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Temperature change is a ubiquitous
environmental signal, which exerts

powerful control over the development
and virulence of microbial pathogens. For
Candida albicans, the leading fungal
pathogen of humans, temperature influ-
ences mating, phenotypic switching, res-
istance to antifungal drugs and the
morphogenetic transition from yeast to
filamentous growth. C. albicans morpho-
genesis is profoundly influenced by
temperature, and most filament-inducing
cues depend on a concurrent increase in
temperature to 37°C before morphogen-
esis can occur, although the molecular
mechanisms underpinning this temper-
ature-dependent developmental trans-
ition remain largely unknown. We
established that the thermally responsive
molecular chaperone Hsp90 orchestrates
temperature-dependent morphogenesis,
via previously uncharacterized cellular
circuitry, comprised of the cyclin-depend-
ent kinase Pho85, the cyclin Pcl1 and the
transcriptional regulator Hms1. Here we
elaborate on Hsp90’s pleiotropic effects
on temperature-dependent morphoge-
netic circuitry, and highlight how
changes in protein form and function in
response to stress complements the
diverse repertoire of mechanisms of
microbial temperature sensing.

All organisms must contend with envir-
onmental perturbations and fluctuations,
including exposure to variations in tem-
perature. The capacity to integrate tem-
perature cues and respond appropriately is
shared among organisms ranging from
mammals to bacteria and fungi, and
plays a particularly vital role for fungal

pathogens. Of the estimated 5 million
fungal species,1 only approximately 150
are thought to be able to cause disease in
endothermic mammalian species, and this
can largely be attributed to the over-
whelming majority of fungi losing their
capacity for growth above ambient tem-
perature.2 The ability to sense and respond
to temperature change is critical for fungal
pathogens to thrive, and the circuitry
governing responses to thermal stress is
one of the most highly conserved protect-
ive responses in nature. Temperature can
control fungal development and virulence,
as illustrated by the dimorphic fungal
pathogens for which a temperature-
induced morphological transition is
required for virulence. These dimorphic
fungi, including Blastomyces dermatitidis,
Coccidioides immitis and Histoplasma cap-
sulatum, grow as filamentous molds in the
soil at ambient temperature and convert to
pathogenic yeast after infectious spores are
inhaled into the lungs of a mammalian
host.3 Candida albicans, the leading fungal
pathogen of humans, is an opportunistic
pathogen that is frequently associated with
its warm-blooded mammalian hosts, and
has no known environmental reservoir.4

Although C. albicans occupies a thermally
buffered niche within its mammalian
hosts, it retains a functional heat shock
response,5 and temperature fluctuations,
which may be encountered through expo-
sure to ambient temperature or during
host febrile episodes, influence nearly all
facets of C. albicans biology, including
mating, phenotypic switching, resistance
to antifungal drugs and morphogenesis.6

Temperature fluctuations can induce
morphogenetic change in C. albicans,
which undergoes reversible transitions
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between yeast and filaments, including
pseudohyphal and hyphal morphologies.6

The capacity to transition between yeast
and filamentous growth is strongly corre-
lated with virulence, although there
remain circumstances where these traits
may be uncoupled.7 Most C. albicans
mutants locked in either yeast or filament-
ous forms are attenuated in virulence.6

The transition from yeast to filamentous
growth is induced by diverse envir-
onmental cues including serum, nutrient
limitation, carbon dioxide and pH.6 Many
inducing cues, such as serum and carbon
dioxide, depend on a concurrent increase
in temperature to 37°C, and further
elevated temperature of 39°C can serve as
an independent inducing cue. The cellular
response to morphogenetic cues is gov-
erned by complex signaling cascades.6 Our
previous work implicated the molecular
chaperone Hsp90 as a central regulator of
temperature-dependent morphogenesis.8

We established that Hsp90 has pleiotropic
effects on morphogenesis, such that it
exerts a repressive effect on morphogenesis
from yeast to filaments via distinct cellular
signaling pathways, including the cAMP-
protein kinase A (PKA) cascade (Fig. 1A),8

and cell cycle pathways mediated by the
checkpoint protein Bub2 (Fig. 1B).9

Elevated temperature induces problems
in protein folding and can overwhelm
Hsp90 function, thereby relieving Hsp90-
mediated repression of morphogenesis and
inducing filamentation.8 Notably, under
certain conditions, C. albicans filamenta-
tion can occur at lower temperatures,
including under embedded growth condi-
tions,10 and upon infection of the nem-
atode Caenorhabditis elegans,11 indicating
that Hsp90 function may already be
partially compromised or that Hsp90-
independent pathways may mediate mor-
phogenesis under these specific conditions.

Most recently, we uncovered a new
mechanism through which Hsp90 orches-
trates C. albicans temperature-dependent
morphogenesis, via the cyclin-dependent
kinase Pho85, the cyclin Pcl1 and the
transcriptional regulator Hms1
(Fig. 1C).12 Based on a genetic screen of
transcription factor mutants to identify
those blocked in the morphogenetic res-
ponse to Hsp90 inhibition, we discovered
a novel, uncharacterized transcriptional

regulator, Hms1, which specifically gov-
erns filamentation induced by Hsp90
inhibition, as well as in response to
elevated temperature stress.12 Hms1 does
not function downstream of the PKA
signaling cascade, but rather, it is regulated
by the cyclin Pcl1 and the cyclin-depend-
ent kinase Pho85, both of which are also
required for filamentation induced by
compromised Hsp90 function or by
temperature stress.12 Upon inhibition of
Hsp90, Hms1 is recruited to DNA
elements associated with genes involved
in filamentation, including the filament-
specific transcripts UME6 and RBT5, and
regulates their expression.12 Consistent
with the importance of morphogenesis
for C. albicans virulence, deletion of
HMS1 impairs temperature-dependent
morphogenesis and attenuates virulence
in an invertebrate model of C. albicans
infection.12

The discovery of the dependence of
morphogenesis induced by elevated tem-
perature or compromised Hsp90 on
Pho85-Pcl1-Hms1 signaling highlights
Hsp90’s pleiotropic effects on morphoge-
netic circuitry (Fig. 1). The mechanisms
by which Hsp90 represses Pho85-Pcl1-
Hms1 signaling remain enigmatic, as are
the mechanisms by which Hsp90 represses
cAMP-PKA signaling, which is also
required for morphogenesis induced by
compromised Hsp90 function or by other
stimuli such as serum.8,13 Filamentation
induced by Hsp90 depletion is contingent
on upstream signaling components of
the cAMP-PKA pathway including the
GTPase Ras1, the adenylyl Cyr1 and the
PKA complex, but occurs independently
of the terminal transcriptional regulator
Efg1, implicating additional transcription
factors in this process (Fig. 1A).8 Our
screen of transcription factor mutants that
identified Hms1 as crucial for filamenta-
tion induced by compromised Hsp90
function, also identified other transcrip-
tional regulators required for filamentation
induced by Hsp90 inhibition, including
Cph2, Stp2 and Hap5.12 It remains to be
determined whether these transcription
factors function in concert with known
morphogenetic circuitry, or whether they
operate within distinct signaling cascades
yet to be implicated in regulation of
morphogenesis. Notably, filaments

induced by Hsp90 depletion also exhibit
a delay in mitotic exit, which is mediated
by the cell cycle checkpoint protein Bub2
(Fig. 1B),9 providing additional complex-
ity to the circuitry through which Hsp90
controls temperature-dependent C. albi-
cans morphogenesis. Hsp90’s pleiotropic
effects on morphogenetic signaling could
be mediated through direct effects on the
activation of client proteins that it stabi-
lizes or through more indirect effects.
Given that Hsp90 interacts with ~10%
of the proteome in S. cerevisiae14 and an
equally complex network of interactors in
C. albicans,15 future studies are likely to
reveal complex layers of regulatory control.

Our study uncovers the first specialized
circuitry controlling temperature-depend-
ent C. albicans morphogenesis, composed
of the cyclin-dependent kinase Pho85,
cyclin Pcl1 and transcription factor
Hms1. Although none of these factors
have been implicated in fungal morpho-
genesis in response to temperature stress,
several have roles in morphogenetic pro-
grams in response to different envir-
onmental cues in other fungal species. In
the model yeast Saccharomyces cerevisiae,
the Hms1 ortholog regulates pseudohy-
phal growth in response to nitrogen
limitation, as deletion of HMS1 reduces
filamentation on solid synthetic low
ammonia dextrose (SLAD) medium16

while overexpression of Hms1 target genes
enhances pseudohyphal growth.17 Further,
in the filamentous fungus Aspergillus
nidulans, the Pho85-like kinases PHOA
and PHOB regulate polarized growth and
sexual development in response to phos-
phate limitation.18,19 Expression of the
Pho85 ortholog PhoSs fluctuates in
response to calcium-mediated yeast to
mycelium morphogenesis in the
dimorphic fungal pathogen Sporothrix
schenckii,20 and the Pho85-related protein
Cdk5 influences cell polarity and virulence
and the corn smut fungus Ustilago may-
dis.21 This suggests that, although these
proteins play a conserved role in the
morphogenetic transitions of diverse fungi,
the cellular circuitry mediating these
transitions can ultimately become rewired
to respond to divergent environmental
signals. Further analysis is required to
elucidate the precise mechanism by which
Hsp90 represses Pho85-Pcl1-Hms1
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signaling. Hsp90 may bind to and directly
inactivate one of the components of this
pathway, or alternatively it may repress the
pathway via an indirect mechanism.
Hsp90 may directly regulate function of
the cyclin-dependent kinase Pho85, as
Hsp90, along with the co-chaperone
Cdc37, regulates stability and function of
numerous protein kinases, including
several cyclin-dependent kinases22; and
in S. cerevisiae, Cdc37 interacts with
Pho85.23 Thus, Hsp90 may regulate
filamentation through interaction with
Pho85 or other targets.

Hsp90’s capacity to regulate a key
developmental program in response to
temperature change provides a new mech-
anism that complements the elegant

repertoire that organisms utilize to sense
temperature. Temperature sensing is key
not only for survival of diverse fungal
species faced by environmental challenge,
but also for coordinating the induction of
virulence traits in response to host physio-
logical temperatures. Among the limited
number of thermotolerant fungal species
able to thrive within mammalian hosts,
temperature plays a central role in their
biology, and the ability to survive at
elevated temperature (37°C) is crucial for
the success of fungal pathogens. For the
fungal pathogen Cryptococcus neoformans,
mutants that are unable to grow in vitro at
37°C are avirulent in mouse models of
infection,24 and mutants that exhibit
virulence defects are frequently found to

have defects in growth at elevated temper-
ature.25 Several signaling factors involved
in virulence, including Ras1 and calci-
neurin are dispensable for growth at
ambient temperature, but required for
growth at elevated host temperature, and
consequently necessary for virulence of
C. neoformans.26,27 For the filamentous
fungal pathogen Aspergillus fumigatus,
factors that confer thermotolerance may
also contribute to virulence; for instance, the
ribosome biogenesis protein CgrA has
important roles in survival at elevated
temperatures, growth, and virulence of A.
fumigatus.28 Similarly, the ability to grow at
elevated temperatures up to 42°C is a
characteristic that distinguishes clinical
isolates of Saccharomyces cerevisiae from
standard laboratory or industrial strains,29

thus reinforcing the importance of thermo-
tolerance in mediating fungal pathogenicity.

Temperature can influence devel-
opmental programs in fungal species, as
well as virulence. This is most strikingly
illustrated by the dimorphic fungal patho-
gens for which a temperature-induced
morphological transition is required for
virulence. These dimorphic fungi, includ-
ing Blastomyces dermatitidis, Coccidioides
immitis, Histoplasma capsulatum and
Sporothrix schenckii, grow as filamentous
molds in the soil at ambient temperature
and convert to pathogenic yeast after
infectious spores are exposed to elevated
temperature upon inhalation into the
lungs of a mammalian host.3 In vitro,
transitioning these fungi from ambient
temperature to an elevated temperature of
37°C is sufficient to induce this morpho-
genetic switch.3 In B. dermatitidis and
H. capsulatum, the histidine kinase DRK1
functions as an environmental sensor of
temperature, and controls morphogenesis,
as well as adaptation to environmental
stress within the mammalian host.30

DRK1 is further required for the
expression of virulence genes as well as
fungal pathogenicity in vivo, reinforcing
the relationship between fungal thermo-
tolerance and virulence.30 In H. capsulatum
the Ryp family of proteins also play
a key role in temperature-dependent
morphogenesis,31 and in S. schenckii, the
calcium/calmodulin kinase SSCMK1
controls thermal tolerance as well as the

Figure 1. Hsp90’s pleiotropic effects on morphogenetic circuitry. (A) Hsp90 regulates temperature-
dependent morphogenesis via negative regulation of the cAMP-PKA signaling cascade. (B) Hsp90
interacts with the cyclin-dependent kinase Cdc28 and controls morphogenesis via the mitotic exit
network pathways mediated by the checkpoint protein Bub2. (C) Hsp90 orchestrates C. albicans
temperature-dependent morphogenesis via novel circuitry comprised of the cyclin-dependent
kinase Pho85, the cyclin Pcl1 and the transcriptional regulator Hms1.
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dimorphic transition in response to growth
at elevated temperature.32

Despite its confinement within its
endothermic mammalian host, C. albicans
is responsive to fluctuations in temper-
ature, and retains cellular signaling path-
ways associated with temperature response.
Given that temperature controls the
C. albicans morphogenetic transition
between yeast and filamentous growth via
circuitry comprised of Hsp90 and Pho85-
Pcl1-Hms1 signaling, it is likely that these
factors may influence other temperature-
dependent traits in C. albicans or other
fungal species. Temperature also governs
another C. albicans cellular transition,
phenotypic switching between the white
and opaque cellular growth states.33 At

37°C within the human host, C. albicans
exists primarily as white cells, while
opaque cells are more proficient at col-
onizing the skin, where host temperature is
lower (~32°C).34 When opaque cells are
transitioned to elevated temperature, they
rapidly convert to white cells, after
approximately two cellular doublings,33

although anaerobic conditions can stabilize
the opaque state at 37°C.35 Temperature
also influences resistance to antifungal
drugs, as elevated temperature abrogates
fluconazole resistance of C. albicans clin-
ical isolates.36 Whether the Pho85-Pcl1-
Hms1 circuitry has more global impact on
the myriad of temperature-dependent
traits in C. albicans, or whether it influences
temperature-dependent developmental

process in dimorphic fungi remains to be
determined. Deciphering the molecular
mechanisms underpinning these pro-
cesses will reveal how fungi sense and
respond to changes in temperature, which
is crucial for the success of fungal
pathogens.
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