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It has long been argued that cell cycle 
regulators such as cyclins, cyclin-

dependent kinases and their inhibitors 
affect the fate of neuronal progenitor cells. 
Recently, we identified that cyclin  D2, 
which localizes at the basal tip of the 
radial glial cell (i.e., the neural progenitor 
in the developing neocortex), functions to 
give differential cell fates to its daughter 
cells just after cell division. This basally 
biased localization is due to transporta-
tion of cyclin  D2 mRNA via its unique 
cis-regulatory sequence and local transla-
tion into cyclin D2 protein at the basal 
endfoot. During division of the neural 
progenitor cells, cyclin  D2 protein is 
inherited by the daughter cell that retain 
the basal process, resulting in asymmetric 
distribution of cyclin D2 protein between 
the two daughter cells. Cyclin D2 is simi-
larly localized in the human fetal corti-
cal primordium, suggesting a common 
mechanism for the maintenance of neu-
ral progenitors and a possible scenario 
in evolution of primate brains. Here we 
introduce our recent findings and discuss 
how cyclin D2 functions in mammalian 
brain development and evolution.

Introduction

Mammalian brains are characterized by a 
large neocortex containing numerous neu-
rons and glia generated from neural stem/
progenitor cells (NSPCs) situated in the 
inner wall of the neural tube termed the 
ventricular zone (VZ). During cortical 
development, NSPCs are highly polarized 
stretching to both the ventricular (api-
cal) surface and the pial (basal) surface of 
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the cortical primordium. NSPCs initially 
divide symmetrically to increase their 
numbers from embryonic day nine (E9) to 
E11 in mice (the proliferative period).1,2 As 
development proceeds to the neurogenic 
period (starting around E11 in mice), 
NSPCs become longer and thinner to form 
“radial glia (RG)” as they support radial 
migration of cortical neurons.3,4 The RG 
cells divide asymmetrically and produce 
one apical progenitor cell (AP) and one 
neuronal cell or intermediate progenitor 
cell (IP).3,5 APs continue to divide asym-
metrically, thereby increasing the number 
of neuronal cells while maintaining the 
number of APs. Newly produced neurons 
migrate out of the VZ to form the cortical 
plate (CP), while IPs divide symmetrically 
in the upper region of the VZ (i.e., the sub-
ventricular zone; SVZ) and generate a pair 
of IPs or neurons1,6,7 (Fig. 1). Asymmetric 
cell division of NSPCs is critical for estab-
lishing the architecture of the mammalian 
cerebral cortex.3,8 During the asymmetric 
division of APs, cell structures such as the 
basal process and apical membrane are 
inherited by one of the two daughter cells, 
and it is proposed that these components 
may function as cell fate determinants.4,9,10 
Many molecules are localized in the api-
cal region and affect cell fates (e.g., numb, 
prominin1, Par complex proteins).10-13 
However, relatively little information is 
available about molecules in the basal side.

Cyclin D2 and Mammalian  
Brain Development

Mouse cyclin D2 was first identified in a 
screen for delayed early response genes 
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interesting scenario, time-lapse studies 
using slice culture suggest that inheri-
tance of the basal process does not always 
lengthen the total cell cycle compared 
with the other daughter cell39,40 (personal 
communication with Dr. Matsuzaki). 
Another model could be that cyclin  D2 
controls cell fate in a manner other than 
controlling the cell cycle itself. For exam-
ple, cyclin D2 is known to have a function 
in exporting the Cdk inhibitor p27(kip1) 
out of the nucleus, thereby promoting 
degradation.41,42 Since p27(kip1) promotes 
neurogenesis and radial migration of post-
mitotic neurons,21,22 inherited cyclin  D2 
may inhibit neurogenesis and promote 
cell proliferation19 via a p27(kip1)-depen-
dent mechanism. There are many other 
reports showing that cell cycle regula-
tors may function as cell fate determi-
nants by a role independent of cell cycle 
regulation.20,21,43,44 Furthermore, another 
detailed analysis suggests that not only 
G

1
-phase but also S-phase is correlated 

with the differentiation state of NSPCs.38 
Thus, the physiological functions of 
cyclin D2 in aspects of fate determination 
in vivo still remain to be elucidated.

Cyclin D2 and Brain Evolution

As described above, we have reported a 
new physiological function of cyclin  D2 
in the neuronal development of the 
mouse. The next question we focused on 
was “Is this mechanism conserved among 

We have recently shown that overex-
pression of cyclin D2 increases the popu-
lation of APs, while the loss of cyclin D2 
function increases the neuronal popu-
lation.19 This indicates that cyclin  D2 
being localized to the endfoot of APs is 
an example of a “basal fate determinant.” 
This is unique in that the mechanism for 
fate determination of APs is at the sub-
cellular level (Fig. 2). Cyclin  D2 mRNA 
is continuously transferred toward the 
basal side up to the endfoot via its unique 
50-bp cis-element (Step 1), and is locally 
translated into the protein (Step 2). 
During asymmetric cell division, one of 
the daughter cells inherits its basal pro-
cess, which automatically leads to asym-
metrical inheritance of cyclin D2 protein 
between the daughter cells (Step 3). The 
daughter cell with cyclin D2 will become 
an AP, and the other without cyclin  
D2 will become a neuronal cell or an IP 
(Step 4).

Although we showed that cyclin  D2 
affects the fate of APs, the exact molecular 
mechanism is still unknown. A correla-
tion between G

1
-phase lengthening and 

neurogenesis has been noted32-37 (data 
controversial to this has recently been 
reported, though).38 If the lengthening of 
G

1
-phase causes neuronal differentiation, 

the biased localization of cyclin  D2 will 
provide a shorter G

1
-phase to the daughter 

cell that inherits the basal process which 
in turn biases the fate of that daughter 
cell to a progenitor. Although this is an 

induced by colony-stimulating factor 1, 
and recognized as a member of a fam-
ily that include at least two other related 
genes, cyclin D1 and D3.14 Cyclin D2 pro-
tein forms a complex with cyclin-depen-
dent kinases (Cdk) 4 or 6 and translocates 
to the nucleus where the tumor suppressor 
protein Rb is phosphorylated to activate 
transcriptional factor E2F. This cascade of 
events progresses the cell cycle from G

1
- to 

S-phase.15,16

It is well known that neuronal progeni-
tor cell fate can be affected by cell cycle 
regulators including cyclins,17-19 Cdks20 
and their inhibitors.21-24 In the developing 
central nervous system (CNS), mRNA 
of cyclin D2 shows a unique localization, 
to the surface of the neural tube, not 
seen for other cyclins.25,26 Because of this 
unique localization pattern, cyclin D2 was 
initially thought to be expressed in post-
mitotic neurons25,26 but recent work identi-
fied that the mRNA and protein localized 
at the tip of the AP (i.e., endfoot).19,27 As 
with other cyclins, cyclin D2 is also local-
ized at the nucleus of mitotic cells in the 
VZ and SVZ, and was assumed to have 
a function in cell cycle progression.27 In 
cyclin D2-knockout mice, the brain size is 
smaller and adult neurogenesis is dramati-
cally impaired.28-31 Cyclin  D2 is essen-
tial for expansion of the NSPCs in both 
embryonic and adult brains, but what is 
the significance of the biased localization 
of cyclin  D2 in the basal endfoot of the 
APs?

Figure 1. Schematic depiction of cortical development in mammals. At the early stage of corticogenesis (E9.5~11.5), neuroepithelial cells divide sym-
metrically to yield more progenitors, resulting in a thickened pseudo-stratified sheet where the mitotic cells are concentrated mainly on the apical 
side of the epithelium (the proliferation period). Later in corticogenesis (E12.5~15.5), neuroepithelial cells become long and thin radial glia (RG) and 
start to divide asymmetrically (the neurogenic period). Radial glia produce apical progenitors (APs) with self-renewing properties together with a 
terminally-differentiated neurons (blue) or intermediate progenitors (IPs, green), or outer radial glia (oRGs, yellow).
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reasonable to assume that cyclin  D2 has 
proliferative activity also in oRGs.

In sum, cyclin  D2 function is gener-
ally required for proliferation of various 
neural progenitors, i.e., APs, IPs and 
probably oRGs. There is little doubt that 
prolonged maintenance and the massive 
proliferation of NSPCs are essential in 
brain evolution, and that cyclin  D2 is a 
key player.

Concluding Remarks

Asymmetric inheritance of cyclin  D2 
in dividing daughter cells of APs is the 
first description of a post-transcriptional, 
regulatory mechanism in the developing 
vertebrate CNS. This unique mechanism 
comes from the shape of the AP, which is 
highly polarized and has a long basal pro-
cess. Although cell cycle regulators such 
as cyclins are one of the most well-studied 
molecules, there is still little information 
about the molecular dynamics in vivo. 
There are many questions that remain 
to be elucidated about the physiological 
functions of cyclin D2 in the developing 
CNS. This is a first step toward the next 
cycle of research in cortical development 
and evolution.
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several groups have recently reported 
that there is a population of oRGs also in 
non-gyrencephalic mammals, including 
mice and marmosets.39,40,48 In the human 
fetal cortex, oRGs show a clear correla-
tion between Hes1 expression and basal 
process inheritance.46,47 This indicates 
that the basal process may be required 
for receiving the Notch signal, a pivotal 
mechanism in maintaining the progeni-
tor state. Furthermore, the basal process 
is reported to receive from the meninges 
a retinoic acid signal that controls the pro-
liferation of the progenitor cells.49 Even 
though it is obvious that there is a clear 
relationship between brain size and per-
centage of oRGs out of all proliferating 
progenitors,50 more studies are required to 
understand the physiological significance 
of oRGs. Interestingly, cyclin D2-positive 
cells are observed in the OSVZ, and the 
dotted staining of cyclin D2 is frequently 
seen in the basal side but not in the apical 
side19 making it likely that these cells are 
oRGs.

In the mouse, cyclin  D2 is also 
expressed in IPs and is shown to be 
required for their proliferation.27 This is 
further confirmed by our group; gain or 
loss of cyclin  D2 function experiments 
drastically increased or decreased, respec-
tively, the population of Tbr2-positive IPs 
in SVZ.19 Therefore, cyclin  D2 is very 
important for proliferation not only of 
APs, but also of IPs. Taken together, it is 

species?”. In humans, we found an accu-
mulation of cyclin D2 protein at the basal 
side of the cortical primordium at gesta-
tion week 16.19 We also noted that the cis-
acting element we identified in mice for 
basal transportation is highly conserved in 
human (74% match in NCBI database). 
Therefore, it is probable in the human cor-
tical primordium that cyclin  D2 mRNA 
transported within the basal process 
toward the basal endfoot and locally trans-
lated into protein in a similar manner. 
It is of note that the basal transport cis-
element we have identified appears to be 
unique to mammals, as similar sequences 
are not found in avians nor amphibians 
(NCBI database). Indeed, accumulation 
of cyclin D2 mRNA in the basal side of the 
chick forebrain is not observed (unpub-
lished results). Acquisition of the genomic 
DNA sequences corresponding to the 
basal transportation regulatory element in 
the 3'UTR of cyclin D2 mRNA might be 
a critical diversification point in vertebrate 
brain evolution.

Recent progress in live imaging studies 
has revealed a new population of prolifera-
tive progenitors that have basal processes 
but no apical processes. These neural pro-
genitor cells locate in the outer subven-
tricular zone (OSVZ) of the fetal cortex 
of human and ferret, and are thus called 
OSVZ radial glia-like cells (oRG).45-47 
Originally, oRG is believed to exist only 
in primates or gyrencephalic mammals, 

Figure 2. Schematic depiction of cyclin D2 mRNA and protein dynamics during the cell cycle and its putative role as a fate determinant. Pink in the 
nucleus indicates cyclin D2 protein. (Step 1) Cyclin D2 mRNA is transported to the basal endfoot during G1, S- to G2-phase due to the cis-transport 
element that resides in the 3'UTR region of cyclin D2 mRNA (blue box in mRNA) together with the transportation machinery that recognizes the cis-
element (red circle). (Step 2) Transported mRNA is locally translated into protein via ribosomes localized at the basal endfoot. (Step 3) During mitosis, 
cyclin D2 protein is inherited by one of the daughter cells with its basal process. In early G1-phase inherited cyclin D2 creates clear asymmetry of the 
cyclin D2 protein level between two daughter cells. (Step 4) The daughter cell that has inherited cyclin D2 with the basal process remains as a progeni-
tor, whereas the other daughter without the basal process proceeds differentiation.
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