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Abstract
The P1B-type ATPases are a ubiquitous family of P-type ATPases involved in the transport of
transition metal ions. Divided into subclasses on the basis of sequence characteristics and substrate
specificity, these integral membrane transporters play key roles in metal homeostasis, metal
tolerance, and the biosynthesis of metalloproteins. The P1B-4-ATPases have the simplest
architecture of the five P1B-ATPase families and have been suggested to play a role in Co2+

transport. A P1B-4-ATPase from Sulfitobacter sp. NAS-14.1, designated sCoaT, has been cloned,
expressed, and purified. Activity assays indicate that sCoaT is specific for Co2+. A single Co2+

binding site is present, and optical, electron paramagnetic resonance (EPR), and X-ray absorption
(XAS) spectroscopic data are consistent with tetrahedral coordination by oxygen and nitrogen
ligands, including a histidine and likely a water. Surprisingly, there is no evidence for coordination
by sulfur. Mutation of a conserved cysteine residue, Cys 327, in the signature transmembrane SPC
metal binding motif does not abolish ATP hydrolysis activity or affect the spectroscopic analysis,
establishing that this residue is not involved in the initial Co2+ binding by sCoaT. In contrast,
replacements of conserved transmembrane residues Ser 325, His 657, Glu 658, and Thr 661 with
alanine abolish ATP hydrolysis activity and Co2+ binding, indicating that these residues are
necessary for Co2+ transport. These data represent the first in vitro characterization of a P1B-4-
ATPase and its Co2+ binding site.

The P-type ATPases, found in a variety of species from bacteria to humans, are a family of
integral transmembrane proteins that transport charged substrates across cell membranes
using the energy provided by ATP hydrolysis (1, 2). P-type ATPases are divided into
subclasses on the basis of substrate specificity. These subclasses include the P1A-ATPases
(K+), the P1B-ATPases (heavy metals), the P2-ATPases (Ca2+, Na+/K+, H+/K+), the P3-
ATPases (H+), the P4-ATPases (phospholipids), and the P5-ATPases (unknown substrate)
(3–5). All P-type ATPases share a common architecture consisting of multiple
transmembrane (TM) helices, soluble nucleotide binding and phosphorylation domains (N-
and P-domains, referred to collectively as the ATP binding domain or ATPBD), and a
soluble actuator domain (A-domain). All P-type ATPAses are believed to follow a Post-
Albers mechanism in which catalytic phosphorylation of a conserved aspartic acid residue
within an invariant DKTGT sequence in the P-domain causes conformational switching
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between an E1 high affinity cation binding state and an E2 lower affinity state (6–9) (Figure
1). Crystal structures are available for multiple conformational states of the sarcoplasmic
reticulum Ca2+-ATPase (SERCA) (10), and some structures have also been determined of
the Na+/K+-ATPase (11, 12), the H+-ATPase (13), and the Cu+-ATPase (14).

The P1B-type ATPases transport transition metal ions, including Zn2+/Cd2+/Pb2+ (15–17),
Cu2+ (18), Cu+/Ag+ (19, 20), and Co2+ (21). Members of the P1B subgroup are widely
distributed across all domains of life, conferring heavy metal tolerance and playing an
essential role in the distribution of metal micronutrients and the biosynthesis of
metalloproteins (20, 22). In humans, mutations in the Cu+-ATPases ATP7A and ATP7B
lead to Menkes syndrome and Wilson disease, respectively (23). The core architectural
features of the P1B-type ATPases include at least six TM helices and two large cytoplasmic
loops housing the ATPBD (containing the N- and P-domains) and the A-domain (Figure 2).
The C-terminal TM helices 4–6 contain residues that are proposed to form the metal binding
site(s), and the identities and positions of these residues are believed to determine metal
specificity (24). Mutagenesis data indicate that a three-residue cysteine-containing
“signature” sequence motif in TM4 (CPC, CPH, SPC, PCP) is of particular importance for
metal transport activity (25–29). On the basis of these signature sequence motifs and some
experimental data, the P1B-ATPases have been grouped into five substrate-specific
subfamilies designated P1B-1 through P1B-5 (24, 30). The P1B-1, P1B-2, and P1B-3 subfamilies
contain two additional TM helices at the N-terminus. The subfamilies are further
differentiated according to the presence or absence of N- and/or C-terminal soluble metal
binding domains (MBDs), which likely regulate ATPase function (31–34).

The P1B-1-ATPases are specific for Cu+/Ag+, the P1B-2-ATPases are Zn2+/Cd2+/Pb2+

transporters, and the P1B-3 ATPases are specific for Cu2+. Representative members of these
three families have been purified and characterized biochemically (17–19, 25, 35, 36). In
addition, a crystal structure of the Legionella pneumophila CopA P1B-1-ATPase (LpCopA)
has been determined recently (14). Less is known about the P1B-4- and P1B-5-ATPases.
While the P1B-4-ATPases have been suggested to play a role in Co2+ transport (21), their
substrate specificity has not been established. The substrate for the P1B-5-ATPases is
unknown (37). The P1B-4-ATPases have the simplest architecture, with only six TM helices
and no N- or C-terminal MBDs. A conserved SPC motif is located in TM4 (Figure 2).
Genetic data obtained more than 10 years ago for the Synechocystis PCC6803 P1B-4-
ATPase CoaT indicate that it is linked to Co2+ tolerance (21). In Cupriavidus metallidurans
CH34, the P1B-4-ATPase CzcP is proposed to play a role in resistance to Zn2+, Cd2+, and
Co2+ (38). The plant P1B-4-ATPase HMA1 transports Ca2+ and expression of HMA1 in
yeast confers tolerance to Zn2+, Cd2+, Co2+ and Cu+ (39, 40). Thus, the metal substrate of
the P1B-4-ATPases has not yet been clearly defined, and no biochemical characterization of
a purified P1B-4-ATPase has been reported. To further understand this subfamily of P1B-
ATPases, we have expressed, purified, and characterized a P1B-4-ATPase from Sulfitobacter
sp. NAS-14.1, designated sCoaT. Isolated sCoaT binds Co2+ and exhibits Co2+-induced
ATPase activity. The Co2+ binding site has been probed by spectroscopy and the roles of
conserved residues have been assessed by mutagenesis. These data provide new insight into
the function and properties of the P1B-4-ATPase subfamily.

MATERIALS AND METHODS
Homology Modeling of sCoaT Based on LpCopA

Homology modeling of sCoaT and LpCopA was performed using DeepView (http://
www.expasy.org/spdbv/) (41). Chain B of the LpCopA structure (PDB accession code
3RFU) was used as the reference sequence onto which the sequence of sCoaT was mapped.
Structural alignment was performed on the last four TM helices of both sCoaT and LpCopA
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(starting from TM helix 3 of sCoaT and TM helix 5 of LpCopA) to focus on the structural
region that houses residues believed to determine metal ion specificity (24). The starting
position of TM helices was determined using TMHMM 2.0 (42). In the resultant homology
model, residues 227–682 of sCoaT are aligned with residues 291–733 of LpCopA.

Cloning and Expression of Wildtype sCoaT (WT-sCoaT)
The gene sequence encoding the P1B-4-ATPase sCoaT was PCR amplified with PfuTurbo
DNA polymerase (Stratagene) using Sulfitobacter sp. NAS-14.1 genomic DNA (ATCC) as a
template and the following oligonucleotide primers (Integrated DNA Technologies):
forward, 5′-CAC-CGT-GCG-GAA-AGT-CGT-TGC-CGA-T-3′; reverse, 5′-CTA-TGC-
CGA-TTT-GAC-GCG-ATT-GTC-CTT-GA-3′. The primers were designed on the basis of
PubMed entry GI:83956091 with the introduction of an overhang (underlined) for TOPO
cloning. The amplified gene (2.04 kbp) was subcloned into the pET151/D-TOPO vector
(Invitrogen), which introduces an N-terminal hexahistidine tag with a TEV cleavage site.
This vector was transformed into E. coli Top10 chemically competent cells (Invitrogen)
following the manufacturer’s protocol and spread on a Luria-Bertani (LB) agar plate
containing 100μg/mL ampicillin. DNA sequencing (ACGT Inc.) of individual colonies
confirmed the gene sequence.

For expression, E. coli BL21 Star (DE3) chemically competent cells were transformed with
the plasmid encoding sCoaT. Overnight cultures were used to inoculate baffled flasks
containing 1 L LB media supplemented with 100 mg ampicillin which were then grown at
37 °C with shaking. Protein expression was induced by addition of 1 mM IPTG at an OD600
of 0.6, at which point the growth temperature was lowered to 18 °C. The cells were
harvested after 16–18 h by centrifugation at 4800g for 10 min in a Sorvall SLC 4000 rotor at
4 °C, resuspended in 50 mM Tris, pH 7.5, 200 mM NaCl, 500 mM sucrose, and 1 mM
PMSF, and stored at −80 °C.

Purification of WT-sCoaT
All purification procedures were carried out at 4 °C. Cells were lysed by sonication for 12
min using 15 s pulses with a 30 s rest period between each pulse. Lysed cells were
centrifuged at 8000g for 30 min to remove cell debris. The supernatant was then
ultracentrifuged at 163000g for 1 hr. Pelleted membranes were washed once with fresh
buffer (50 mM Tris, pH 7.5, 500 mM NaCl, 500 mM sucrose, 1mM PMSF) and
homogenized, then pelleted again by ultracentrifugation at 163000g for 45 min. The
pelleted, washed membranes were resuspended and homogenized in 25 mM Tris, pH 7.0,
100 mM sucrose, 500mM NaCl, 1 mM PMSF and diluted to 3 mg/mL, with the
concentration determined by the detergent compatible Lowry assay (Bio-Rad). For
solubilization, n-dodecyl-β-D-maltopyranoside (DDM) was added dropwise to a final
concentration of 1% and allowed to incubate for 1 h at 4 °C with gentle stirring. The
suspension was cleared by centrifugation at 163000g for 45 min. The supernatant was then
applied to a 10 mL Ni2+-loaded HiTrap Chelating HP column (GE Healthcare) and washed
with four column volumes of 25 mM Tris, pH 7.5, 100 mM NaCl, 20% glycerol, 0.02%
DDM (Buffer A) followed by a wash of six column volumes of Buffer A with 50 mM
imidazole. The pure sCoaT protein was eluted with Buffer A containing 300 mM imidazole.
Fractions were concentrated in an Amicon 15 mL spin concentrator with a 50 kDa cutoff
filter (Millipore), and imidazole was removed by desalting on a HiPrep 26/10 Desalting
column (GE Healthcare) equilibrated with Buffer A. The protein concentration was
determined by the Pierce 660 nm protein assay, and protein expression and purification were
assessed by 15% SDS-PAGE.
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To remove the N-terminal hexahistidine tag, purified sCoaT was treated with TEV protease.
Hexahistidyl-tagged TEV protease was added to purified sCoaT at a 1:2 molar ratio along
with 1 mM DTT and incubated at 4 °C with gentle rocking for 16–18 h. The cleavage
reaction mixture was then loaded onto a 10 mL Ni2+-loaded HiTrap Chelating HP column
(GE Healthcare) and washed with five column volumes of Buffer A, during which cleaved
sCoaT was eluted. Uncleaved sCoaT and hexahistydyl-tagged TEV protease remained
bound to the column. Removal of the hexahistidine tag from sCoaT was confirmed by
Western blotting followed by immunostaining with anti-hexahistidine antibody (Sigma
Aldrich) and by N-terminal sequence analysis (University of Illinois Champaign-Urbana
Protein Sciences Facility).

Cloning, Expression, and Purification of sCoaT Mutants
Mutations S325A, C327A, H657A, E658A, and T661A were introduced using the
QuikChange II Site-Directed Mutagenesis kit (Stratagene). Plasmid DNA of pET151/WT-
sCoaT was used as template DNA for mutagenesis. The entire sequences of the mutants
were verified by automated DNA sequencing (ACGT Inc.). The pET151/mutant plasmids
were transformed into E. coli BL21 Star (DE3) chemically competent cells, and growth and
purification were conducted using the same procedures as for WT-sCoaT.

ATPase Activity Assay
The metal-dependent ATPase activity of purified sCoaT was measured by the pyruvate
kinase-lactate dehydrogenase coupled spectroscopic assay (17, 43). In this assay,
regeneration of ATP is coupled to the oxidation of NADH, and enzyme activity is
determined by monitoring the decrease of the NADH absorption peak at 340 nm. For
activity measurements, sCoaT was exchanged into a buffer containing 25 mM Tris, pH 7.5,
50 mM KCl, 10% glycerol, and 0.02% DDM. The ATPase activity assay mixture (1 mL)
contained 50 mM HEPES-KOH, pH 7.5, 100 mM KCl, 0.1% asolectin, 0.1% DDM, 5 mM
MgSO4, 0.25 mM NADH, 1.25 mM phosphoenolpyruvate, 9 units of pyruvate kinase, 9
units of lactate dehydrogenase, and 10 μg sCoaT, with or without Co2+, Pb2+, Zn2+, Cd2+,
Cu2+, Cu+ (generated from Cu2+ in the presence of excess dithiothreitol) and Ni2+.
Insolubility of Ag+ under the assay conditions precluded testing Ag+-dependent activity.
Assay mixtures were activated by the addition of 5 mM ATP and monitored for 3 min at 25
°C using a Perkin Elmer LAMBDA 1050 UV-Vis spectrophotometer (Keck Biophysics
Facility, Northwestern University) at 340 nm.

Metal Loading and Analysis
Purified sCoaT was first exchanged into a buffer containing 25 mM Tris, pH 7.5, 50 mM
NaCl, 10% glycerol, and 0.02% DDM using repeated dilution and concentration in an
Amicon spin concentrator. Cobalt loading was performed by addition of 5 molar equivalents
of CoCl2 to the sCoaT solution followed by overnight (16–18 h) incubation at 4 °C with
gentle rocking. Excess cobalt was removed using an EconoPac 10DG desalting column
(Bio-Rad). Metal content was measured by inductively coupled plasma optical emission
spectrometry (ICP-OES) using a Varian Vista MPX ICP-OES (Integrated Molecular
Structure Education and Research Center, Northwestern University). All ICP-OES samples
were prepared by digestion of protein in 5 mL of 5% TraceSelect nitric acid (Sigma Aldrich)
in Chelexed water followed by filtration through a 22 μm sterile filter. Cobalt standards for
calibration (Sigma Aldrich) were also prepared in 5% nitric acid. Reported ICP-OES results
are the average of three replicate experiments performed for at least two independent protein
sample preparations. Optical spectra were measured using a Perkin Elmer LAMBDA 1050
UV-Vis instrument.
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Electron Paramagnetic Resonance (EPR) Spectroscopy
Samples for EPR spectroscopy were concentrated to 0.6–1mM Co2+ in 25 mM Tris, pH 7.5,
50 mM NaCl, 0.02% DDM, 50% glycerol. Deuterated samples were prepared in the same
buffer using D2O and d8-glycerol (Sigma Aldrich). Samples were transferred to custom Q-
band EPR tubes, frozen, and stored in liquid nitrogen. Q-band continuous wave (CW) EPR
and Electron Nuclear Double Resonance (ENDOR) spectra were collected on custom-built
instruments each equipped with a liquid helium immersion dewar at 2 K using 100 kHz field
modulation and dispersion mode detection under rapid passage conditions (44). These
spectrometers have been described previously (45). Q-band pulsed ENDOR spectra were
collected at 2 K on custom-built instruments previously described (45–47) and employed the
Davies (π – T – π/2 – τ – π – τ – echo) microwave pulse sequence, in which the RF pulse is
applied during time period T (48). All pulse experiment data acquisition was performed with
the SpecMan software package (49) (http://specman4epr.com) in conjunction with a Spin-
Core PulseBlaster ESR_PRO 400 MHz word generator and Agilent Technologies Acquiris
DP235 500MS/sec digitizer.

X-ray Absorption (XAS) Spectroscopy
Samples for XAS were prepared in 25 mM Tris, pH 7.5, 50 mM NaCl, 0.02% DDM and
50% glycerol with cobalt concentrations in the 1–1.5 mM range. Two independent replicates
of cobalt-loaded, WT- and C327A-sCoaT were prepared. Samples were loaded into Lucite
cells wrapped with Kapton tape, frozen in liquid nitrogen and stored at −80 °C until data
collection. XAS data were collected at the Stanford Synchrotron Radiation Laboratory
(SSRL) on beamline 7-3 and at the National Synchrotron Light Source (NSLS) on beamline
X3-b. The SSRL beamline was equipped with a Si[220] double crystal monochromator and
the NSLS beamline was equipped with a Si[111] monochromator; both beamlines were
equipped with a harmonic rejection mirrors. During data collection, samples were
maintained at 10 K using an Oxford Instruments continuous-flow liquid helium cryostat at
SSRL and at 24 K using a He Displex Cryostat at NSLS. Protein fluorescence excitation
spectra were collected using 30-element Ge solid-state detectors at both beamlines. At
SSRL, iron filters, 0.3 μm in width, were placed between the cryostat and detector to filter
background fluorescence scattering not associated with Co signals. XAS spectra at both
facilities were measured in 5 eV increments in the pre-edge regions (7542–7702 eV), 0.25
eV increments in the edge regions (7702–7780 eV), and 0.05 Å−1 increments in the
extended X-ray absorption fine structure (EXAFS) region (to k = 13.0 Å−1), integrating
from 1s to 25s in a k3 weighted manner for a total scan length of approximately 40 min. X-
ray energies were individually calibrated by collecting Co foil absorption spectra
simultaneously with protein data. The first inflection point of the Co foil spectrum was
assigned to 7709.5 eV. Each fluorescence channel of each scan was examined for spectral
anomalies prior to averaging and spectra were closely monitored for photoreduction. SSRL
data represent the average of 6 to 7 scans, and NSLS data represent the average of 9 to 10
scans.

XAS data were processed using the Macintosh OS X version of the EXAFSPAK program
suite (50) integrated with the Feff v8 software (51) for theoretical model generation. Data
reduction utilized a Gaussian function in the pre-edge region and a three-region cubic spline
throughout the EXAFS region. Data were converted to k-space using a cobalt E0 value of
7745 eV. The k cubed weighted EXAFS was truncated at 1.0 and 12.5 Å−1 for filtering
purposes. This k range corresponds to a spectral resolution of ca. 0.14 Å for all cobalt-ligand
interactions; therefore only independent scattering environments outside 0.14 Å were
considered resolvable in the EXAFS fitting analysis (52). EXAFS fitting analysis was
performed on raw/unfiltered data. EXAFS data were fit using both single and multiple
scattering amplitude and phase functions calculated with the program Feff v8. Single
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scattering theoretical models were calculated for carbon, oxygen, sulfur and cobalt
coordination to simulate copper-nearest neighbor ligand environments. A multiple scattering
Co-imidazole theoretical model was calculated to simulate the numerous scattering
interactions observed from the linear ring. A scale factor (Sc) of 0.98% and an E0 value of
−3 eV for a Co-O/N bond, utilized during the protein simulations, were determined by
fitting a crystallographically characterized hexaquacobalt (II) nitrate (53). Criteria for
judging the best-fit simulation utilized both the lowest mean square deviation between data
and fit (F′), corrected for the number of degrees of freedom (54), and a reasonable Debye-
Waller factor (σ2 < 0.006 Å2).

RESULTS AND DISCUSSION
Homology Modeling

On the basis of sequence alignments, seven conserved residues were proposed to participate
in metal binding by P1B-4-ATPases: serine, proline, and cysteine in TM4, and histidine,
glutamine, glycine, and threonine in TM6 (24) (Figure 2). Additional insight into specific
ligands can be obtained by comparison of sCoaT to LpCopA, the only structurally
characterized P1B-ATPase to date (14). Although there are no bound metal ions in the
structure, LpCopA is predicted to have two metal binding sites, one composed of Asn 689,
Met 717, and Ser 721 (site I), and the second involving the transmembrane cysteines Cys
382 and Cys 384 as well as Tyr 688 (site II). Homology modeling reveals that four of the
putative LpCopA metal binding residues align with corresponding conserved residues in
sCoaT (Figure 2, right). The residues in the SPC motif, Ser 325 and Cys 327, align with
LpCopA Cys 382 and Cys 384, and residues His 657 and Thr 661 align with LpCopA
proposed ligands Met 717 and Ser 721. The other two LpCopA binding residues, Asn 689
and Tyr 688, align with nonconserved valine residues. Conserved sCoaT residue Glu 658
corresponds to an alanine in LpCopA, but would be close enough to His 657 and Thr 661 to
participate in cobalt binding.

Expression and Purification of WT-sCoaT and Variants
Recombinant expression of WT-sCoaT yielded approximately 2 mg of purified protein/L of
cultured media. Overnight induction of cells at 18 °C increased the yield of purified WT-
sCoaT compared to a 3 h induction period at 37 °C. DDM-solubilized WT-sCoaT was
purified in a single step by Ni2+-affinity chromatography (Figure 3), and cleavage of the
hexahistidine tag using TEV protease yielded ~70% recovery of untagged WT-sCoaT. The
removal of the hexahistidine tag was verified by Western blot using an anti-hexahistidine
antibody (Figure 3) and by N-terminal sequence analysis, which indicated complete
cleavage. Variant proteins in which Ser 325, Cys 327, His 657, Glu 658 and Thr 661 were
mutated to alanine were also prepared to assess the role of these conserved residues in metal
binding and activity. These mutants did not express as well as WT-sCoaT, yielding
approximately 0.3–0.5 mg of pure protein/L, but utilization of the same WT-sCoaT
purification protocol resulted in >90% pure proteins (Figure S1). The low yields precluded
TEV protease cleavage of the sCoaT variants, however.

ATPase Activity
The ATPase activity of WT-sCoaT was specifically stimulated by Co2+, and was also
stimulated by Ni2+, but to a much lesser extent than Co2+ (Figure 4A). None of the other
metals tested (Zn2+, Cd2+, Cu2+, Cu+, Pb2+) were able to activate the enzyme. The Co2+-
dependent activity of WT-sCoaT has a KM value of 20.05 ± 3.6 μM and a Vmax value of
0.71 ± 0.03 μmol mg−1min−1 (Figure 4B). The Vmax value is similar to those reported for
the Pb2+-stimulated activity of ZntA (17) and the Ag+-stimulated activity of CopA (19). The
activity of the variants was negligible, with the notable exception of the C327A variant
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(C327A-sCoaT), which has approximately 50% of the WT-sCoaT activity (Figure 5). This
result is unexpected and differs from previous studies of P1B-1-, P1B-2- and P1B-3-ATPases.
For A. fulgidus CopA, mutation of either or both cysteines in the CPC motif to alanine
abolishes ATPase activity (26), and in the case of E. coli CopA, mutation of these cysteines
results in loss of copper resistance, transport, and phosphoenzyme formation (25).
Replacement of either cysteine with alanine in the E. coli ZntA CPC motif also results in
inactive enzyme, but ZntA variants in which the cysteines are replaced with histidine retain
some activity (27). For the E. hirae CopB Cu2+-ATPase, alteration of the CPH
transmembrane motif to SPH abolished the ability to restore copper resistance in a CopB
knockout mutant in vivo, suggesting impaired Cu2+ transport (55).

Metal-Binding Stoichiometry
Tagged WT-sCoaT binds 1.55 ± 0.07 Co2+ ions per protein monomer, and cleaved WT-
sCoaT binds 1.38 ± 0.21 Co2+ ions per protein monomer, indicating that the hexahistidyl tag
does not bind a significant amount of Co2+ during the loading procedure. WT-sCoaT is thus
proposed to contain one metal binding site for Co2+. ZntA from E. coli also is reported to
contain a single metal binding side (35) whereas A. fulgidus CopA binds two Cu+ ions with
high affinity (56). Interestingly, C327A-sCoaT also appears to have a single Co2+ binding
site, with a stoichiometry of 1.49 ± 0.53 Co2+ ions per monomer. This result suggests that
the cysteine in the TM metal binding SPC motif is not essential for Co2+ binding and is
consistent with the observation of ATPase activity for C327A-sCoaT (Figure 5). None of the
other mutants were able to bind Co2+, further indication that the hexahistidyl tag does not
bind Co2+. This finding is consistent with the lack of ATPase activity of these variants and
indicates that Ser 325, His 657A, Glu 658 and Thr 661 are essential for Co2+ binding and
activity, and may be ligands as predicted by the homology modeling based on the LpCopA
structure.

The optical spectra of Co2+-loaded WT-sCoaT and C327A-sCoaT both exhibit a broad
shoulder extending from the 280 nm protein absorbance to ~400 nm (Figure 6). Although
this region of the spectrum is typically associated with Co2+-thiolate ligand-to-metal charge
transfer (LMCT) bands, the lack of distinct peaks observed for these intense transitions (57–
59) and the similarity between the spectra of WT-sCoaT and the cysteine-lacking C327A-
sCoaT suggest that this absorbance does not arise from interactions with sulfur ligands. This
shoulder is more likely attributable to histidine-to-Co2+ LMCT, and resembles features
observed in the spectrum of Co2+-substituted copper,zinc superoxide dismutase (60). The
geometry of Co2+ sites can be correlated with the position and intensity of d-d transitions in
the visible region (59, 61). The broad features in the 500–600 nm region of the sCoaT
spectra (ε ~ 300 M−1 cm−1) are most consistent with regular tetrahedral geometry (61, 62).
The shift of the peak in C237A-sCoaT towards ~525 nm may indicate some distortion of the
Co2+ binding site, perhaps due to perturbation of the secondary coordination environment.

EPR and ENDOR
WT-, tagged WT-, and C327A-sCoaT all exhibit an S = 3/2 Co2+ EPR signal with a broad
feature at g⊥ = 3.9 and g|| ~ 2, consistent with tetrahedral symmetry (63). Tagged and
untagged WT-sCoaT show identical EPR signals, indicating that Co2+ does not bind to the
hexahistidyl tag (Figure 7a). The presence of the same feature in the C327A-sCoaT
spectrum indicates that the Co2+ coordination sphere is not altered by deletion of the
conserved cysteine residue.

ENDOR spectra collected at g⊥ = 3.9 from WT-, C327A- and tagged WT-sCoaT (Figure
7b), reveal identical signals from a single, strongly-coupled 14N. The signal is a doublet of
broad peaks that is centered at half the hyperfine coupling of A′ = 13.6 MHz (45), with a
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separation of twice the 14N nuclear Larmor frequency. This coupling treats the Co2+ as
having an effective spin, S′ = 1/2; in an S = 3/2 representation the hyperfine coupling is A =
21.0 MHz, comparable to histidine bound to Cu2+, S = 1/2. The observed hyperfine coupling
A′, taken at a given g-value is modified from the intrinsic A value. A′ = gA/ge. The higher-
frequency (ν+) partner shows poorly resolved structure that indicates the Co2+ site is
structurally heterogeneous, with several contributing conformers; an additional contribution
from the nuclear quadrupole interaction in at least one conformer may also be present. An
attempt to measure this interaction with ESEEM spectroscopy failed because rapid spin
dephasing quenched the spin-echo modulation. The strongly-coupled nitrogen can be
assigned to a bound histidine residue, based on the near identity of its signal to that of a
histidine bound to Co2+ of the Zn-finger in transcription factor IIIA (TFIIIA) from Xenopus
laevis (64). This residue is very likely to be His 657, which is found in transmembrane helix
6 of sCoaT (Figure 2), is conserved in the P1B-4 subgroup, and has been proposed to be a
metal binding ligand (24). The equivalence of the 14N signals from untagged and tagged
WT-sCoaT shows that there is no coordination to Co2+ by a residue from the hexahistidine
tag. The equivalence of the 14N signals from WT-sCoaT and C327A-sCoaT, like the
invariance of the EPR signal, indicates that the C327A mutation does not alter the Co2+

coordination sphere. Lastly, 1H ENDOR spectra taken near g⊥ exhibit a 1H doublet,
hyperfine coupling A′ = 13 MHz, that is lost when the sample is prepared with 2H2O buffer.
As this coupling is of the magnitude expected from the proton(s) of an HxO coordinated
along the g|| direction, these observations indicate that Co2+ binds a single aqua species.

XAS Spectroscopy
The XANES spectra of WT- and C327A-sCoaT resemble that of Co(NO3)2•6H2O (Figure
8), indicating cobalt is stable in the divalent redox state and most likely dominated by
coordination of oxygen/nitrogen based ligands. The Fourier transforms of the EXAFS
spectrum for Co2+ bound to WT- and to C327A-sCoaT suggest complex patterns of Co-
nearest neighbor ligand environments at R < 3 Å, with additional scattering patterns of
ligands at R > 3 Å (Figure 9). Best-fit simulations of the WT- and C327A-sCoaT Co
EXAFS indicate a nearest neighbor environment constructed completely of oxygen and/or
nitrogen based ligands. Nearest neighbor metrical parameters for include a short Co-O/N
distance at 1.95 and 1.96 Å, and a longer distance set of Co-O/N ligands at 2.14 and 2.12 Å
for WT- and C327A-sCoaT, respectively. The shorter ~1.95 Å distances are highly
reminiscent of the values observed for four-coordinate Co-O small molecule compounds in
the Cambridge structural database, whereas the longer ~2.13 Å distance would be consistent
with Co-imidazole nitrogen distances (65). Long-range carbon scattering environments at
ca. 3.1, 3.5, and 4.1 Å are also consistent with imidazole multiple scattering interactions
expected for histidines coordinated to Co (66) (Table 1). There is no evidence for a Cu-S
interaction in the EXAFS, consistent with the activity assays, metal binding studies, UV-
Vis, and EPR data, indicating Cys 327 of the SPC motif is not involved in Co2+ binding.
Moreover, the presence of only oxygen/nitrogen ligands is compatible with the predicted
metal binding residues that are conserved in the P1B-4 subclass, including the serine in TM4,
and the histidine, glutamate, and threonine residues in TM6 (Figure 2). The observed
imidazole multiple scattering interactions support the EPR data and are consistent with His
657 in TM4 being a ligand.

Implications for the sCoaT metal binding site
The combined data on WT-sCoaT and the sCoaT variants indicate the presence of a single
Co2+ binding site that is coordinated by nitrogen and oxygen ligands, including a histidine
and a water molecule, in a tetrahedral geometry. Surprisingly, the data indicate that the
cysteine residue in the conserved SPC transmembrane metal binding motif is not directly
involved in Co2+ binding in this state of the enzyme. In several P1B-ATPases that contain
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cysteines in this motif (vide supra), such as E. coli CopA, A. fulgidus CopA, E. hirae CopB,
and E. coli ZntA, the transmembrane cysteines appear to play essential and equivalent roles
in the catalytic cycle (25–27, 55). However, in other P1B-ATPases, the cysteine residues in
this motif are believed to be nonequivalent and function at different stages of the transport
mechanism. For example, mutation of both cysteines in S. cerevisiae Ccc2 yields no in vivo
or ATPase activity, but phosphorylation by ATP is still possible for a CPC to SPC variant,
although not for a CPC to CPS variant. These findings indicate that the second cysteine is
necessary for metal binding at the transport site whereas the first cysteine plays a role in
metal dissociation and/or enzyme dephosphorylation (67). Similarly, mutation of either
cysteine in the CPC motif of CadA, a Zn2+/Cd2+/Pb2+-ATPase from Listeria
monocytogenes, inhibits in vivo Cd2+ transport, but only the CPC to CPA variant retains
ATP hydrolysis activity. In addition, the CPA variant can be phosphorylated by ATP,
suggesting that the first cysteine is more directly involved in Cd2+ binding and the second
cysteine may participate in occlusion and release (29). The data for C327A-sCoaT are
consistent with this type of scenario in which Cys 327 does not play a role in initial Co2+

binding and catalytic steps involving the E1 conformation (Figure 1), but may play a role in
the E2 conformation, perhaps participating in metal release or dephosphorylation. Taken
together, our data indicate that Co2+ can bind in the absence of the TM4 cysteine and that
histidine, probably His 657, and water are coordinated. Besides His 657, Ser 325, Glu 658,
and Thr 661 are necessary for Co2+ binding and transport and thus likely comprise the
additional nitrogen and oxygen ligands. Further studies to elucidate the molecular details of
Co2+ coordination are underway.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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C327A-sCoaT variant sCoaT in which Cys 327 is replaced with alanine

LpCopA Legionella pneumophila Cu+ P1B-1-ATPase

ATPBD ATP binding domain

N-domain nucleotide binding domain

P-domain phosphorylation domain

A-domain actuator domain
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Figure 1.
The Post-Albers catalytic cycle, represented for a Co2+ ATPase. The cycle is defined by two
conformational states (E1 and E2) that are interconverted by the covalent attachment and
release of phosphate to and from a conserved aspartic acid residue. In the E1 state, which
has high affinity for the substrate being transported, the binding site is accessible to the
cytoplasm. Upon hydrolysis of ATP, a conformational change in the TM helices converts
the binding site to being accessible to the periplasm (or other cellular compartment) and
lowers the substrate affinity of E2. After the substrate is released, dephosphorylation occurs
and the protein reverts to the E1 state.
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Figure 2.
Architecture and key residues of P1B-4-ATPases. Left: Overall topology with conserved
residues in TM helices shown in approximate locations. Right: Noncontinuous alignment of
TM helices 4 and 6 of sCoaT and LpCopA. The phosphorylation site in the P-domain is
highlighted in light purple. Site I proposed metal-binding residues of LpCopA are colored in
orange, with the corresponding proposed sCoaT metal-binding residues colored in blue. Site
II residues of LpCopA are colored in purple along with conserved sCoaT residues, and
nonconserved sCoaT residues are colored in red.
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Figure 3.
SDS-PAGE and Western analysis of purified WT-sCoaT. Lane 1, SDS-PAGE of purified
tagged WT-sCoaT; lane 2, SDS-PAGE of purified TEV-cleaved WT-sCoaT; lane 3,
anti-6xHis tag Western blot of purified tagged WT-sCoaT; lane 4, anti-6xHis tag Western
blot of purified TEV-cleaved WT-sCoaT.
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Figure 4.
Activity of WT-sCoaT. (A) Co2+ stimulates the highest ATP hydrolysis activity. Results are
the average of at least three independent replicates. Maximal activity for 100 μM Co2+ is
0.57 μmoles ATP mg−1 min−1. (B) Co2+ stimulated ATPase activity of WT-sCoaT. Fits
were performed using Kaleidagraph software with the equation y = (Vmax*x)/(KM+x).
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Figure 5.
Comparison of ATP hydrolysis activity of WT-sCoaT, C327A-sCoaT, and variants in which
His 657, Ser 325, Glu 658, and Thr 661 are replaced with alanine.
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Figure 6.
Difference spectra of the Co2+-bound forms of WT- and C327A-sCoaT, using the respective
apo forms as reference spectra.
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Figure 7.
35 GHz EPR and ENDOR spectra. (A) Absorption-display CW Q-band EPR spectra of
tagged WT-sCoaT, C327A-sCoaT and WT-sCoaT at 2K. Each sample exhibits a S = 3/2
Co2+ signal as characterized from the broad feature at g⊥ = 3.9. Adventitious Cu2+ in
variable amounts is observed at higher fields, but no copper is detectable in the samples by
ICP-OES. (B) 14N Davies ENDOR spectra taken near g⊥. Goalpost centered at A′/2, split
by 2 × ν(14N). (C) 1H CW ENDOR spectra of WT-CoaT in 1H2O (solid line) and 2H2O
buffer (dashed line) taken near g⊥. Shading highlights intensity from exchangeable proton.
Goalpost centered at ν(1H), split by A′. CW EPR and ENDOR conditions: microwave
frequency, 34.9 GHz; modulation amplitude, 2 G; time constant, 32 ms; EPR scan time, 4
min; ENDOR scan rate, 2 MHz/sec. Pulse ENDOR conditions: microwave frequency, 34.6
GHz; π, 80 ns; τ, 600 ns; TRF, 30 μs; repetition rate, 20 ms.
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Figure 8.
Normalized XANES spectra of Co bound WT- (solid) and C327A-sCoaT (dashed line),
displayed with the spectrum of solid Co(NO3)2 (gray triangles).
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Figure 9.
EXAFS and Fourier transform for WT- and C327A-sCoaT. Raw unfiltered EXAFS data
(black) and simulations (gray) for cobalt bound to WT- (A) and C327A-sCoaT (C). Fourier
transforms of the raw EXAFS (black) and best fit simulations (gray) for cobalt bound to
WT- (B) and C327A-sCoaT (D).
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