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Pathway-based genome-wide association analysis of
coronary heart disease identifies biologically important
gene sets

Lisa de las Fuentes1,4, Wei Yang2,4, Victor G Dávila-Román1 and C Charles Gu*,2,3

Genome-wide association (GWA) studies of complex diseases including coronary heart disease (CHD) challenge investigators

attempting to identify relevant genetic variants among hundreds of thousands of markers being tested. A selection strategy

based purely on statistical significance will result in many false negative findings after adjustment for multiple testing. Thus,

an integrated analysis using information from the learned genetic pathways, molecular functions, and biological processes is

desirable. In this study, we applied a customized method, variable set enrichment analysis (VSEA), to the Framingham Heart

Study data (404 467 variants, n¼6421) to evaluate enrichment of genetic association in 1395 gene sets for their contribution

to CHD. We identified 25 gene sets with nominal Po0.01; at least four sets are previously known for their roles in CHD:

vascular genesis (GO:0001570), fatty-acid biosynthetic process (GO:0006633), fatty-acid metabolic process (GO:0006631),

and glycerolipid metabolic process (GO:0046486). Although the four gene sets include 170 genes, only three of the genes

contain a variant ranked among the top 100 in single-variant association tests of the 404 467 variants tested. Significant

enrichment for novel gene sets less known for their importance to CHD were also identified: Rac 1 cell-motility signaling

pathway (h_rac1 Pathway, Po0.001) and sulfur amino-acid metabolic process (GO:0000096, Po0.001). In summary,

we showed that the pathway-based VSEA can help prioritize association signals in GWA studies by identifying biologically

plausible targets for downstream searches of genetic variants associated with CHD.
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INTRODUCTION

The introduction of genome-wide association (GWA) represents a
revolutionary advance in the genetic investigation of complex
diseases. Yet, despite the early promise of GWA studies in cardiovas-
cular and other complex diseases, reported effect sizes of single-
nucleotide polymorphisms (SNPs) (both individual and cumulative)
explain disappointingly small proportions of the estimated trait
heritability.1–3 Nonetheless, the information gained from GWA
studies continues to offer insight regarding the genetic and
molecular mechanisms of disease.

The most common approaches to GWA studies focus on the
analysis of individual SNPs and their neighboring genes; only the
strongest evidence of association for top-ranked SNPs is typically
reported. This approach is hampered by the consideration of large
numbers of variables (ie, genotypes), the vast majority of which will
not meet criteria for genome-wide significance and fewer still that will
ultimately be functionally important. Thus, even in studies of large
cohorts, true signals remain difficult to identify.

To increase the yield from GWA studies and to ultimately explain a
great proportion of the trait heritability, analysis approaches should
be adapted to capitalize on available complementary data that allow
testing for association on the basis of functional units such as genes,

gene sets, and pathways.4 These approaches would decrease the
number of statistical tests while taking advantage of known biology.
The pathway-based gene-expression analysis approach called gene-set
enrichment analysis (GSEA) was adapted for use in GWA studies.5–7

This adaptation uses the maximum single-SNP test statistic from a
gene to score the strength of association between the gene and the
trait of interest. It then applied the GSEA procedure to test whether a
certain gene set is significantly ‘enriched’ with high-scored genes.

We recently presented a further extension of the GSEA method,
variable set enrichment analysis (VSEA), which normalizes the
maximum SNP statistics based on permutation results so that signals
are comparable for genes that have different number of SNPs and
different linkage disequilibrium structure.8 In this report, we
hypothesize that by applying VSEA to GWA data from the
Framingham Heart Study, we will identify gene sets associated with
coronary heart disease (CHD) that would be otherwise missed by
conventional single-SNP analyses.

MATERIALS AND METHODS

Framingham Heart Study genome-wide data
The Framingham Heart Study is a large-scale population-based cardiovascular

study based in Framingham, Massachusetts, USA, which started in 1948 and
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currently consists of three generations of cohorts.9 To find the pathways related

to the CHD, we used the genome-wide data (Affymetrix 5.0 GeneChip array

with a 500K SNPs, Santa Clara, CA, USA) from Caucasian individuals

representing the three cohorts from the Framingham SHARe project (SNP

Health Association Resource) downloaded from the National Center for

Biotechnology Information database of Genotypes and Phenotypes website

(http://www.ncbi.nlm.nih.gov/gap). The analysis was performed on the

Framingham Cohort data, version 4 (embargo release date 4 December

2009). The primary phenotype, prevalent CHD, was defined by the

Framingham Heart Study as a composite of recognized and unrecognized

myocardial infarction, coronary insufficiency, and CHD death.10

Quality control
The original dataset included 6476 Caucasian subjects (2959 men and 3517

women) and 498 014 SNPs. Mendelian genotype errors were checked and those

with errors were set to missing. The quality of the subjects’ dataset was then

verified: subjects with missing rate 45% and either low (r25%) or high

(Z30%) mean heterozygosity were removed from the dataset, resulting in

6438 individuals. Next, the qualities of individual SNPs were checked:

monomorphic SNPs, SNPs with missing rate 45% or a missing rate 41%

combined with a minor allele frequency o0.05, those with a Hardy–Weinberg

equilibrium test P-value o10�6, and those without an annotated geneID were

removed, resulting in 404 467 SNPs for the association analysis. Finally,

population substructure was examined by multidimensional scaling using

information from the HapMap samples of European (CEU), East Asian (CHB

and JPT), and African (YRI) origins. A total of 17 subjects were removed

because of poor clustering with CEU subjects. The final analyzable dataset

included 6421 subjects (2935 males and 3486 females).

VSEA
VSEA is a novel GWA analysis method that tests for aggregated effect of many

genes linked by biological functions or statistical gene–gene interaction.8 It is

based on the method called GSEA, originally developed for differential gene

expression analysis. GSEA derives an enrichment score to detect gene sets

significantly enriched with differentially expressed genes.5 To facilitate analysis

of SNP data in GWA studies, VSEA employs a permutation-based normalized

gene score to aggregate effects of multiple individual SNPs in each gene of a

gene set. Permutation was done 1000 times first by calculating the enrichment

scores from the datasets where the disease status was randomly shuffled. The

P-values were then calculated from the frequency of seeing a larger enrichment

score in the observed than in the shuffled dataset.8

For the VSEA analyses described in this paper, we used a library of 1395

gene sets compiled from the collections of the genetic pathways, molecular

functions, and/or biological processes in the Kyoto Encyclopedia of Genes and

Genomes (www.genome.ad.jp/kegg/pathway.html), BioCarta (http://www.biocarta.

com/Default.aspx), and Gene Ontology (http://geneontology.org/) databases.8

Based on the manufacturer’s annotation of the Affymetrix 500K GeneChip

array, we refined the gene-set library by removing genes that had no SNP

included on the genotyping array. To reduce the impact of multiple testing and

to avoid testing overly narrow or broad functional categories, our analysis only

considered gene sets and the pathways that contained at least 3 and at most

200 genes. The final panel included 1395 gene sets representing 404 467 SNPs,

which were attributed to 15 474 genes.

Single-SNP and pairwise SNP–SNP interactions
The aggregated effect of multiple genes in a gene set may reflect the sum of

individual gene effects, interactions of pairs or more genes, or both. To allow

comparison of VSEA with conventional analytical approaches, genome-wide

single-SNP association was determined using the allelic w2 test by PLINK for

prevalent CHD.11 Familial relationships in the sample were ignored based on a

previous study that found very similar association test P-values in the

Framingham GWAS data, whether familial relationships were considered or

omitted.12 This enabled us to perform the large number of permutation tests

in a practical time. An earlier simulation study evaluating the effect of such

practice (ignoring familial relationships) in association analysis found that the

effect-size estimates and power are not significantly affected, although Type I

error rates increase as the disease heritability increases.13

The contribution of pairwise SNP–SNP interactions to the aggregated effect

detected by VSEA was assessed by analyzing pairwise interactions between

SNPs from genes in the highest-ranked gene sets after the VSEA test was

performed. Pairwise SNP–SNP interactions were detected by significant

difference between genotype correlation in cases and that in controls using

Fisher’s Z transformation.14–17 The significant difference of correlations

between cases and controls reflects altered pairing preferences of alleles at

the two loci and may be the result of some underlying molecular mechanism

that was active in CHD. To entertain the idea of such underlying mechanisms,

we performed interaction analysis of pairs of SNPs in top-ranked gene sets and

organized all the significant pairwise interactions detected in a gene set into

clusters (networks) of genes linked by SNP interactions.

Multiple testing
There is no generally accepted method of adjustment for testing the large

number of the distinct pathways considered in this study. The VSEA procedure

corrects for multiple testing due to genes shared by the different pathways/gene

sets. However, adjustment of P-values for testing many distinct gene sets may

lead to overly conservative results, especially when using gene sets derived from

general-purpose databases (as was done in this study), because gene sets often

contain many genes that are irrelevant to the disease trait of interest. Therefore,

we used the unadjusted nominal P-values for the VSEA analyses. To prevent

potential false positives in our validation analysis of pairwise SNP–SNP

interactions among the genes in top-ranked gene sets, we imposed the

stringent Bonferroni correction for multiple testing.

RESULTS

After performing data quality control, the analysis sample consisted of
6421 subjects (2935 males and 3486 females) with 404 467 SNPs, of
which 326 750 SNPs are associated to 15 474 genes. After removing
gene sets that are too small or too large, the final panel includes 1395
gene sets, representing 207 120 SNPs, which were attributed to 8161
genes. Sample characteristics of several known risk factors of CHD are
shown in Table 1. CHD events were identified in 221 individuals.
Compared with subjects without CHD events (non-CHD controls),
CHD cases were more likely to have higher systolic and diastolic
blood pressure, total cholesterol and triglyceride, and lower high-
density lipoprotein cholesterol.

Among the 1395 gene sets tested, we identified 25 sets with a
permutated P-value o0.01 (Table 2; top 100 gene sets available in
Supplementary Table S1). Among the 25 gene sets, four (shown in
bold) have been previously implicated in CHD by their participation

Table 1 Population characteristics of the Framingham Heart Study

population used in the current study

CHD

cases

Non-CHD

controls

P-value
a

n¼221 n¼6200

Female, n (%) 74 (33%) 3412 (55%)

Age, years 39±8 38±9

Body mass index, kg/m2 26±4 26±5 0.71

Systolic blood pressure, mmHg 125±14 118±14 5.3�10�13

Diastolic blood pressure, mmHg 80±10 76±10 2.7�10�9

Total cholesterol, mmol/dl 5.3±1.1 3.1±0.9 2.9�10�7

High-density lipoprotein

cholesterol, mmol/dl

1.2±0.3 1.4±0.4 2.0�10�9

Triglyceride, mmol/dl 1.5±1.3 1.2±0.9 7.7�10�4

aP-values after age- and sex-adjustment.
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in lipid metabolism and vascular genesis: fatty-acid biosynthetic
process (GO:0006633), fatty-acid metabolic process (GO:0006631),
glycerolipid metabolic process (GO:0046486), and vascular genesis
(GO:0001570). The identification of these gene sets is supported
by the existing body of literature linking these biological processes
with atherosclerosis. Among the 170 genes represented by these
four gene sets (Supplementary Table S2), only three contained any
SNP ranked among top 100 in the single-SNP scan (Supplementary
Table S3).

The pathways shown underlined in Table 2 are examples of novel
gene sets. Although these gene sets are less known for their association
with CHD, a pathophysiological role in cardiovascular diseases is
plausible. For example, many of the genes in the Rac 1 cell-motility
signaling pathway (h_rac1 Pathway) are myosin-/actin-associated
genes that have been shown to have roles in left ventricular
hypertrophy and hypertrophic cardiomyopathy (RAC 1, MYL2,
TRIO, and PPP1R12B). Other genes in this pathway have been

shown to modulate cardiovascular risk traits including insulin
sensitivity, glucose tolerance, and obesity (PIK3CB and RPS6KB1).
Similarly, genes involved in the sulfur amino-acid metabolic process
(GO:0000096) are related to cardiovascular diseases, through roles
in oxidative stress (GCLC, GCLM, and MSRA) and/or metabolism
of homocysteine (GCLC, BHMT, MTHFR, MTR, MRTT, and CBS),
a well-known risk factor of CHD. There are also a few genes related
to oxidative stress (CDO1, ADI1, and SOUX), although their roles in
cardiovascular disease are not well studied.

Performance of genes in single-SNP analysis
Genome-wide single-SNP association was determined to allow
comparison of VSEA with conventional analytical approaches. As an
example of the effectiveness of VSEA to identify gene sets potentially
relevant to CHD, the best-ranked single-SNP by the w2 test from genes
in the vasculogenesis pathway are shown in Table 3. Except for genes
QKI, HEY2, and WARS2, the other genes in this pathway are not
ranked highly, thus, these genes would likely be excluded from further
follow-up studies if selection was based solely on the significance of
the single-SNP test. However, when the VSEA test considered the 17
genes as a unit, their small marginal effects were combined, thus
allowing this gene set to be identified as one significantly ‘enriched’
for genetic association with CHD. Upon further examination, other
top-ranked gene sets showed similar patterns of predominantly weak
single-SNP rankings.

Pairwise interactions among genes from enriched gene sets
Using the VSEA test, 1005 distinct genes were identified from among
the top 25 gene sets. This constitutes a total of 15 960 SNPs after
removing those in high LD (r240.8), which resulted in 119 209 805
pairwise interaction tests. Using a stringent Bonferroni-adjusted
significance level (Po4.2� 10�10), 439 of the 1005 genes were linked
by cross-gene SNP–SNP interactions. When these cross-gene SNP–
SNP interactions were superimposed over the top-ranked gene sets,
we obtained clusters (subnetworks) of genes within these pathways
that reflected concerted action of multiple genes that differentiated
the CHD group from the non-CHD group (Figure 1 for interaction

Table 2 Top 25 gene sets from the pathway-based VSEA test

Gene set Pathway ID P-value

Number

of genes

Average

single-

SNP rank

Rac 1 cell-motility signaling

pathway

h_rac1Pathway o0.001 18 56573

Actinin binding GO:0042805 o0.001 4 1821

Sulfur amino-acid metabolic

process

GO:0000096 o0.001 17 72336

Vasculogenesis GO:0001570 o0.001 17 69199

Fatty-acid biosynthetic

process

GO:0006633 0.001 51 66381

Neuron differentiation GO:0030182 0.001 106 47424

Gene silencing GO:0016458 0.002 17 79722

Estrogen-responsive protein

Efp controls cell cycle and

breast tumors growth

h_EfpPathway 0.003 6 37582

Calpain and friends in cell

spread

h_ucalpainPathway 0.003 11 41681

Rho cell-motility signaling

pathway

h_rhoPathway 0.004 17 78688

Phosphoinositide binding GO:0035091 0.004 163 62020

Limonene and pinene

degradation

hsa00903 0.005 28 54080

rRNA binding GO:0019843 0.005 14 58365

Fatty-acid metabolic process GO:0006631 0.006 120 67524

Mitosis GO:0007067 0.006 152 86502

Drug transport GO:0015893 0.006 13 36267

Hydrolyase activity GO:0016836 0.007 47 72672

Two-component signal

transduction system

(phosphorelay)

GO:0000160 0.007 8 43192

Response to bacterium GO:0009617 0.007 12 27606

Ubiquitin-mediated

proteolysis

hsa04120 0.008 39 67463

Histone deacetylase activity GO:0004407 0.008 12 81299

Semaphorin receptor activity GO:0017154 0.008 5 5989

DNA repair GO:0006281 0.009 200 79037

Glycerolipid metabolic

process

GO:0046486 0.01 21 39609

Myelination GO:0042552 0.01 19 53658

Bolded gene sets previously implicated in CHD.

Table 3 Ranks of SNPs in the vasculogenesis pathway

(GO:0001570)

Gene Best SNP ranka Number of SNPs

AGGF1 41 202 6

AMOT 34 660 10

CCM2 55 707 9

CITED1 101 443 3

CUL7 177 116 2

EGFL7 139 662 3

FOXF2 20 621 40

GLMN 215 819 1

HEY2 55 80

KDR 88 447 20

QKI 3 99

RASA1 24 703 9

SHH 7393 22

SMO 183 604 2

VEGFA 73 822 12

WARS2 354 24

WT1 11 776 73

aOut of 404 467 SNPs ranked.
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subnetworks from the Rac 1 cell-motility signaling and sulfur amino-
acid metabolic process pathways).

Genes participating in pairwise interactions were then ranked by
the number of other gene interaction partners. Genes interacting with
Z30 partners are listed in Table 4. Once again, VSEA has identified
many genes with important roles in cardiovascular diseases including
two genes (CDH13 and PARD3), which have been recently associated
with CHD risk traits.

DISCUSSION

The purpose of this study was to apply a novel method, VSEA, which
capitalizes on existing biological data to gain new insight about CHD
genetics by testing for association on the basis of functional units such
as gene sets and pathways beyond individual SNPs. We identified gene
sets enriched with genes that have been previously associated with
CHD. We also discovered gene sets with emerging evidence support-
ing roles in a variety of cardiovascular diseases and related illnesses.
Importantly, many CHD genes ranked poorly in single-SNP tests,
whereas their member groups were successfully picked up by
analyzing pathway-based gene sets. Thus, VSEA identified gene sets
that would have been otherwise missed by conventional single-SNP
analyses.

There is ample evidence to support the biological plausibility of
association with CHD among the identified enriched gene sets.
Among the 25 sets with a permutated P-valueo0.01, some pathways
have been previously linked with CHD and/or CHD risk factors. For
example, among genes from the vasculogenesis pathway, published
reports have shown that SNPs in VEGFA modulate atherosclerosis
severity and the prevalence of myocardial infarction.18,19 Likewise,
WARS2 was recently identified in a meta-analysis of GWA studies for
adiposity, a CHD risk factor.20 SNPs in genes from the fatty-acid
biosynthetic and metabolic process pathways, particularly those
participating in the synthesis of prostaglandins (eg, ALOX5,
ALOX5AP, ALOX12, ALOX15, PTGS1, PTGS2, and COX2), have
also been identified as risk factors for atherosclerotic plaque burden
and CHD events.21–26 SNPs in other genes from these pathways
modulate CHD risk, presumably through their effects on lipids.27–31

Thus, inclusion of these genes among enriched gene sets is supported
by existing scientific literature.

Among genes in sets with less-well characterized associations with
CHD, a few have recently been linked with CHD and/or CHD risk
factors. For example, a functional promoter polymorphism in GCLC,
a member of the sulfur amino-acid metabolic process pathway, has

been associated with endothelium-dependent dilation of coronary
arteries and myocardial infarction.32 GCLM and MSRA, scavengers of
reactive oxygen species, were recently found to protect the
myocardium from ischemia-reperfusion injury, a critical
determinant of survival following myocardial infarction.33–35 Several
other genes in this pathway (eg, BHMT, MTHFR, MTR, MRTT, and
CBS) regulate the metabolism of homocysteine, a risk factor of
CHD.36–41 Many genes in this gene set (GCLC, GCLM, MTHFR,
MTHFD1, MTR, and MTRR) are also related to methylation
processes, a potential, but understudied, mechanism for CVD.42,43

Several genes in the Rac 1 cell-motility signaling pathway have also
been recently implicated in CHD. For example, Rac 1, a subunit of the
Nox2 NADPH oxidase enzyme which is responsible for generating
damaging reactive oxygen species in the heart, has been mechan-
istically linked with ischemia-reperfusion injury, adverse remodeling
of the left ventricle, and survival in transgenic mice following
myocardial infarction.44–46 Genes from the Rac 1 pathway that
encode actin- and myosin-associated proteins, including RAC 1 and
MYL2, have also been associated with left ventricular mass, an
intermediate traits that is a known risk factor for cardiovascular
morbidity and mortality.47,48 Also notable is that among the genes
with the greatest number of cross-gene interactions, two of the top-
ranked genes (CDH13 and PARD3) have been recently associated
with CHD risk traits, including left ventricular hypertrophy,
dyslipidemia, metabolic syndrome, type 2 diabetes, and adiponectin
levels.7,49–51

We note that similar gene-set enrichment approaches were used
by others to evaluate particular pathways52 or to prioritize candi-
date genes.53 But, there is an inherent difficulty in defining the
potential relevance of any pathway to a specific disease process.
Incorporating more specific types of biological functions such as
protein–protein interactions as done by Jensen et al54 will certainly
improve the functional relevance of detected gene sets. In the
absence of well-informed disease-based pathway databases, it is
difficult to give an unbiased assessment of validity of the results.
Although for some gene sets the relatedness to the disease trait
may be more certain, for the majority this is less clear or unknown.
The four gene sets identified as relevant to CHD were highlighted
based on existing literature. Ultimately, functional studies are
necessary to confirm the biological relevance of genetic variation in
these pathways to CHD.

In summary, the present study shows the use of VSEA as a
robust novel extension to existing analysis methods for GWA data.

Figure 1 Subnetworks of genes from the Rac 1 cell-motility signaling (a) and sulfur amino-acid metabolic process (b) pathways that differentiated the CHD

from the non-CHD group. Subnetworks are composed of pairwise SNP–SNP interactions where the number on each edge (line) represents the number of

interactions between each pair of genes.
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This study confirmed the interplay of multiple loci among the genes
in the pathways responsible for CHD. More importantly, it also
showed that analysis methods that capitalize on existing knowledge
and directly test for gene–gene interactions can allow an improved
understanding of the genetic variants and the pathways responsible
for CHD.
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