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Summary
This article considers the problem of selecting predictors of time to an event from a high-
dimensional set of candidate predictors using data from multiple studies. As an alternative to the
current multistage testing approaches, we propose to model the study-to-study heterogeneity
explicitly using a hierarchical model to borrow strength. Our method incorporates censored data
through an accelerated failure time model. Using a carefully formulated prior specification, we
develop a fast approach to predictor selection and shrinkage estimation for high-dimensional
predictors. For model fitting, we develop a Monte Carlo expectation maximization (MC-EM)
algorithm to accommodate censored data. The proposed approach, which is related to the
relevance vector machine (RVM), relies on maximum a posteriori estimation to rapidly obtain a
sparse estimate. As for the typical RVM, there is an intrinsic thresholding property in which
unimportant predictors tend to have their coefficients shrunk to zero. We compare our method
with some commonly used procedures through simulation studies. We also illustrate the method
using the gene expression barcode data from three breast cancer studies.

Keywords
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1. Introduction
In modern biomedical research, it has become routine to encounter problems involving
massive numbers of predictors, with gene expression data as one example. Often, interest
focuses on identifying important predictors of an event time, such as patient survival
following cancer treatment. Because the sample size from any single study is typically
insufficient to allow accurate selection of important predictors, there has been increased
emphasis in recent years on borrowing of strength across data from multiple studies.
Different studies are often conducted by different labs and may involve varying platforms
and event definitions. These differences lead to study-to-study heterogeneity, which must be
accommodated in statistical analysis. This article focuses on the problem of flexibly
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borrowing strength across studies in selecting predictors of an event time from a massive
number of candidates.

Variable selection is typically of interest, even when prediction is the focus, since one may
get better insight into the biological mechanisms by reducing the dimensionality of the
predictive model. For variable selection using data from a single study, a broad variety of
methods has been developed for prediction based on large numbers of predictors. Bovelstad
et al. (2007) provided a recent review of the literature in this area, while also comparing
predictive performance for different methods. They concluded that ridge regression had the
best performance in terms of prediction for their data sets, with shrinkage outperforming
simple variable selection methods, such as univariate selection or forward selection. Unlike
ridge regression, Lasso (Tibshirani, 1996, 1997; Zhang and Lu, 2007) results in
simultaneous shrinkage and variable selection, as many of the coefficients will be estimated
to be zero. An alternative to Lasso, which also has this property and is widely used in the
machine learning community, is the relevance vector machine (RVM; Tipping, 2001).

In considering generalizations of these approaches to accommodate data from multiple
studies, an important factor is the computational speed. When data are available from
several studies and for thousands of genes, standard Bayes methods of posterior computation
that rely on Markov chain Monte Carlo (MCMC) algorithms will be very time consuming to
implement. In fact, for large numbers of predictors, the size of the model space is too
enormous to run stochastic search variable selection algorithms (George and McCulloch,
1997; Hans, Dobra, and West, 2007) to make it converge. Hence, as a pragmatic approach, it
is useful to consider fast alternatives to MCMC based on the maximum a posteriori (MAP)
estimation. The Lasso and RVM procedures both have a Bayesian interpretation as MAP
estimates, with the Lasso placing a double exponential prior on the coefficients, while the
RVM uses an improper t prior with zero degrees of freedom. In addition, computational
speed can be improved by focusing on normal linear regression models.

In the presence of multiple studies, a common approach for gene selection is to conduct
independent analysis of each dataset, and then examine the intersection of the genes selected
(see, e.g., Chan et al., 2008). An alternative is to pool the data, and conduct a single analysis
ignoring heterogeneity among the studies. Recently, there has been increased emphasis on
multistage designs, which identify a subset of candidate genes in an initial study and then
validate these genes in the subsequent studies. Refer to Beckly et al. (2008) for a recent
example of this approach. Both the independent analyses and multistage approaches fail to
borrow strength across the studies. The multistage method fails to detect genes that are very
highly significant in the second stage study, but were not significant enough at the first stage
to be maintained after false discovery rate control. The same problem arises in the
independent analyses approach, which requires genes to be significant in each study. If one
uses a union of genes from the different studies instead of an intersection, the false
discovery rate will be increased and important genes may still be missed.

To address these problems, one would ideally simultaneously analyze the data from the
different studies, while accommodating heterogeneity. Motivated by the very different
problem of borrowing information across related signals in performing signal reconstruction
from compressive sensing measurements, Ji, Dunson, and Carin (2009) proposed a multitask
RVM (MT-RVM). The MT-RVM approach incorporates dependence in the selection of
basis functions for related signals, and can potentially be used directly to incorporate
dependence in variable selection across studies. However, the method proposed by Ji et al.
(2009) does not account for censoring.
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To adapt the variable selection models from normal linear regression settings to the analysis
of censored data, one can use an accelerated failure time (AFT) model (Buckley and James,
1979; Kalbfleisch and Prentice, 1980; Koul, Susarla, and Van Ryzin, 1981). For example,
Datta, Le-Rademacher, and Datta (2007) used an AFT model to predict patient survival from
microarray data for a single study, with partial least squares (PLS) and Lasso used for
estimation and imputation used to account for censoring. They concluded that Lasso had
better performance. Wang et al. (2008) instead related high-dimensional genomic data to
survival outcomes using a semi-parametric AFT model, with a doubly penalized Buckley–
James method used for estimation. The approach utilized an elastic net penalty (Zou and
Hastie, 2005), which is a hybrid of ridge regression and Lasso. To our knowledge, there are
no methods currently available for formally combining data from multiple studies in
conducting fast high-dimensional variable selection for survival outcomes.

In this article, we propose a multistudy AFT model, which accounts for heterogeneity
among studies. The study-specific coefficients for the different genes are assigned carefully
chosen hierarchical t priors. Expressing the t prior as a scale mixture of normals following
West (1987) leads to a Gamma prior for gene-specific precision parameters. Taking an
approach related to that of Ji et al. (2009), we propose to utilize the same gene-specific
precision parameters for the different studies in order to borrow information. This
specification allows the gene-specific coefficients to vary across studies, while including
dependence in the degree of shrinkage toward zero. To allow censoring, a Monte Carlo
expectation maximization (MC-EM) algorithm is developed for simultaneous variable
selection and coefficient estimation. The proposed approach, which we refer to as
hierarchical RVM with censoring (HRVM-C), produces sparse estimates of the gene-
specific coefficients, with many of the coefficients set to zero.

The remainder of this article is organized as follows. We first give a brief review of MT-
RVM in Section 2 and then introduce HRVM-C in Section 3. Section 3 also discusses the
computational details. In Section 4, we present results from simulation studies. Section 5
demonstrates our method with gene expression barcode data from three breast cancer studies
in Zilliox and Irizarray (2007). We give our final conclusion and the discussions in Section
6.

2. MT-RVM
Consider S related studies. Let ni be the number of samples in the ith study (i = 1, …, S), ti j
be the response of the jth subject in study i, (j = 1, …, ni), and xi j k (k = 1, …, p) be the

corresponding kth predictor variable. For simplicity, we set ti = (ti1, …, tini)′, ,

xi j = (xi j1, …, xi j p)′, and . The MT-RVM model in Ji et al. (2009) can be
represented as

(1)

where α0i is the precision of the errors and βi = (βi1, …, βi p)′ is the coefficient vector for
study i. To encourage sparsity and information sharing across studies, the MT-RVM further
places independent Gamma priors on α = (α1, …, αp).

(2)
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Similarly, Gamma priors are specified, independently, for α0i, p(α0i| a, b) = Ga(α0i| a, b).

The MAP estimate for α is defined as α̂MAP = arg maxα Σk log p(αk | c, d) + log L(t; α),
where log L(t; α) is the log-likelihood in (1) after integrating out βi and α0 with respect to
their prior distributions. We have

(3)

with , and A = diag(α1, …, αp). A recommended default choice, given in Ji
et al. (2009), is a = b = c = d = 0. Under the default choice of the hyperparameters, the MAP
estimate for α is equal to the maximum likelihood estimate (MLE).

The values of the hyperparameters a, b, c, and d control the shape of the priors, where small
values refer to distributions with a large spike at 0 and heavy right tails. Although the default
choice of the hyperparameters will result in an improper posterior distribution, the MAP
estimates exist and have a sparseness-favoring property in which many of the regression
coefficients will be exactly zero, with such elements shared across the different studies. We
focus on the standard default noninformative prior for the error variances, which lets a, b →
0. When prior information is available, this prior can be easily modified. Under the
recommended choice, one obtains simultaneous variable selection across studies, while

allowing heterogeneity. The value of  reflects the importance of predictor k. In particular,
for certain k, one obtains α∩k = ∞, which implies that β∩i k = 0 for all i. As another
extreme, for values of α∩k close to zero, substantial heterogeneity is allowed, with βi k and
βi′k potentially very different for i ≠ i′.

Note that αj is closely related to the shrinkage factor. In fact, the conditional posterior
distribution of βi can be written as p(βi | ti, α0i, α) ~ N(μi, Σi), where

, and A = diag(α1, …, αp). When the value of αk is close
to 0, the conditional posterior distribution of βi j is centered close to the MLE instead of
being shrunk toward zero; this suggests the importance of the jth variable. On the other
hand, when the value of αk is ∞, the βi j s will be shrunk to 0, and the jth variable will be
excluded. In this sense, the value of αj controls the importance of the jth predictor, with the
predictors associated with smaller values being more important.

The key in borrowing information is to use common hyperprior variances, which occurs in
the second hierarchy of MT-RVM. To further elaborate on this point, we consider the
following simplified case, ti j ~ N(μi, 1), μi ~ N(0, α−1), i = 1, …, S, j = 1, …, n. We can
write the log-likelihood for α terms sufficient statistics,

, where . Differentiating ℓ(α) with respect

to α and setting the result to 0, we get the MLE for , if ;
and α̂= ∞, otherwise.

The estimation equation for α involves the sufficient statistics t̄i· from all studies. Further, if
α∩ = ∞, it allows simultaneous variable selection by setting all μi to 0. Borrowing
information also occurs in estimation of the coefficients. In our simple example, the

posterior mean of μi is , which has been shrunk toward the prior mean of zero.
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In many applications, the goal of the selection process is to identify not only the predictors
that are consistently important in all of the studies, but also those that are very significant in
some of the studies. The example suggests that the MT-RVM is sensitive to both types of

signals. A predictor will be selected whenever , which include the

following two cases: (a)  for all i. This corresponds to the cases when μi is included in

all the studies. It is obvious to see that α∩ < ∞, and thus μi will be selected; (b) 
for some i. This corresponds to the cases when the signal is very strong in some studies.
Again, it is clear that α∩ < ∞, and thus μi will be selected.

3. HRVM-C
3.1 Formulation

Building on the MT-RVM approach, we propose an HRVM-C method for high-dimensional
variable selection in meta-analysis of survival data. We first extend the AFT model (Wei,
1992) to a multistudy AFT model as follows. Denoting the log-failure time (survival time)
for subject j in study i by ti j, we first model the log-failure time for each individual study by
the AFT model as in (1), and then combine data from multiple studies by placing
multivariate Student’s t distributions as the priors for the study-specific coefficients as

, where A = diag(α1, …, αp). For the precision parameters α,
we specify Gamma priors as in (2). Following West (1987), we can express the multivariate
Student’s t distribution as a scale mixture of normals, which leads to the MT-RVM model as
in (1) and (2). The hyperparameters are set as the default values in the MT-RVM.

For censored data, the log-likelihood for α in (3) no longer holds. Here, we focus on the
case of right censoring. Accounting for interval censoring will be straightforward using the
same type of strategy. Denote the censored observation by yi j and the censoring indicator by
δi j, that is, yi j = ti j if δi j = 1, and ti j > yi j if δi j = 0. We thus observe (yi, δi), for i = 1, …,

S, where  and . In the rest of this article, we use  and  to
denote the vector of the noncensored observations and the censored observations,
respectively, for study i. The corresponding matrices of the predictor variables are set 

and . Setting , and y = (yn c, yc), the log-likelihood can
be written as log L(y, δ, α) = log L(yn c; α) + Σi, j : δi j = 0 log ∫ti j > yi j p(ti j | xi j, α)dti j,
where log L(yn c ; α) is defined in (3) and p(ti j | xi j, α) is defined according to (1),

. The MAP estimate for α under censoring is then defined as

(4)

After obtaining α∩MAP, we keep variable k in the model as long as . In practice,
some elements of α∩MAP may be large but not infinite, implying that the corresponding co-
efficients are very small but not exactly zero. However, the number of such large finite
values is typically very small, so that the procedure tends to exhibit a thresholding behavior
in which coefficients close to zero are shrunk exactly to zero.

3.2 MC-EM Algorithm for Censored Data
The optimization problem in (4) is a critical step of our method and it is challenging due to
the high dimensionality of α. We develop a MC-EM algorithm to solve this problem. This
algorithm follows Wei and Tanner (1990) in implementing the intractable E-step using
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Monte Carlo integration. In addition, similar to Tipping and Faul (2003), we develop an
algorithm that breaks up the M-step into a series of alternating conditional maximization
steps. Due to the dimensionality of the maximization problem, direction maximization is
infeasible, but solving the high-dimensional maximization through a sequence of one-
dimensional maximizations makes the computation tractable.

3.2.1 E-step—Let tc be the complete data associated with the censored observations yc and
set t = (yn c, tc). In the E-step, we treat the censored observations as missing data, and define

(5)

where L(t; α) is the likelihood for the complete data defined in (3) and p(tc | yn c, yc, α(h −1))
is the posterior predictive distribution of the censored data given the MAP estimate of α in
the previous step (details are provided in the Appendix). The posterior predictive
distribution of the censored data is the product of conditionally independent truncated
univariate t distributions, which is straightforward to sample from. Let t(1), …, t(M) be M
independent draws of complete data generated by setting the uncensored log-survival times
equal to the observed values and imputing the censored log-survival times from their
conditional predictive distribution given α (h −1). We approximate the integral in Q(α;
α(h −1)) by Monte Carlo integration,

(6)

where  is the completed observations for the ith study in the mth imputed data.

3.2.2 M-step—Our goal in the M-step is to update α by maximizing Q(α; α (h −1)), that is,
α (h) = arg maxα Q(α; α (h −1)). Note that this is a very challenging maximization problem
due to the high dimensionality. In order to simplify this high-dimensional maximization
task, we propose to use an alternating conditional maximization approach, which only
requires a sequence of one-dimensional conditional optimizations. In our experience, the
steps are all simple and efficient to implement, and convergence has occurred rapidly in
each of the cases we have considered.

The key is to consider the dependence of the target function on a single hyperparameter, say

αk. Using results from linear algebra, we first write |Bi| and  as

 and . Here,
Bi,k denotes the matrix after removing the contribution of xi,k from Bi Plugging the above
facts into (6), we have

(7)

Liu et al. Page 6

Biometrics. Author manuscript; available in PMC 2012 October 22.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



where , and α−k is the resulting
vector of α after removing the kth component.

Differentiating Q(α; α(h −1)) with respect to αk and setting the result to zero, we have,

Assuming αk ≪ si,k, we obtain an estimate of αk that maximizes the conditional log-
likelihood with respect to the kth dimension,

(8)

In each iteration of the M-step, we first calculate α∩k and the conditional likelihood ℓ(α∩k)
for all k, and then update the kth element in α which has the maximum ℓ(α∩k) among all k.
Performing the above local maximization iteratively for varying k until convergence, we
obtain a simple and seemingly (in the cases we have considered) efficient algorithm for the
M-step. In practice, we monitor convergence by specifying a threshold η2, and stop the M-
step when the change in maxk ℓ(α∩k) is less than η2.

The proposed optimization strategy is a version of alternating conditional maximization,
which is well known to converge to a local mode in the likelihood surface. In each iteration,

the algorithm leads to one of the three operations: (a) If  and the algorithm sets

, we have βi k = 0 for all i, thereby removing the kth predictor from the model in all

studies; (b) If  and the algorithm sets , we have βi k ≠ 0 for all i, thereby

adding the kth predictor to the model in all studies; (c) If  and the algorithm sets

, we have simply re-estimated the hyperparameter value and the kth predictor

remains in the model. From expression (8), it is clear that  can take a value of exactly ∞
and each of the operations (a)–(c) is possible prior to convergence.

We iterate between the E-step and the M-step until the MC-EM algorithm converges, which
is judged to have occurred when the change in the maximized log-likelihood between
iterations is less than the threshold η1. After convergence, the kth predictor will be excluded
from all studies if α∩k = ∞. If α∩k is finite but large, then the coefficients for the kth
predictor will greatly shrink toward zero, and thus tends to be small in all the studies. If α∩k
is small, the coefficients for the kth predictor will be shrunk less and the model allows for
substantial heterogeneity in the kth predictor across different studies.
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4. Simulation Study
4.1 Comparison with Existing Methods

In this section, we assess the performance of HRVM-C and compare it with popular existing
methods for variable selection in meta-analysis. Because HRVM-C is the only method that
accounts for censoring, the comparison with the other methods is carried out in the setting of
complete data. We then consider separately how HRVM-C performs with censored data.

We first consider the Group Lasso method (Grp-Lasso) of Yuan and Lin (2006), which is

applied by augmenting the model as , where
for a given k, we define βi k (i = 1, …, S) as a group, that is, the regression coefficients in
different studies for a given gene. In addition, the following generic methods are considered
for combining multiple studies in high-dimensional variable selection problems:

• Fitting each study independently and then reporting the union of the selected
predictor variables for each study (Ind).

• Reducing the false positive rate by a multistage analysis (MSA), that is, only
considering the selected predictor variables in the analysis of the follow-up data
sets.

• Fitting with pooled data (Pool).

For each individual study, we consider the following variable selection techniques: RVM,
Lasso, and using p-values from simple linear regression models (Pvals). For the Pvals
method, predictors are ranked according to their p-values each of which is obtained from a
simple linear regression model only including that predictor. We thus consider 11
procedures: HRVM-C, Grp-Lasso, Ind-RVM, Ind-Lasso, Ind-Pvals, MSA-RVM, MSA-
Lasso, MSA-Pvals, Pool-RVM, Pool-Lasso, and Pool-Pvals.

The simulation is set up to mimic the sample size of the real data in Section 5. In particular,
we simulate three related studies with 226 subjects in study 1, 156 subjects in study 2, and
101 subjects in study 3. We fix p, the total number of predictors, at 1000 and then randomly
choose p0 = 20 of them to be related to the survival time, with the regression coefficients
simulated, independently, from a uniform U([−1, −0.1] ∪ [0.1, 1]) distribution.

In simulating the predictor variables for microarray data, we use the strategy of Gui and Li
(2005) and Sha, Tadesse, and Vannucci (2006), which runs as follows. For a study with
sample size n, we first draw an n × n matrix A from a uniform U(−1.5, 1.5) distribution and
randomly choose p0 columns of A to be relevant to the survival time. The orthonormal basis
of A, constructed by Gram–Schmidt orthonormalization, is then obtained as {ξ1, …, ξp0, ζ1,
…, ζp−p0}, where {ξ1, …, ξp0} is an orthonormal basis for the p0 columns that are relevant
to the survival time. Let T be a p0 × (n − p0) matrix such that the largest eigenvalue of T′T
is ρ2. By Cauchy’s inequality, for any vector in the linear space spanned by {ξ1, …, ξp0}
and any vector in the linear space spanned by ζ+ ξT, the maximum correlation between

them is less than or equal to . We thus generate the remaining p − p0 variables not
relevant to the survival time from the linear space ζ + ξT. The log-survival time is then
generated using the AFT model according to (1), where εi j ~ N(0, 1).

We choose the value of ρ such that the maximum correlation is controlled at 0 (low level),
0.5 (medium level), and 0.9 (high level). For each chosen ρ, we generate 100 data sets, and
select variables by the 11 considered methods, respectively. In fitting HRVM-C and RVM,
we set the hyperparameters a, b, c, and d at their recommended values. The tuning parameter
in Grp-Lasso is chosen as the maximal value of the penalty parameter in Group Lasso. For
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the thresholds required in the Lasso and Pvals methods, we utilize sliding thresholds that
keep the most influential 5, 10, 15, 20, 25, 30, 35, 40, 45, or 50 predictors in each study. For
a fair comparison, we also apply the same thresholds to HRVM-C and RVM methods. The
final selected predictors in Ind-RVM, Ind-Lasso, and Ind-Pvals are then the union set of the
selected predictors after thresholding in all studies, while the predictors reported in MSA-
RVM, MSA-Lasso, MSA-Pval are obtained by keeping the predictors after thresholding in
the first stage and then restricting attention to those kept predictors in the subsequent
analysis. Finally, in Pool-RVM, Pool-Lasso, and Pool-Pvals, we pool the data together and
select the most influential predictors after thresholding.

To evaluate the performance of each procedure, we consider the true positive rate (TPR) and
the false discovery rate (FDR), which are defined as the ratio of the number of correctly
identified predictors and the total number of truly active predictors, and the ratio of the
number of the falsely identified predictors and the total number of selected predictors,
respectively.

The FDR is the error rate in variable selection and is typically controlled at a prespecified
level. We report, in Table 1, the TPRs for the 11 considered approaches, based on the
average of 100 simulations, while controlling the FDRs at 0.05 in all methods. HRVM-C,
with TPRs about 0.97, clearly outperforms all the other methods. Table 1 also reflects the
drawbacks of the other methods. First, we note that in the Grp-Lasso, the model tends to put
a large penalty in the nonzero coefficients due to the large number of groups, leading to a
final model that is too sparse. Indeed, from our experience, Grp-Lasso can only identify one
or two predictors each time, while missing most predictors. Therefore, the TPRs for Grp-
Lasso is very small, as shown in the table. Second, in the independent methods, after FDR
control, few predictors are selected and thereby the methods still miss important predictors.
Third, the multistage approaches, which control the FDR in the first-stage study, miss
important predictors that are significant only after the second-stage study. Finally, by
pooling the data together, we may miss the predictors that are positively correlated with the
response in one study, but are negatively correlated with the response in another study.
Apparently, the advantage of HRVM-C over the other methods is consistent under all
correlation levels being considered.

4.2 Censored Case
In this section, we conduct simulation studies to investigate the performance of HRVM-C in
the presence of censoring. We first simulate the complete log-survival time ti j as in Section
4.1. We then generate the censored observations using the strategy described in Sha et al.
(2006), as follows. Given the censoring rate λ, we first set the censoring indicators δi j for
the first 100 * λ percentage of subjects in each study to 0. If δi j = 0, we observe a censored
data yi j from the distribution exp(yi j ) ~ Uniform(0, exp(ti j)). Otherwise, we observe the
noncensored data ti j. The simulation leads to a right-censoring data set. In this simulation,
the total number of predictor variables p are fixed at 1000, 20 of which are related to the
survival time (these are the same as in Section 4.1). For the censoring rate λ, we consider
low censoring rate λ = 0.1, medium censoring rate λ = 0.5, and high censoring rate λ = 0.9.

We apply HRVM-C to 100 simulated data sets. To avoid numerical problems, we choose a =
10−4 and b = 10−4. In the EM algorithm, we impute 1000 complete data sets within each E-
step, and the two thresholds are chosen as η1 = 0.01 and η2 = 0.01. For each data set, we
start the EM algorithm from the empty set, that is, no predictors are included in the model.
After convergence, we rank the selected predictors based on the values of the shrinkage
factors αk and apply the same sliding thresholds as in Section 4.1. In Table 2, we report the
TPRs based on the average of 100 replications while controlling the FDRs at 0.05. For low
censoring rate, the performance of HRVM-C, with TPRs about 0.95, is very good under all
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correlation levels. As expected, as the censoring rat increases, the performance gets worse.
Nevertheless, with TPRs around 0.75 for the medium censoring rate and around 0.5 for the
high censoring rate, HRVM-C performs reasonably well when data are censored. Finally, in
the last column of Table 2, we report the CPU time for one replicate under the varying
censoring rates and correlation levels. The computation is inexpensive. We also note that the
computational time decreases as the censoring rate gets higher. From our experience, this is
due to the fact that the M-step needs fewer iterations to converge when the censoring rate
increases.

In Table 3, we summarize the frequencies with which the 20 predictors that related to the
response are selected by HRVM-C. As expected, the predictors with larger coefficients are
more likely to be selected. We also note that the result does not vary much as the maximum
correlation between related predictors and the unrelated predictors increases. This is an
advantage of borrowing strength from all studies. Two predictors that are highly correlated
in one specific study are not necessarily correlated in other studies. Therefore, by
incorporating all information by hierarchical modeling, we are able to avoid the collinearity
issues in any single study. Finally, as the censoring rate increases, predictors with smaller
coefficients have less chances to be selected.

5. Analysis of the Gene Expression Barcode Data
We demonstrate our method with the gene expression bar-code data in Zilliox and Irizarray
(2007). The data consist of three breast cancer studies (A3ymetrix HGU133A array) in
Miller et al. (2005), Pawitan et al. (2005), and Sotiriou et al. (2006), that include patient
survival data. There are 243 subjects in the first study, 156 in the second study, and 101 in
the third study. In the first study, 52 patients are censored and 15 have missing data in the
survival status. All observations in the second study are censored and in the third study, 61
observations are censored. Here, we focus on gene selection by HRVM-C, and hence
remove the patients with missing data from consideration.

The gene expression profile consists of 22, 215 genes. To remove the variability in the gene
expression profile between different studies, we use the gene barcode of the microarray data
as our predictor variables. Many genes are in the same status (barcode is 1 or 0) among all
the subjects. To avoid identifiability issues arising from including those genes in the model,
we eliminate them from consideration. This reduces the total number of genes to 11, 879.
Our goal is to select the genes that affect the patient survival time.

We perform the gene selection by the HRVM-C for the gene barcode data, under the choice
of a = 10−4, b = 10−4, N = 1000, η1 = 0.001, and η2 = 0.001. From our experience, the result
does not appear to be sensitive to the choices of a, b, and N. On the other hand, the choice of
η1 and η2 are critical. These thresholds control how long the algorithm would run. In
general, one would want to avoid values that are too small, which lead to bad convergence
of the algorithm. Larger values, on the other hand, could make the algorithm run longer. We
have tried a variety of values, and the ones we chose seem to provide a reasonable balance
between convergence and running time. At the end of the algorithm, 34 genes are selected to
be related to the survival time.

Finally, we check the biological meanings of the selected genes. Most of the selected genes
are known to be cancer related. In Table 4, we list the information of those genes that are
selected by our method.
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6. Discussion
In this article, we develop the HRVM-C to combine multiple studies in high-dimensional
variable selection. In contrast with the commonly used approaches, our method
systematically borrows information across the studies using an explicit overall statistical
model. For model fitting with censored data, we develop an MC-EM algorithm that can be
implemented quickly even in high dimensions. In simulations studies, our method is found
to outperform existing approaches in the setting of complete data, and to perform well with
censored data. We demonstrate the usefulness of our method in a meta-analysis of multiple
breast cancer studies.

HRVM-C provides a useful tool for dealing with censored data across multiple studies in
high-dimensional variable selection problems. The MC-EM algorithm developed here can
be easily extended to a Monte Carlo Expectation Conditional Maximization (MC-ECM)
algorithm where the M-step is replaced by the Conditional Maximization (CM) step (Meng
and Rubin, 1993). According to (8), αk can be (approximately) maximized conditional on
the rest of parameters, and therefore MC-ECM algorithm has the potential to further reduce
the computational expense. HRVM-C requires at least one noncensored observation in each
study in order to impute the complete data sets (see the discussion in Appendix). To
overcome this difficulty, one may consider to utilize a similar structure in the Cox
proportional hazards model. We will explore this extension in our future work.

7. Supplementary Material
Further details and complete information needed to recapitulate the analyses reported are
available at the Biometrics website http://www.biometrics.tibs.org. This includes the Matlab
code to conduct the analysis and a brief readme on use of the code.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Appendix

Imputing Missing Data
The conditional distribution for the censored observation can be written as

(A.

1)

where I(·) is the indicator function of the set ti j > yi j, , with

, and . Integrating out βi and α0i, we have

. This is a truncated noncentral Student’s t distribution, with the degree of freedom

, the location parameter xi j μi, and the scale parameter

. The

distribution of tc is thus given as . At each
E-step, given the current value of α, we obtain a complete data set by sampling the censored
observations from this distribution.

Note that the above distribution is well defined only when the degree of freedom

. This implies that there must be at least one noncensored observation
in any single study. For this reason, HRVM-C cannot incorporate studies where all the
observations are censored.
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Table 1

True positive rate (TPR) for the noncensored simulation studies. The false discovery rate (FDR) is controlled
at 0.05. The maximum correlation is 0 (Low), 0.5 (Medium), and 0.9 (High). The results are based on 100
replicated simulations.

Low Medium High

HRVM-C 0.9745 0.9685 0.9725

Grp-Lasso 0.0205 0.0195 0.026

Ind-RVM 0.7675 0.7430 0.7580

Ind-Lasso 0.8515 0.8445 0.8495

Ind-Pvals 0.8540 0.8485 0.8545

MSA-RVM 0.7825 0.7435 0.7450

MSA-Lasso 0.6495 0.6490 0.6495

MSA-Pvals 0.6165 0.6125 0.6125

Pool-RVM 0.7395 0.7150 0.7215

Pool-Lasso 0.7400 0.7375 0.7380

Pool-Pvals 0.7415 0.7360 0.7370
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Table 2

TPRs and CPU running time (in seconds) in the censored simulation studies. The FDRs are controlled at 0.05.
The first column is the level of the censoring rate: 0.1 (Low), 0.5 (Medium), 0.9 (High). The second column is
the level of the maximum correlation between variables: 0 (Low), 0.5 (Medium), 0.8 (High). The results are
based on the average of 100 simulated data sets.

Censoring rate Correlation TPR CPU time

Low Low 0.9555 183.2900

Medium 0.9595 190.0400

High 0.9510 188.7900

Medium Low 0.7490 98.2700

Medium 0.7475 95.6500

High 0.7495 89.4200

High Low 0.4895 25.8700

Medium 0.4955 24.9900

High 0.4930 31.5000
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Table 4

Information about the selected genes

A3yID Gene symbol Description

201167 x at ARHGDIA Rho GDP dissociation inhibitor (GDI) alpha

200969 at SERP1 Stress-associated endoplasmic reticulum protein 1

201280 s at DAB2 Disabled homolog 2, mitogen-responsive phosphoprotein (Drosophila)

200008 s at GDI2 GDP dissociation inhibitor 2

200958 s at SDCBP Syndecan binding protein (syntenin)

201341 at ENC1 Ectodermal-neural cortex (with BTB-like domain)

201384 s at NBR1 Neighbor of BRCA1 gene 1

201399 s at TRAM1 Translocation associated membrane protein 1

160020 at MMP14 Matrix metallopeptidase 14 (membrane-inserted)

200957 s at SSRP1 Structure specific recognition protein 1

201275 at FDPS Farnesyl diphosphate synthase

200994 at IPO Importin 7

200835 s at MAP4 Microtubule-associated protein 4

200902 at SEP15 15 kDa selenoprotein

201404 x at PSMB2 Proteasome (prosome, macropain) subunit, beta type, 2

200626 s at MATR3 Matrin 3

200923 at LGALS3BP Lectin, galactoside-binding, soluble, 3 binding protein

201087 at PXN Paxillin

201040 at GNAI2 Guanine nucleotide binding protein (G protein), alpha inhibiting activity polypeptide 2

201264 at COPE Coatomer protein complex, subunit epsilon

200744 s at GNB1 Guanine nucleotide binding protein (G protein), beta polypeptide 1

200672 x at SPTBN1 Spectrin, beta, non-erythrocytic 1

200914 x at KTN1 Kinectin 1 (kinesin receptor)

200607 s at RAD21 RAD21 homolog (S. pombe)

201091 s at CBX3 Chromobox homolog 3 (HP1 gamma homolog, Drosophila)

200749 at RAN Member RAS oncogene family

201316 at PSMA2 Proteasome (prosome, macropain) subunit, alpha type, 2

201343 at Hs.693967 Transcribed locus

201041 s at DUSP1 Dual specificity phosphatase 1

201069 at MMP2 Matrix metallopeptidase 2 (gelatinase A, 72kDa gelatinase, 72kDa type IV collagenase)

200962 at RPL31 Ribosomal protein L31

201129 at SFRS7 Splicing factor, arginine/serine-rich 7, 35kDa

201291 s at TOP2A Topoisomerase (DNA) II alpha 170kDa

200920 s at BTG1 B-cell translocation gene 1, anti-proliferative
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