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Abstract
Neuronal network behavior results from a combination of the dynamics of individual neurons and
the connectivity of the network that links them together. We study a simplified model, based on
the proposal of Feldman and Del Negro (FDN) [Nat. Rev. Neurosci. 7, 232 (2006)], of the
preBötzinger Complex, a small neuronal network that participates in the control of the mammalian
breathing rhythm through periodic firing bursts. The dynamics of this randomly connected
network of identical excitatory neurons differ from those of a uniformly connected one.
Specifically, network connectivity determines the identity of emergent leader neurons that trigger
the firing bursts. When neuronal desensitization is controlled by the number of input signals to the
neurons (as proposed by FDN), the network's collective desensitization—required for successful
burst termination—is mediated by k -core clusters of neurons.

I. INTRODUCTION
A neuronal network is a group of interconnected neurons functioning as a circuit. Each
neuron receives electrical signals via its treelike dendrites, connected via synaptic inputs
from other neurons. The neuron responds, based on some function of its input signals, by
either doing nothing or by “firing,” i.e., by producing an action-potential output pulse that is
transmitted to connected neurons via synapses [1]. In a highly simplified excitatory neuron,
the electrical potential of the cell body, i.e., soma, always increases by an amount ΔV when
the cell receives a synaptic input. The potential of the cell is an integral of the signals from
other connected neurons. The firing probability of a neuron depends sensitively on its
electrical potential, leading to threshold behavior. For a simple case, the neuron can be
considered to be either in a quiescent state characterized by rare, sporadic firing if the cell
potential is large and negative (“hyperpolarized”), or in an active state, with a significant
increase in firing rate over the quiescent state when at higher potentials (“depolarized”).

The preBötzinger Complex (preBötC), a cluster on the order of 300 essential neurons
located in the brain stem [2,3], provides an example of a network with nontrivial collective
dynamics. The preBötC produces the neuronal activity that appears to drive the rhythm of
mammalian breathing. Specifically, the timing of the inspiratory phase of the breathing
cycle is set by the collective output of the preBötC in the form of periodic bursts of action
potentials with a period on the order of a second, which is about 103 times longer than the
time scale associated with single action potentials in individual neurons. This scenario has
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been generally believed to be due to activity dependent adaptation that shuts down the
collective burst, combined with the action of pacemakers that initiate it. In the “individual
pacemaker” hypothesis, synchronization of neuronal firing in the preBötC is orchestrated by
a subset of preBötC neurons that are able to oscillate autonomously between periods of
firing and quiescence—intrinsic pacemakers. Simple and effective “mean-field” theories [4]
have been developed for periodic bursting neuronal networks based on these or related
features [5].

Feldman and Del Negro (FDN) have put forward a different description of preBötC
rhythmic bursting that introduces two significant modifications to the above picture. First,
they suggested that burst synchronization does not rely critically on the presence of intrinsic
pacemakers [6]; rather, the oscillations are a collective property of a large group of sparsely
connected neurons that need not oscillate in isolation. They refer to this as the “group
pacemaker” hypothesis. This hypothesis is based on experiments that showed that preBötC
oscillations persist even when the intrinsic pacemaker's neurons are “turned off” [7]. In this
view, oscillations disappear when the number of neurons drops below a threshold where
they can no longer maintain collective phase coherence. Indeed, when more than 80% of the
neurons of the preBötC are destroyed, the rhythm in the intact mammal is interrupted [8].
Second, following experiments on neurons with buffered somatic Ca2+ [9], Feldman, Del
Negro, and collaborators proposed that the Ca2+-mediated modulation of neuronal properties
occurs primarily in the dendrites rather than in the soma of the neuron. When a dendrite
receives a synaptic input, certain receptors are activated leading to a local increase in the
Ca2+ concentration [10]. This rise generates a Ca2+-dependent nonspecific current that
further depolarizes the membrane potential. Here we consider that this local change in
dendritic nonspecific cation conductance also induces changes in other conductances that
effectively shunt synaptic input to ground rendering the cell less responsive to subsequent
incoming signals and that this process underlies the termination of each burst of activity. In
the FDN model a neuron's desensitization is related to the number of action potentials it
receives, i.e., it is synaptic in origin, rather than the number of action potentials it produces,
as previously suggested. We show that this seemingly minor change in the dynamical model
of individual neurons leads to profound changes in the collective dynamics of the system.

A full theory, based on the FDN description, would be very challenging since it would
require a complete (or at least extensive) consideration of the complex electrophysiological
structure of the dendrites of preBötC neurons. In this paper, we present a simplified “two-
compartment” version (i.e., with soma and dendrites treated as two electrically
communicating and uniform compartments with different Ca2+ concentrations) that
incorporates dendritic synaptic activity-based modulation of excitability in response to
synaptic input [9]. The principal contribution made by this paper is to show that the FDN
model, which proposes that synaptic activity based modulation of excitability occurs in the
dendrites rather than in the soma, leads to profound changes in the collective dynamics of
the system. By making the desensitization of the neurons depend on incoming signals and
thus a collective property of the network rather than an inherent property of the individual
neurons, the mean-field description (formerly valid—see above) now fails at a fundamental
level. Specifically, we show that a simplified network of identical but randomly connected
neurons supports periodic synchronized bursts triggered by neurons that are characterized by
being linked to a large number of neurons that are similarly well connected, forming the
information transmitting backbone of the network. In this model, the minimum number of
neurons required for rhythmogenesis is determined by a sequence of magic numbers that
depends solely on the adjacency matrix and which can be calculated using simple graph-
theoretic methods [11,12].
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In Sec. II, we introduce our simplified model of the FDN description. In Sec. III, we analyze
the dynamics of a fully connected network of FDN neurons. In Sec. IV, we study a
randomly connected network and show that mean-field theory fails dramatically for the
transition to high activity while remaining a valid description of the transition to stable
oscillations. We also show the existence of a subpopulation of leader neurons that drive the
initiation of each burst. Finally, in Sec. V, we summarize our results.

II. MODEL
In the two-compartment model, each neuron is represented by two dynamical variables: the
somatic potential Vi(t) and the average dendritic Ca2+ concentration Ci(t) of the ith neuron.
The N neurons fire according to the 2N coupled nonlinear rate equations,

(1)

(2)

where Veq and Ceq are, respectively, the resting potential and the equilibrium Ca2+

concentration of a neuron with τV (10 ms) and τC (500 ms) [1] as the respective
equilibration times. In this basic model, we have simplified the FDN proposal for the
sequence of events associated with the effects on excitability of the rise in dendritic Ca2+

concentration. Here we model the calcium-mediated adaptation by requiring ΔV(C) to drop
rapidly when C exceeds a threshold C*. The identification of the slow variable with Ca2+

concentration, while supported by Pace et al. [10], is not essential to the model; we require
that this variable depend only on synaptic input. The neurons interact in a firing-rate model
[13,14] in which a neuron's voltage-dependent firing rate P(V) replaces the (stochastic)
series of individual action potentials. If V exceeds the threshold V*, then P(V) increases
rapidly from a basal rate to a higher rate, here taken to be about 5 spikes/s at rest to about 75
spikes/s (these numbers being arbitrary but physiologically reasonable). In replacing the
actual spike trains by P(V) in Eqs. (1) and (2), we have averaged over the short-time shot
noise in the system—a feature explored in [15].

In what follows, we use a simple Fermi function of the form

(3)

where rm=75 Hz is the maximal firing rate, rb=5 Hz is the basal spontaneous firing rate, and
V*=−55 mV is the voltage at which a neuron transitions from ectopic to active firing. gV=5
mV determines the steepness of the transition, and to obtain a sharp threshold we must
certainly require gV<V*−Veq. The behavior of the model (other than moving around the
phase diagram) does not depend critically on the choice of these parameters. This function is
plotted in Fig. 1.

Second, the calcium dependent voltage increment ΔV(C) must also have a sharp threshold
from the low-calcium state in which the dendritic tree transmits postsynaptic signals to the
soma efficiently to a high-calcium state in which those signals are shunted, leading to a
strongly suppressed somatic voltage increase in response to an input signal. It is essential
that the transition concentration C* is greater than the steady-state concentration (which by a
suitable definition of C we may set to 0) so that the neurons in the absence of input signals
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are in the sensitive (i.e., not shunted) state. The basal value of the voltage increment, i.e.,
ΔV(C=0), is our control parameter for the excitability of the individual neurons. By setting
(V*−Veq)/ΔV(C=0), we are, in effect, setting the number of input action potentials required
to drive the somatic potential from its basal, steady-state value to the firing threshold, and
thus are setting the inherent excitability of each neuron. To capture these effects, we use

(4)

where ΔVmax=5 mV. The critical concentration C*=10 is arbitrary and, in these units, gC=3.
This function is plotted in Fig. 1.

The entries of the adjacency matrix Mij are equal to one if the output of jth neuron is an
input to the ith and zero otherwise. In a one-compartment model, a similar pair of equations
apply except that one would replace Σj≠iMijP(Vj) in Eq. (2) by P(Vi)

III. MEAN-FIELD ANALYSIS
We start with the simplest case of a model system composed of a homogeneous network
where each neuron is linked to every other neuron: Mij=1 for all i ≠ j. If the initial potentials
and calcium concentrations also are the same for all neurons, then the 2N rate equations
reduce to a single pair that describes all neurons,

(5)

(6)

which can be analyzed by the standard methods of dynamical systems [16,17]. This pair of
equations can also be viewed as a mean-field approximation for more complex networks
[18]. In the mean-field theory of a homogeneous network, there is no difference between the
one and two-compartment models, apart from a trivial scale factor. The resulting dynamical
phase diagram is shown in the upper panel of Fig. 2.

To determine these fixed points we plot the nullclines of this two equations—the set of
points in the V-C plane for which either  or . In the parameter range corresponding
to the stably oscillating phase, the former is shown in blue and the latter in purple in Fig. 3.
The single intersection of these lines represents a stationary solution or fixed point, denoted
by the open circle in the figure. Solutions not passing through this point evolve toward an
oscillating limit cycle represented by the red curve in the same figure. These solutions
generate the periodic bursting dynamics of the mean-field network and attendant out-of-
phase calcium oscillation.

In the parameter regime marked SO (“stable oscillation”), the neuronal potentials and
calcium concentrations undergo a stable limit-cycle oscillation. For lower values of the input
voltage jump at zero calcium concentration, ΔV(C=0), corresponding to weakly excitable
neurons, the period of the oscillation increases and then diverges as the number N of
neurons is reduced due to the appearance of a saddle node on an invariant cycle bifurcation
[19]. A line of these bifurcations separates the SO phase from a quiescent phase, marked Q,
where all neurons are permanently in a state of low activity. It must be noted that, since N—
the number of neurons—can be varied only in integral steps, it may not be possible, at an
arbitrary level of neuronal excitability [ΔV(C=0)], to tune the system to have arbitrarily
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long periods, but such an increase should be observable. This mean-field prediction, unlike
those regarding the dynamics at the SO or high-activity (HA) phase boundary, remains valid
for heterogeneously connected networks so that it should be observable in the slice
preparation.

For higher values of ΔV(C=0), corresponding to highly excitable neurons, the unstable fixed
point at the center of the limit cycle becomes stable as N is reduced. In the part of the phase
diagram where this happens, marked HA, the neurons are permanently in a state of high
activity. This mean-field HA phase does not show the complex firing pattern reported
experimentally when the excitability was increased [20].

IV. HETEROGENEOUS NETWORKS
To examine the effect of connectivity on network dynamics, we consider a network with
much sparser connections. Based on pairwise recordings of preBötC neurons, each
excitatory preBötC neuron appears to be linked to, on average, (1/6)th of the other neurons
[21]. To describe this, we use an Erdős-Rényi random adjacency matrix [22,23], assigning
zeros and ones as the entries of Mij with probabilities 5/6 and 1/6, respectively. Solution of
the coupled rate equations on a typical example of a random graph produces the phase
diagram shown in the lower panel of Fig. 2. Reducing the network connectivity clearly does
not destroy its ability to produce robust synchronized stable oscillations, though note that the
SO section of the phase diagram has been reduced in area as compared to the mean-field
case.

Unlike the mean-field case, in the sparely connected network the firing pattern varies greatly
from one neuron to the next. Superimposing the firing patterns of different neurons reveals
an important feature [see Fig. 4(A)]. In the low-activity part of the cycle, the potentials of all
neurons are below V*, but they rise more rapidly for a subpopulation; these reach the firing
threshold first. Their increased firing rate pushes subthreshold neurons linked to them and
passes the firing threshold as well. A chain reaction spreads over the network until all
neurons are above threshold. Note that the least excitable neurons that crossed the firing
threshold latest remain active over a longer period of time, producing a highly asymmetric
pulse shape. Even though in our model all neurons are identical and none can oscillate
autonomously, a subset of neurons, selected through the network connectivity, is timing the
oscillations. This subpopulation of spike leaders can be interpreted as the “emergent” leaders
of the network. The bursting does not require the activity of physiologically distinct
independent pacemakers, thus the system behaves like a group pacemaker [24,25]. The
lagging neurons effectively amplify the leader's actions.

In order to identify the emergent leader nodes, we note that if P(V) in Eq. (1) was linearized,
then the most rapidly growing mode, starting from a quiescent phase, would be the
eigenvector of the matrix Mij with the largest eigenvalue (Fig. 5). If one rank orders the
nodes according to their eigenvector entry—known as “centrality ranking” in network
theory—and compares with the actual firing order, one finds that centrality ranking predicts
correctly the firing order of poorly connected nodes (see Fig. 3)._ The correlation is
relatively poor for highly connected nodes, indicating a subpopulation of leader nodes that
are all similarly well connected.

Network degradation, i.e., randomly knocking out neurons [8], leads to complex changes in
the set of these emergent group-pacemaker neurons. Removal of individual well-connected
nodes does not lead to significant reduction of phase coherence. It does take longer for the
network to reach threshold as N is reduced so the oscillation period increases. For lower
values of ΔV(C=0), i.e., weakly excitable networks, the period diverges along the phase
boundary between the SO and Q phases in Fig. 2(B), which agrees with the predictions of
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mean-field theory (see the supplement). For higher values of ΔV(C=0) the system enters the
HA phase. Unlike mean-field theory, the HA phase of the random network exhibits complex
dynamical behavior, with period doubling and deterministic chaos [20]. One example of this
is shown in Fig. 4(B) where groups of high-activity bursts alternate with periods of
deterministic chaos, forming a complex limit cycle.

The appearance of emergent leaders is a generic feature of excitatory interactions on an
Erdős-Rényi graph independent of the two-compartment hypothesis. We now explore the
SO↔HA threshold curve where the two-compartment FDN model causes the breakdown of
mean-field theory. This threshold curve Nc(ΔV) has a surprising staircase dependence on
ΔV differing dramatically from the continuous curve predicted by the mean-field theory (see
Fig. 2) and the one-compartment model. These discontinuities define certain privileged
numbers of neurons Nk below which the network fails to support stable oscillations. While
certain numbers are privileged, the dynamics are collective and no neuron develops a
specialized role in the burst termination. The values of these Nk's are independent of system
parameters such as ΔC. The boundary of the SO regime makes discrete jumps between Nk's
as the parameters (ΔC,ΔV) of the neuronal dynamical model are changed. The values of
these magic numbers Nk vary between realizations of the random network, but their
existence is generic. In contrast, the phase boundary separating the SO and Q phases in Fig.
2(B) largely follows mean-field predictions.

To understand these discontinuities in the SO or HA phase boundary, it is useful to
introduce the concept of a k-core [26]. A k-core of a graph (for integer k) is a subgraph in
which all nodes (i.e., neurons) have at least k inputs from other nodes in the subgraph. As
the number of nodes increases in an Erdős-Rényi random network, k-core clusters appear
with larger k values at sharply defined thresholds. As an example we show in Fig. 6(A) the
k-cores of a symmetric random adjacency matrix. Nearly all nodes form a single five-core
cluster. Deleting one node at random does not change this feature [Fig. 6(B)], but deleting
two nodes at random produces a sharp transition in which the network is now dominated by
a single system-sized four-core cluster [Fig. 6(C)]. Deleting an additional node does not alter
the dominance of the four-core, as shown in Fig. 6(D). For the random network used to
generate Fig. 2(B), these discontinuous transitions take place at N3=17 when a three-core
appears, at N4=26 when a four-core appears, at N5=37 when a five-core appears, and so on.
The values of Nk for this realization of the random network are represented by dotted lines
in Fig. 2(B). The locations of the discontinuities of the phase boundary as a function of N
agree well, though not perfectly, with the k-core transition values Nk. The discrepancies are
presumably due to the fact that a member of a k-core can have more than k input links,
including links from non-k-core neurons. We emphasize that the k-core concept is
inapplicable to the SO↔Q transition. Along the transition line, the neurons with the highest
connectivity are able to trigger an excitation wave that spreads through the whole system.
This transition is well described by mean-field theory because excitation is governed by a
class of emergent leaders rather than a few select neurons, so removing one neuron does not
have a dramatic effect.

V. CONCLUSION
In summary, we have studied a simple version of the FDN description of rhythmogenic
neuronal networks using a combination of excitable integrate-and-fire neurons modified by a
slower process of activity-mediated desensitization. We showed that there is an asymmetry
in the phase diagram between the transition from the stable bursting phase to the quiescent
phase and the transition from the stable bursting phase to the HA phase. The first transition
is well described by mean-field theory, while the staircase structure of the phase boundary of
the second transition reflects the full nature of network connectivity. This asymmetry
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originates from the difference between the dynamics of a spreading wave of voltage-
mediated excitation and collective desensitization. The asymmetry and the breakdown of
mean-field theory in the FDN model are due to its identification of desensitization with the
number of action potentials a neuron receives rather than produces. There are now
unambiguous tests of the model: to examine the phase boundary one must move both
vertically (changing N) and horizontally (changing the effective ΔV). Both are possible by
changing the number of active neurons in their excitability, i.e., changing how many action
potentials a neuron must receive to be stimulated to fire. Measuring the ΔV that first
supports complex (chaotic) firing patterns as a function of N should directly reveal the
predicted staircase structure of Fig. 2(B).
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FIG. 1.
(Color online) Top panel: firing rate, P(V), as a function of somatic membrane potential V.
The firing rate increases by one order of magnitude from a low basal rate near a threshold
V*≃−55 mV. Bottom panel: voltage increment ΔV a neuron experiences upon receipt of an
action potential. At a critical C*, the voltage increment drops rapidly to zero as the synaptic
input is shunted.
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FIG. 2.
(Color online)(A) Phase diagram of a homogeneous N-neuron network with every neuron
linked to every other neuron. The horizontal axis is the maximum somatic voltage jump of a
cell following an input pulse, i.e., action potential. The red (light gray) decreasing line is the
stability limit of a low-activity fixed point of Eqs. (5) and (6)(Q phase) while the blue (dark
gray) line is the stability limit of a high-activity fixed point (HA phase). Cooperative limit-
cycle oscillations are fully stable only in the region above the blue and red lines (SO phase).
(B) Phase diagram of an inhomogeneous random N-neuron network with, on average, each
neuron linked to N/6 other neurons. In the section labeled HA deterministic chaos, period
doubling and intermittency are encountered. The dashed lines mark a sequence of magic
numbers Nk determined by the adjacency matrix of the network.
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FIG. 3.
(Color online) Top panel: the phase portrait of the mean-field model in the SO phase. The
curves represent the nullclines of the calcium and somatic voltage equations. Their
intersection, marked by the open circle, is an unstable fixed point of the dynamics.
Trajectories not starting there evolve toward the limit cycle shown in red. Middle panel: the
phase portrait of the mean-field model in the quiescent (Q) phase. Trajectories not starting at
these fixed points evolve toward the one stable fixed point corresponding to a highly
polarized membrane potential and low dendritic calcium concentration. Here the neurons do
not fire. Bottom panel: the phase portrait of the mean-field model in the HA phase. Their
intersection, marked by the filled circle, is a stable fixed point corresponding to a
depolarized membrane potential and significant calcium concentration. This state
corresponds to the case in which the neurons should typically fire repeatedly.
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FIG. 4.
(Color online)(A) Periodic potential oscillations (SO phase) for a random 60 node network.
We compare the voltage pulse generated by an emergent highly connected leader node in
red (light gray, large pulse) with the voltage pulse produced by a poorly connected node in
blue (dark gray, flat pulse). The emergent leader node first reaches the firing threshold of
−55 mV. Note that the poorly connected node remains above threshold over a longer period
of time. Inset: longer time trace demonstrating periodic bursting, illustrated by the total
current output (in arbitrary units). (B) Time-dependent potentials in the high-activity phase.
Each color represents an individual neuron. Multiple collective potential bursts alternate
with an incoherent chaotic state. Note the different time scales in panels A and B.
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FIG. 5.
(Color online) Comparison of the firing order of a 60 node random network described in
Eqs. (1) and (2)(vertical axis), with the firing order predicted by ranking nodes according to
their entry in the eigenvector of the adjacency matrix Mij with the largest eigenvalue
(horizontal axis, centrality ranking). Note that only the higher firing orders can be reliably
predicted based on this ranking. The correlation coefficient is r2=0.79.
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FIG. 6.
(Color online) k-cores of a symmetric N×N random adjacency matrix [27]. Nodes making
up the five core are marked in red (medium gray), four-core nodes in blue (dark gray), three-
core nodes in green (light gray), while removed nodes are marked in black. The yellow
outlined square indicates the node to be removed on the subsequent panel. The four figures
show a progressively decreasing network size: NA=43, NB=42, NC=41, and ND=40.
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