, as added regressors, the end-
points from 0 to eight previous penalty trials. We compared the results of
these regressions using both the Akaike information criterion (AIC) and
Bayesian information criterion (BIC) (summed over subjects) and found
that both criteria attained a minimum with the addition of three previous
penalty trials. Thus, to ensure correct statistical estimation in the pres-
ence of possible autocorrelation, in all regression results and model fits
reported in this paper (see Figs. 6 –9), we include the movement end-
points of the three previous penalty trials as additional regressors. In
addition, in any analysis in which we report the variance accounted for by
a regression or model, we base our results on the remaining variance. By
remaining variance, we mean the variance accounted for by the model
over and above the variance accounted for by the three previous-trial
regressors.

Model fits. We will also consider parametric models that, like the
lagged regression, base the strategy of the current trial on a weighted sum
of recently experienced perturbations. These models, like the results of
the lagged regression shown below, give the greatest weight to the most
recent trials, by using weights that decay exponentially with the lag. We
will compare several different models of this form to ask about the rela-

tive importance of variance and mean estimation in subjects’ choices. We
begin by describing the most complex model we fit to the data; the other
models are nested simplifications of this model.

The models assume that the aim point in each penalty trial is a linear
combination of previously experienced perturbations and/or squared
perturbations. Participants experience a perturbation (i.e., see a display
indicating the actual and perturbed endpoints as in Fig. 1 B) on any trial
(penalty or target-only) in which the reach arrived at the display screen
within the experimenter-imposed time constraint. We index these “use-
able” trials (not a warm-up trial, no time-out) by i � 1, 2, . . . , N, where
N is the total number of useable trials in that experimental session. The
regression is computed to model data only for those useable trials j meet-
ing two additional constraints: j is a penalty trial and j � 15 (so there are
enough previous trials on which to base the prediction). For such a trial j,
the model for the reach endpoint is as follows:

Xhit,j � B � Ws �
i�1

j�1

e�� j�i�1�/rs�i
2 � Wp �

i�1

j�1

e�� j�i�1�/�p�i � �j.

(2)

Here, �i is the value of the perturbation in useable trial i, where positive
values indicate a perturbation in the direction away from the penalty region
(i.e., rightward when the penalty was to the left of the target, and leftward
otherwise). ws and �s are the weight and exponential time constant for
squared perturbations, and wp and �p are the weight and time constants for
perturbations. B is a bias term; think of it as the mean aim point in the
absence of any information about the current perturbation. Finally, reach
aim points are perturbed by motor noise �j that has zero mean, is normally
distributed, independent over trials, and has SD �motor. Thus, there are five
parameters modeling the aim point (B, ws, �s, wp, and �p) and one noise
parameter �motor. The estimated noise parameter is simply the SD of the
residuals. The models were fit to the data of both experimental sessions by
maximum likelihood, separately for each subject.

Early trials in the session have fewer previous perturbations to contribute
to the prediction by the model of the value of xhit of the current trial. We also

fit models in which the weights on �i
2 were normalized by 	

i�1

j�1

e�� j�i�1�/�s

(and similarly for the weights on �i). These models behaved similarly to the
unnormalized versions summarized here.

We will compare seven different models as follows: (1) “exponential
mean and variance” described by Equation 2; (2) “exponential variance
only” that omits the terms based on previously experienced perturba-
tions (i.e., forcing wp � 0); (3) “exponential mean only” that omits the
terms based on previously experienced squared perturbations (i.e., forc-
ing ws � 0); (4) “one-back variance and mean” that only considers one
previously experienced trial (i.e., forcing �s and �p to be vanishingly
small); (5) “one-back variance only” that considers one previously expe-
rienced squared perturbation (i.e., small �s and wp � 0); (6) “one-back
mean only” that considers one previously experienced perturbation (i.e.,
small �p and ws � 0); and (7) “aim point bias alone” (i.e., ws � wp � 0).

Each of these models was fit to the data for each subject separately by
maximum likelihood. Models 5 and 6 are formally identical with the
linear regressions described in the previous subsection, and model 4 is an
analogous bivariate linear regression. Many pairs of models are nested in
the sense that one model is a constrained version of the other and thus
may be compared using the nested hypothesis test (Mood et al., 1973).

Results
Raw endpoint data
Results for two individual subjects are shown in Figure 4. For
each subject, Figure 4A shows the trajectory of imposed outcome
uncertainty (�pert) over the two experimental sessions. We esti-
mated each subject’s motor uncertainty, �motor, as the SD of the
horizontal location of movement endpoints relative to the center
of the target, pooled across all trials in the training session and all
no-penalty trials in the two experimental sessions (excluding any
trials in which the participant failed to arrive at the target in
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time). Overall uncertainty was estimated
as the combination of these two indepen-
dent sources of uncertainty, as noted
before (see Materials and Methods, Ideal-
performance model).

Comparison with the optimal
“omniscient” strategy
Figure 4B shows the optimal aim points
for each penalty trial in the experimental
sessions (the solid and dashed lines) as
well as the actual endpoints for all penalty
trials in which the reach arrived at the
screen before the time-out. An aim point
or endpoint value of zero corresponds to
the center of the target, and positive values
correspond to landing points shifted away
from the penalty, allowing us to sensibly
plot data together for trials in which the
penalty region was to the left or right of
the target. The plotted optimal aim points
are based on the value of �overall of each trial (Fig. 3), which, in
turn, depends on the value of �pert, which was not available to
the participants. Hence, we refer to this as the optimal “om-
niscient” strategy. Nonetheless, there is some indication in
Figure 4 B, especially for P.S.H., that the participant’s strategy
was affected by changing uncertainty; endpoints land further
from the penalty region during periods of greater outcome
uncertainty.

We determined the degree to which participants compensated
for changing uncertainty by comparing reach endpoints to those
predicted by the optimal omniscient strategy. Figure 5A plots reach
endpoints for one subject as a function of optimal omniscient
endpoints. A linear regression (dashed line) indicates that there
was substantial compensation for changing uncertainty by this
subject. The amount of compensation in response to the applied
perturbation varied across subjects (Fig. 5B) and was significant
for six of the seven participants. Most subjects compensated less

than called for by the optimal omniscient strategy, but one sub-
ject (S.O.) overcompensated.

Response to recently experienced perturbations
In the preceding analysis, participants’ strategies of aim point
selection were compared with the omniscient strategy, which
assumes the participant has access to the value of �pert of the
current trial. Of course, although aim points were sensitive to this
parameter, its value was not told to the participants and further-
more was changed over trials. Thus, this sensitivity must have
arisen by participants adjusting their strategy in light of experi-
ence (e.g., by dynamically estimating outcome uncertainties to
formulate their aim points on each trial).

Our remaining analyses seek to characterize these dynamic
adjustments by studying the dependence of aim points on recent
experience. Rather than specifying a full Bayesian ideal updater
(Behrens et al., 2007), we seek to determine what statistics of
recent observations influence the aim strategy and, in so doing, to

Figure 4. Data for two subjects. A, Perturbation magnitude �pert across experimental sessions 1 (solid line) and 2 (dashed line). B, Data points, Reach endpoints plotted relative to the center of
target, with positive values corresponding to endpoints located away from the penalty region relative to target center. Data are plotted only for penalty trials in which the reach was completed within
the time constraint. Lines, Aim points based on the optimal omniscient strategy (i.e., assuming knowledge of both �motor as well as the value of �pert of the current trial).

Figure 5. Compensation for uncertainty. A, Scatterplot of reach endpoints as a function of the optimal aim point using the
omniscient strategy. The solid identity line corresponds to the optimal omniscient strategy. The dashed regression line indicates
the degree to which this participant responded to changes in outcome uncertainty. B, Regression slopes for all seven participants.
Error bars are 95% confidence intervals. Six of seven participants had a significant degree of compensation for changing uncer-
tainty. Most participants undercompensated, but one, S.O., overcompensated.
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probe a key difference in the present task from many reinforce-
ment learning tasks that have been studied with similar analyses
(Corrado et al., 2005; Lau and Glimcher, 2005). Gain optimiza-
tion in reward learning tasks is typically driven by estimating
mean payoffs [e.g., with delta-rule or gradient-climbing algo-
rithms (Sutton and Barto, 1998; Dayan and Abbott, 2005)], so as
to choose the option with highest rewards. However, in the pres-
ent task, the key statistic determining the optimal strategy is the
variance of the perturbations, not their mean.

Figure 6 illustrates the results of regressing the current reach
endpoint on penalty trials against either the previously experi-
enced squared perturbation (Fig. 6A,B) or the previously expe-

rienced perturbation (Fig. 6C,D). The
influence of the previously experienced
squared perturbation on the reach end-
point of the current trial is significant
averaged across observers (t(6) � 2.86;
one-tailed p � 0.014), and is significant
individually for six of seven participants
(Fig. 6A), although the degree of influence
(Fig. 6A) and remaining variance accounted
for by this regression (Fig. 6B) differ sub-
stantially across participants. The regression
coefficients are all positive, indicating that
larger squared perturbations lead partici-
pants to aim further away from the penalty,
as expected. The remaining variance ac-
counted for is quite small, because the three
previous penalty trial regressors in the anal-
ysis (see Materials and Methods, Regression
analyses) soak up most of the variance that
would otherwise have been attributed to the
squared-perturbation regressor. In con-
trast, the previously experienced pertur-
bation (not squared) does not have a
significant influence on the current reach
endpoint averaged across observers (t(6) �
�0.36; one-tailed p � 0.63). This influence
is not significant for any individual observer
and the signs of the regression coefficients
are inconsistent across subjects (Fig. 6C).

In typical reinforcement-learning par-
adigms, behavior on a given trial is correlated with recently expe-
rienced reinforcement. We examined the additional impact of
reinforcement on strategy in our task by repeating the analysis of
Figure 6, adding in additional regressors based on reinforcement
from the previous penalty trial. We computed regressions
based on whether the previous penalty incurred a reward, a
penalty, or both, and an additional regression based on the over-
all score from the previous penalty trial. The additional variance
accounted for by inclusion of these regressors was quite small and
the weights on these regressors were significant only for three
subjects in the regression that included target hits. We conclude
that changes in aim point are primarily a response to recently
experienced squared perturbations, rather than merely to re-
inforcement signals.

Next, to study how participants combined perturbations from
multiple trials into an estimate, while making minimal paramet-
ric assumptions about the form of this combination, we con-
ducted a similar regression in which, instead of using only the
most recently experienced squared perturbation as a regressor,
we included the eight most recently experienced squared pertur-
bations as regressors. This is equivalent to assuming subjects aim
proportional to a variance estimate, which is itself constructed
from a weighted average of previous perturbations. The weights
on each recent perturbation vary substantially across subjects
(Fig. 7). The average influence of perturbations differs signifi-
cantly from zero for four of the eight lags (p 
 0.05) and ap-
proaches significance for one other lag. The overall trend is noisy
but appears to weight more recent perturbations more heavily
than those further in the past.

This decay appears, at least on the average [which is an esti-
mator for the population level effect (Holmes and Friston,
1998)], roughly exponential in shape. Such an exponential
form to the lagged dependence is predicted if subjects track their
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Figure 6. Response to the previously experienced perturbation. A linear regression was computed to predict the reach endpoint
of each trial as a function of the most recently experienced squared perturbation (A, B) or raw perturbation (C, D). Plotted are the
regression weights (A, C, with 95% confidence intervals) and remaining variance (for the definition of remaining variance, see
Materials and Methods, Regression analyses) accounted for (B, D), as well as across-subjects averages and �2 SE.

Figure 7. Lagged regression. Results of a regression predicting the reach endpoint of each
trial as a linear combination of the squared perturbations of the previous eight trials. Gray,
Individual subjects. Black, Group average and �2 SE error bars. The isolated error bar at the top
right represents the average, over subjects and lags, of the 95% CI from the individual linear
regressions.
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variance estimate by an error-driven running average [here, of
squared perturbations (Preuschoff et al., 2008)].

Parametric models
The results of the lagged regression indicate that participants base
their choice of reach aim points on several recently experienced
perturbations, with greater weight placed on more recent trials.
However, characterizing the lagged dependence given so few
structural assumptions about its form requires a large number of
free parameters and introduces concerns of overfitting. There-
fore, to directly capture the effects of squared and nonsquared
perturbations together in a single model, and to characterize this
dependence over arbitrary time lags, we next adopted the param-
eterization suggested by the previous analysis. That is, we consid-
ered models that weight recently experienced perturbations using
weights that decay exponentially with lag.

First, we tested whether this approach was justified by com-
paring the fit to data of the unconstrained model from Figure 7,
to the corresponding model assuming exponentially decaying
weights (model 2). Although the latter has many fewer free pa-
rameters, it fit the data nearly as well. In particular, penalizing the
fit for the free parameters using either the AIC or BIC criterion
[because the two models are not nested (Schwarz, 1978)], the
exponential model fit better for every participant, by an average
AIC difference of 88 and BIC difference of 114.

Figure 8 presents the results of the model comparisons. Each
rectangle corresponds to one of the seven models and gives the
number of model parameters (excluding the noise parameter
�motor required by every model). The arrows indicate nesting
between models, with more complex models placed higher in the
figure. Next to each arrow is an indication of the number of
subjects of the seven for whom the hypothesis test rejected the
null hypothesis (p 
 0.05, with no corrections for multiple tests)
indicating that the extra parameters in the more complex model
were justified.

We can summarize the model comparison tests as follows.
First, in every case in which the more complex model of the pair
adds squared perturbations as a predictor (three model compar-
isons), the model comparison supports the addition of parame-
ters for six of seven subjects. Second, for any one-back model that
includes predictions based on squared perturbations, model
comparisons justify the addition of an exponential weighting of
past trials for six of seven subjects (there are two such model
comparisons). Finally, the evidence is somewhat weaker for the
usefulness of including nonsquared perturbations for prediction.
Model comparisons that add in these regressors are significant for
one or no subjects for the one-back models (there are two such
model comparisons). But, adding in an exponential weighting of
nonsquared regressors is significant for three or four of seven
subjects (there are two such model comparisons). Thus, combin-

Figure 8. Model comparison. The rectangles indicate each of the seven models fit to the data and the number of model parameters for each (excluding the noise parameter). The arrows indicate
model nesting, with the more complex model placed higher in the figure. The labels on the arrows indicate the results of nested hypothesis tests done individually for each participant.
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ing all of these observations, the evidence for model 2 (exponen-
tial variance only) is strongly supported by the data, indicating
that participants base their aim points on an estimate of pertur-
bation variance based on an exponentially weighted average of
previously experienced squared perturbations. But there is some
evidence for a response to an exponentially weighted average of
past perturbations. We should note, however, that model 1 (ex-
ponential mean and variance), which also includes perturbations
for prediction, explains very little additional variance compared
with model 2 for most subjects; in the median across subjects, the
variance accounted for by model 1 is only a factor of 1.173 larger
than that accounted for by model 2.

How does model 2, which uses only squared perturbations,
compare with model 3 (exponential mean only), which uses only
raw perturbations as regressors? Although the relative fits of these
two models to the data cannot be tested using classical methods,
since they are not nested, the two models do contain the same
number of free parameters so their raw goodness of fit (e.g., in
terms of variance accounted for) can be fairly compared. Exclud-
ing subject A.I., for whom neither model explains an appreciable
fraction of the remaining variance, for five of the subjects, model
2 fares much better. For all six subjects other than A.I., the fit of
model 2 is preferred in terms of log likelihood (equivalent to an
AIC or BIC calculation, since the numbers of parameters are
identical). For four subjects, the ratio of remaining variance ac-
counted for (model 3 relative to model 2) ranges from 0.03 to
0.08. However, for two subjects (J.F. and N.G.C.), model 3 ex-
plains nearly as much remaining variance as model 2 (ratios of
0.69 and 0.67, respectively). Thus, for these two subjects espe-
cially, a series of perturbations away from the penalty resulted in
responses closer to the penalty in subsequent trials (and vice
versa) in addition to the predicted response to large (squared
perturbations) driving responses away from the penalty.

The models involving responses to the mean perturbation use
a coordinate system for both the perturbations and responses in
which positive values are for perturbations or movement end-
points shifted away from the penalty. In the motor adaptation
literature, one typical scenario is to study adaptation to a partic-
ular fixed perturbation of all movements (say, 3 cm rightward),
regardless of movement direction or endpoint. We have also per-
formed model comparisons on our data of this sort, looking for
leftward changes of endpoint in response to recent rightward
perturbations in the models involving response to mean pertur-
bation. Model comparisons that add in an exponential weighting
of nonsquared perturbations have far less support, showing sig-
nificant results for only two of seven subjects (compared with
three or four subjects as noted above), and for this coding of
perturbation, the ratio of variance accounted for by model 1
compared with model 2 is only 1.039. Thus, we have no evidence
for response to the mean perturbation coded relative to world
(rather than target-penalty) coordinates.

Figure 9 compares the lagged regression results from Figure 7
with the corresponding parametric model that exponentially
weights previously experienced squared perturbations (model 2).
Figure 9A shows the weights on the eight previously experienced
squared perturbations from the lagged regression (solid lines)
and the weights based on the exponential fits of model 2 (dashed
lines) separately for each subject. The correspondence is rea-
sonable for the subjects with the largest weights (note that the
ordinate scales vary across subjects). For the others, the corre-
spondence seems weaker. The reason for this can be seen more
clearly in a scatterplot of the weights fit by both techniques (Fig.
9B). For several subjects, the weights from the lagged regression

vary considerably compared with those huddled just above zero
from the exponential fit of model 2. The reason is that the best-fit
time constants (�s) were often large (ranging from 1.1 to 112
trials), whereas the lagged regression was constrained to ex-
plain the data using only the eight most recently experienced
perturbations.

In summary, we have demonstrated that humans change the
movement plan for a reach in response to experimenter-imposed
changes in task-related variance in movement under risk. In this
task with explicit perturbation of reinforced movement outcome,
participants’ strategies appear to be suboptimal and vary substan-
tially over participants. Nevertheless, almost all participants re-
sponded to changes in the variance of the perturbation, shifting
their aim point further away from the penalty region when per-
turbation variance was increased. However, participants varied
substantially in both the magnitude of response to changes in
movement outcome variability as well as the time constant of the
exponential average of past squared perturbations that controlled
that change in aim point. Some subjects also varied strategy in
response to the mean perturbation, but this effect was, for most
subjects, far smaller.

Discussion
This experiment aimed at exploring how humans dynamically esti-
mate and respond to variability in the outcome of movement under
risk. Participants performed rapid reaches at a target while attempt-
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ing to avoid a neighboring penalty region. The experimenter-
imposed variability was much larger than motor variability, was
repeatedly changed, and was visible to participants because the
actual and perturbed reach endpoints were displayed simultane-
ously. Most participants responded to increased movement out-
come uncertainty by aiming further away from the penalty
region. We characterized the trial-by-trial dynamics of this adjust-
ment and distinguished it from other potentially confounding ad-
justments related to trial-by-trial tracking of and compensation for
the mean perturbation.

Descriptively, our data appear to be well characterized by a
model in which subjects track variance by an exponentially
weighted average over past squared perturbations. This is a
mechanistically plausible model with obvious analogies to well
studied neural mechanisms (Montague et al., 1996). Unlike ideal-
observer Bayesian estimators, which for nontrivial change pro-
cesses can typically be solved only numerically (Behrens et al.,
2007), such a weighting is easy to compute online. In particular,
as has been pointed out in studies of the dopaminergic system
(Bayer and Glimcher, 2005), an exponential weighting results
from maintaining only a running average over observations (in
this case, squared perturbations), and at each trial adjusting this
by a delta rule to reduce the difference between the obtained
squared perturbation and the current estimate: in effect, the pre-
diction error for the (squared) prediction error. In reinforcement
learning models, the same rule for mean tracking (i.e., the pre-
diction error rule for learning mean, nonsquared payoffs) is the
basis for the familiar Rescorla–Wagner (Rescorla and Wagner,
1972) and temporal-difference learning (Montague et al., 1996;
Sutton and Barto, 1998) models.

Accordingly, in studies of discrete decision tasks for reward, a
result analogous to Figure 7 for the lagged (not squared) rewards
has repeatedly been reported, and has there been interpreted as
evidence for such a learning rule (Bayer and Glimcher, 2005;
Corrado et al., 2005; Lau and Glimcher, 2005). The suggestion
that variances might also be estimated by a similar running-
average rule of the squared errors has roots as far back as the
model of Pearce and Hall (1980), at least when reinterpreted in
statistical terms (Sutton, 1992; Dayan and Long, 1998; Dayan et
al., 2000; Courville et al., 2006; Preuschoff and Bossaerts, 2007),
and neural correlates for variance estimates, errors in them, or
other related quantities have also been reported (Preuschoff et al.,
2006, 2008; Behrens et al., 2007; Roesch et al., 2010; Li et al.,
2011). In particular, Preuschoff et al. (2008) report correlates in
human insula for a sequential “risk prediction error” generalizing
the one suggested here. The present results go some way toward
filling in the previously somewhat thin behavioral support for
this type of hypothesized variance-tracking mechanism. Because
in reinforcement learning tasks, the uncertainty affects behavior
only indirectly, the time course of variance estimation has not, to
our knowledge, previously been directly estimated or visualized
as a function of lagged observations across trials in the way re-
ported here. Of course, to verify this suggestive relationship, it
remains to examine behavior like in the present task together
with neural measurements or manipulations. One important dif-
ference, which may be relevant to the underlying neural mecha-
nisms, is that the neural work discussed above concerns variance
in reward amounts, rather than movement endpoints, as in the
current experiment. In the reward setting, it has even been sug-
gested (Roesch et al., 2012) that the prediction error for reward
carried by dopamine drives the variance tracking as well (e.g., it is
somehow squared in a downstream plasticity rule); such a mech-

anism is unlikely to apply to variances in quantities other than
reward.

A related point is that, whereas the delta rule for mean track-
ing has a well understood relationship with an ideal-observer
model (in particular, it arises asymptotically in the Kalman filter),
it remains to be understood the extent to which similar weighted
averaging rules approximate the variance estimates that would
arise for Bayesian variance estimation and, if so, for what change
process. However, one hallmark of exact Bayesian change track-
ing across many change processes (DeWeese and Zador, 1998),
but which does not hold in our approximate model, is that it is
much easier to detect an increase compared with a decrease in
variability. This is because of the likelihood function relating
variance to samples: a single outlier can be strong evidence for an
increase in variance, whereas in equivalent circumstances a near-
mean observation (or even a sequence of them) is not symmetri-
cally strong evidence that variance has decreased. Thus, since in
the current experiment, movement outcome variability can sud-
denly increase or decrease within a session, if participants are
engaging in Bayesian variance tracking, one might expect a
shorter time constant for adaptation of reach strategy to increases
in variance than to decreases. We have looked for and failed to
find this in the present data, although the variance trajectories we
used were not designed for this analysis.

In previous work, we have often demonstrated optimal behav-
ior in reaching tasks similar to this one, indicating that humans
can take into account their own movement uncertainty in plan-
ning reaches under risk (Trommershäuser et al., 2003a,b), even
when that uncertainty is altered surreptitiously by the experi-
menter (Trommershäuser et al., 2005; Hudson et al., 2010). And
an estimate of perceptual and motor uncertainty is used in a
manner reasonably consistent with predictions of a Kalman filter
in adapting to average error in motor tasks (Baddeley et al., 2003;
Burge et al., 2008).

In the current experiment, although we have not computed an
ideal-performance model for our experimental conditions, the
intersubject variability makes it clear that performance is not
near-optimal for all participants. Our results indicate that opti-
mal performance is mostly achieved in reaching-under-risk ex-
periments in which the conditions are reasonably natural
(Trommershäuser et al., 2003a,b, 2005; Hudson et al., 2010).
When the task is slow and deliberative (Landy et al., 2007) or the
feedback conditions involve an obviously artificial perturbation
as they do here, performance becomes suboptimal and large in-
tersubject differences arise. We also note that optimally tracking a
changing quantity, and then dynamically responding optimally
with respect to these estimates trial-by-trial, is a qualitatively dif-
ferent and arguably more difficult criterion than making optimal
decisions in the steady state. Nevertheless, what is clear from our
analysis is that humans can and do use a dynamic estimate of
current uncertainty, based on recently experienced errors, to plan
reaches under risk.

Notes
Supplemental material for this article is available at
http://www.cns.nyu.edu/~msl/papers/landyetal12supp.pdf. Single-
subject data for the other five subjects are in the same format as Figure 4.
This material has not been peer reviewed.
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