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Abstract
Ovarian cancer is usually diagnosed at an advanced stage, rendering the possibility of cure
unlikely. To date, no cost-effective screening test has proven effective for reducing mortality. To
estimate the window of opportunity for ovarian cancer screening, we develop a branching process
model for ovarian cancer growth and progression accounting for three cell populations: Primary
(cells in the ovary or fallopian tube), Peritoneal (viable cells in peritoneal fluid), and Metastatic
(cells implanted on other intra-abdominal surfaces). Growth and migration parameters were
chosen to match results of clinical studies. Using these values, our model predicts a window of
opportunity of 2.9 years, indicating that one would have to screen at least every other year to be
effective. The model can be used to inform future efforts in designing improved screening and
treatment strategies.
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1 Introduction
Ovarian cancer is the fifth leading cause of cancer death among women in the United States
with one in 71 American women developing the disease during her lifetime. In 2012, 22,280
new cases are estimated to develop in the United States with 15,500 deaths expected [19].
Among cancers, ovarian cancer has a particularly low five-year survival at 43.8 percent. In
the top ten most common cancers in the United States, only lung (15.6) has lower survival,
whereas some like breast (89.1), prostate (99.4), and skin (91.2) have very high survival
rates.

1Partially supported by NIH grant 5R01GM096190

© 2012 Elsevier Ltd. All rights reserved.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

NIH Public Access
Author Manuscript
J Theor Biol. Author manuscript; available in PMC 2013 December 07.

Published in final edited form as:
J Theor Biol. 2012 December 7; 314: 10–15. doi:10.1016/j.jtbi.2012.08.025.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



One explanation for this disparity in survival lies in the natural history of the disease:
ovarian cancer often spreads readily to peritoneal surfaces and upper abdominal organs
without prior evidence of lymphatic or hematogenous spread. This may explain why most
ovarian cancers progress to an advanced stage prior to being detected clinically. Indeed,
whereas breast, prostate, and skin cancers are detected in early (non-metastatic) stages 93,
93, and 92 percent of the time, respectively, only 32 percent of ovarian cancers are found
early. Moreover, those cancers that are detected at an early stage are thought to be slower-
growing and therefore less likely to impact cancer mortality. The inability to detect the
aggressive but early-stage cancers while they are still curable is evidenced by the high
mortality rate following diagnosis—patients with late-stage cancer have a five-year
mortality of 26.9 percent.

To motivate our model, we begin by describing the four general stages used to classify the
disease clinically:

I. Cancer confined to one ovary

II. Cancer involves both ovaries or has spread to other tissue within the pelvis

III. Cancer has spread to the abdomen

IV. Cancer has spread to distant organs

According to the SEER database, the distribution of the stage at diagnosis is (roughly) I:
20%, II: 10%, III: 40%, and IV: 30%. Five year survival statistics based on stage at
diagnosis are as follows: I: 90%, II: 65%, III: 25%, IV: 10%. [5]. Given these statistics, the
ability to accurately detect early stage disease could improve ovarian cancer survival
dramatically. However, no screening strategy has yet been proven to reduce mortality [4].

Several studies have evaluated the efficacy of screening for ovarian cancer. In 2011, results
were published [17] of a study of 78,216 women aged 55–74 to evaluate the effects of
screening on mortality. The intervention group underwent annual screening for the cancer
antigen CA-125 for six years and annual transvaginal ultrasound for four years, while the
control group received their usual medical care. The results, shown below, suggest that
screening may not be very effective.

n diagnosed death

Intervention group 39,105 212 118

Control group 39,111 176 100

Although 36 more women were diagnosed with ovarian cancer in the intervention group,
there were also 18 more deaths. Given the costs associated with the procedures that the
intervention group received, the authors concluded that the screening interventions evaluated
in the study were not effective in reducing mortality. Furthermore, of the 3285 women in the
intervention group with false-positive results, 1080 underwent surgical follow-up, and 163
experienced at least one serious complication as a result of the screening interventions.

Havrilesky and Myers, in collaboration with others in their group, have previously evaluated
screening strategies for ovarian cancer using a Markov chain model to simulate the natural
history of ovarian cancer in a cohort of women age 20 to 100 [10]. Parameters were chosen
so that predicted lifetime incidence of ovarian cancer and deaths from it, as well as the stage
distribution at diagnosis, closely approximated SEER data. They found that annual screening
had the potential to result in up to a 43% reduction in ovarian cancer mortality but at an
incremental cost of $73,500 per year of life saved in the general population (or $36,000 in
the high-risk population). A follow-up study [11] which separated ovarian cancer cases into
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two phenotypes found less benefit from annual screening since a large percentage of the
early-stage detections occurred for the less aggressive phenotype.

The Markov chain model used in the last two studies was very simple. There were eight
states, {I, II, III, IV} × {U, D}, corresponding to the four stages listed above and whether
the cancer was undetected or detected. In addition, there were four states for benign
oophrectomy, ovarian cancer death, ovarian cancer survival, and death from other causes. A
12-state Markov chain has more than enough parameters to fit the data mentioned in the
previous paragraph, but being able to fit the data does not guarantee that the model
accurately reflects the underlying mechanisms. For example, in the Markov chain model, all
stage residence times are exponentially distributed. For these reasons, we develop a
mechanistic model rooted in the biology of ovarian cancer to assess screening efficacy. Our
goal is to estimate the window of opportunity for screening, i.e., the time amount of time in
which screening can help improve survival. More specifically, it is the amount of time
during which the primary tumor is of a detectable size by transvaginal ultrasound while the
amount of metastasis has not significantly increased the chance of mortality.

2 Methods
Ovarian carcinoma begins as a tumor on the surface of the ovary or fallopian tube, which we
call the primary tumor. Metastasis occurs either by direct extension from the primary tumor
to neighboring organs, such as the bladder or colon, or when cancer cells detach from the
surface of the primary tumor via an epithelial-to-mesenchymal (EMT) transition. Once the
cells have detached, they float in the peritoneal fluid as single cells or multicelluar
spheroids. Cells then reattach to the omentum and peritoneum and begin more aggressive
metastatic growth [15, 16]. We can therefore think of ovarian cancer as consisting of three
general tumor cell subtypes: Primary (cells in the ovary or fallopian tube), Peritoneal (viable
cells in peritoneal fluid), and Metastatic (cells implanted on other intra-abdominal surfaces).

To model this progression, we use a multi-type branching process that has been used in a
number of studies: [13], [12], [2], [9], [7], and [8]. In this model, which is formulated in
continuous time, type-i cells give birth at rate ai and die at rate bi for a net exponential
growth rate of λi = ai − bi. In addition, cells of type i − 1 turn into cell of type i at rate ui. In
most applications, the ui are mutation rates, but here they are migration rates: u1 is the rate at
which cells leave the primary tumor and u2 is the rate at which cells in the peritoneal fluid
attach to the omentum. The main biological events and associated parameters are
summarized in the table below. Note that i = 0, 1 and 2 correspond to Primary, Peritoneal,
and Metastatic, respectively.

Biological feature Mathematical description

Primary tumor grows Primary cells grow at rate λ0

Cells detach from surface Primary cells on the surface mutate into Peritoneal cells at rate u1

Detached cells accumulate in peritoneal fluid Peritoneal cells grow at rate λ1

Cells reattach to distant sites Peritoneal cells mutate into type-2 cells at rate u2

Reattached cells grow Metastatic cells grow at rate λ2 > λ0

To parametrize the branching process model, we use data from [3], which examined the
incidence of unsuspected ovarian cancers in apparently healthy women who underwent
prophylatic bilateral salpingo-oophrectomies. They estimated that ovarian cancers had two-
phase exponential growth with λ0 = (ln 2)/4 and λ2 = (ln 2)/2.5 per month, i.e., in the early
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stage the doubling time is 4 months, while in the later stage it is 2.5 months. The growth rate
λ1 cannot be estimated from this data, so we will take it to be 0 and thereby get an upper
bound on the window of opportunity for screening, which was described in words at the end
of the introduction and will be defined more precisely in Section 3.2. With respect to the
migration rates, there does not seem to be data to allow us to directly estimate u1 and u2.
Fortunately, only the product u1u2 appears in our answers, so we can choose u1u2 = 10−4 to
achieve agreement with observed quantities such as the size of the primary tumor when
stage III is reached (see Figure 2 in [3] and Section 3.3 below).

In Section 3.1, we describe two known and one new result for the multi-type branching
process that allow us to describe the behavior of Zi(t) for the three cell subtypes. In Section
3.2, we use these results to compute the expected size of the window of opportunity, which
we find to be 2.9 years, as well as to compute the distribution of the duration of the window.
Finally, in Section 3.3, we use the model to compute the probability of metastasis given a
primary tumor of known size.

3 Results
3.1 Branching process results

Type-0 cells are a branching process that grow at exponential rate λ0 > 0. By well-known
results (see, e.g., [1]), we have

Theorem 1. If λ0 > 0 then as t → ∞, e−λ0tZ0(t) → V0 with

Here, δ0 is a point mass at 0 corresponding to the event that the branching process dies out,
a0 represents the birth rate of the type-0 cells, and exponential(r) is the distribution with
density function re−rt.

We are not interested in the situation in which the type 0’s die out, so we consider the Z0’s
conditioned on nonextinction {Z0(t) > 0 for all t}. In this case, we only have the second
term. Time t represents the amount of time since the initial mutation that began the tumor.
That event is not observable, so by shifting the origin of time we can

Assume Z0(t) = eλ0t to get rid of V0.

Type 1’s leave from the surface of the primary tumor at rate u1 times the surface area.
Ignoring the constant that comes from the relationship between the surface area and volume
of a sphere, and letting γ1 = 2λ0/3, the mean is

(1)

where a(t) ~ b(t) means a(t)/b(t) → 1.

Since type 1’s are cells floating in the peritoneal fluid and have less access to nutrients, it is
natural to assume that λ1 < γ1. To remove the unknown rate λ1 from our calculations, we
will later set λ1 = 0. For the moment, we will proceed without that assumption.

Theorem 2. If γ1 > λ1 ≥ 0 then Z1(t)/EZ1(t) → 1 in probability as t → ∞.
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Intuitively, this hold since the integral in (1) has its dominant contribution from times s near
t when there are a lot of migrations. The results is easily shown by computing second
moments. The proof is given in the appendix.

If we repeat the analysis of EZ1(t) on EZ2(t), then the resulting formula is not accurate.

However, now λ2 > λ0 > 2λ0/3 = γ1, so the dominant contribution comes from s near time
0, where there are very few mutations that make unrealistically large contributions to Z2(t).

At time s, mutations occur to type-2 cells at rate u2(u1/γ1)eγ1s, so we let

(2)

be the time at which the mutation rate is 1. The next result was proven in [9]. However, the
version given here is somewhat different, so we give a new, simpler proof in the appendix.

Theorem 3. If λ2 > γ1 > 0 then e−λ2(t−s2)Z2(t) → V2 where V2 is the sum of points in a
Poisson process with mean measure μ(x, ∞) = C2x−α2 where α2 = γ1/λ2,

and  is the usual gamma function.

Well-known results in probability theory (see, e.g., Section 3.7 in [6]) imply that V2 is a
stable law with index α2 ∈ (0, 1). Stable laws have a power law tail P(V2 > x) ~ Cx

−α,
which implies EV2 = ∞. This “pathology” derives from the fact that mutations at time s2 − s
occur at rate e−λ0s but produce a growing family that is eλ1s times as large as one that starts
at time s2.

While the formulas in Theorem 3 are complicated, there is a simple conceptual picture.
Figure 1 depicts the growth of each of the cell populations on a log scale. The plot matches
well with our biological description of ovarian cancer: the Primary cells grow exponentially
at time zero and give rise to the first Peritoneal cell at approximately t = 17 months. These
cells grow at a slower rate and eventually give rise to the first Metastatic cell at roughly t =
61 months. By t = 145 months, the Metastatic population is larger than the Primary
population and continues to grow at an aggressive rate.

3.2 Window of opportunity
In order to be able to compute the size of the window of opportunity, we need to have
precise definitions of its two endpoints. For the upper bound, we define the time at which
the patient enters stage III as T2 = min{t : Z2(t) = 109}, where we have used the often-quoted
rule of thumb that 109 cells = 1 cm3 = 1 gram. For the lower bound, we focus on detection
by transvaginal ultrasound, so we define T0 = min{Z0(t) = 6.5 × 107}, corresponding to a
spherical tumor of diameter 0.5 cm. These definition are based on somewhat crude estimates
of detectability and “significant” metastasis; if the reader prefers different values, it is easy
to recalculate the size of the window.
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Using our growth rate parameters λ0 = (log 2)/4 = 0.1733 and λ2 = (log 2)/2.5 = 0.2772, we
set

months or 8.65 years. This may seem to be a very long time, but the estimate is consistent
with calculations done for other types of cancers.

To make a crude calculation of T2 ignoring the randomness in the growth of the 2’s, we note
that by (2), mutations to type 2 occur at rate 1 at time

As one referee pointed out  so the first mutation to type 2 may have
occurred earlier. However, each mutation lives forever with probability γ1, so the first
surviving mutation occurs at time ≈ s2. From this point, it will take roughly

for the 2’s to grow to size 109. If we let u1u2 = 10−4 and note γ1 = 0.1155, then

so T2 = 7476+61.05 = 138.51 months, and the window of opportunity is T2−T0 = 34.7
months or 2.9 years.

To take the randomness of Z2 into account, we use Theorem 3 to conclude that

Setting this equal to 109 and solving, we have

(3)

and hence

The distribution of the window, T2 − T0, is shown in Figure 2. Note that T2 − T0 is between
30 and 36 months with high probability.
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3.3 Primary tumor size at onset of metastasis
When tumors are found at an early stage and removed surgically, patients almost always
undergo chemotherapy as the next step of treatment. Although chemotherapy is prescribed
in part due to the possibility of residual tumor in the site of surgery, it is also done out of
concern that some cells had already metastasized but had not yet grown to a detectable size.
Here, we use our model to estimate the probability of metastasis given a primary tumor of
known size.

We want to find the distribution for the size of the primary tumor at the onset of metastasis,
i.e., at time T2. Using (3), we have

Using (2) and recalling γ1 = 2λ0/3, λ0/λ2 = 5/8, we now have

From this, we see that the size of the primary tumor at time s2 is

which translates into a diameter of 0.84 mm. If we ignore randomness and take V2 = 1, then
the size of the primary at time T2 is

which translates into 3 cm, in agreement with results of Brown and Palmer. Figures 3 and 4
depict the distribution for size and a comparison with the results of [3], respectively.

There is an overall difference of factor two between the time at which the curves decrease to
0. This difference could be removed by adjusting our parameters. However, such an
adjustment would not change the disagreement between the shapes of the early parts. We
find the initial sharp drop of the curve surprising and think it might be an artifact of the way
in which they analyzed data. In a typical Kaplan-Meier survival study, patients either leave
the study or die. Deaths in such a study are observed when they occur. In the ovarian cancer
study, in which a woman is observed to have stage III cancer, the progression occurred at
some time in the past which must be estimated. The curve will be skewed if this is not done
correctly.

4 Conclusions
We have created a mechanistic model of ovarian cancer in order to evaluate the possibility
of developing effective screening strategies for ovarian cancer. Our model, with parameters
chosen to match results from clinical studies, predicts a window of opportunity for screening
of 2.9 years. Since the distribution of the time for a detectable tumor to metastasize is
concentrated on the interval [30, 36] months, screening would need to occur at least every
two years in order to have a significant effect. Given that our analysis assumes perfect
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detection of tumors greater than 0.5 cm in diameter and does not account for false negatives,
biennial screens may still fail to measurably reduce mortality. A large clinical study [17]
shows that false positives are also a serious problem since they result in unnecessary surgery
with sometimes unfortunate consequences.

In order to obtain support for our parameter choices, we have used our model to calculate
the distribution of the size of the primary tumor when metastasis occurs and the probability
of metastasis as a function of the size of the primary tumor. These calculations can inform
future efforts in designing improved screening and treatment strategies if one has faith in the
values of the parameters used. Our long-term goal is to develop a well-calibrated model
which can be used to evaluate such strategies in silico to complement the use of large (and
expensive) clinical studies.

Appendix
Here, we give the proofs of Theorems 2 and 3.

Theorem 2. If γ1 > λ1 ≥ 0 then Z1(t)/EZ1(t) → 1 in probability as t → ∞.

Proof. Let Z̄1(t) be the contribution from mutations before time t − log t.

A little algebra and the asymptotic behavior of EZ1(t) given in (1) shows that

Since γ1 > λ1, EZ̄1(t)/EZ1(t) → 0.

Let Y1(t) be the number of type 1’s at time t when we start our multitype branching process
with one 1 and no 0’s. Using Theorem 1, there is a positive constant C so that

The process Z0(t) is deterministic, so the contributions to Z1(t) from different time intervals
are independent. Thus, if we let Ẑ1(t) = Z1(t) − Z̄1(t), we have

Introducing the normalization and changing variables r = t − s in the integral, we have

where we have added 1 to take into account the possibility that 2λ1 − γ1 < 0. Since
e−γ1tZ1(t) converges to a positive limit, it follows that var (Ẑ1(t)/EZ1(t)) → 0. Combining
this with the fact that EZ̄1(t)/EZ1(t) → 0 gives the desired result.
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Theorem 3. If λ2 > γ1 > 0 then e−λ2(t−s2)Z2(t) → V2 where V2 is the sum of points in a
Poisson process with mean measure μ(x, ∞) = C2x−α2. Here α2 = γ1/λ2,

and  is the usual gamma function.

Proof. Mutations to type 2 occur at time s2 + s with rate eγ1s. Our result for the branching
processes Theorem 1 implies a mutation at time s2 + s will grow to size ≈ eλ2(t−s2−s)W2 by
time t, where W2 has distribution

To add up the contributions, we associate with each point s2 + ti at which a mutation occurs
an independent random variable yi with the same distribution as W2. This gives us a Poisson
process which on (−∞, ∞) × (0, ∞) (we ignore the points with yi = 0) has intensity

Here, one of the two factors of λ2/a2 comes from P(W2 > 0) and the other from the
exponential density function.

A point (s2 + ti, yi) makes a contribution e−λ2tiyi to limt→∞ e−λ2(t−s2)Z2(t). Points with
e−λ2tiyi > x will contribute more than×to the limit. The number of such points is Poisson
distributed with mean

where one factor of λ2/a2 has disappeared since we are looking at the tail of the distribution.
Changing variables, we have

Noticing s = (1/λ2) log(ta2/xλ2) implies e(γ1−λ2)s = (a2t/λ2x)(γ1/λ2)−1, the integral above
becomes

and completes the proof.
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• A biologically accurate branching process model of ovarian cancer progression

• Uses parameters derived from clinical studies

• Predicts that the window of opportunity for screening is 30 to 36 months

• Screening needs to occur at least once every two years to be effective
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Figure 1. Plot of the Primary, Peritoneal, and Metastatic cell subtypes on a logarithmic scale
At time t = 0, the primary tumor begins to grow exponentially at rate λ0 = ln(2)/4. At time t
≈ 19, a tumor cell detaches from the surface of the primary tumor and enters the peritoneal
fluid, giving rise to a new cell population which grows at rate λ1 = ln(2)/7. The peritoneal
fluid becomes progressively more saturated, eventually giving rise to the Metastatic cell
population at time t ≈ 61. This population grows at the most aggressive rate (λ2 = ln(2)/2.5)
and overtakes the primary cells at t ≈ 145.
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Figure 2. Density function for the window of opportunity, T2 − T0
Note that with high probability it is between 30 and 36 months in duration.
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Figure 3. Tail distribution for transition to metastasis as a function of primary tumor size
Our model predicts that a patient with a primary tumor of diameter 0.5 cm is very unlikely
to have significant metastasis (where we define “significant201D as at least one gram). As
we increase diameter, we predict that a patient with a primary tumor of diameter d = 2 cm is
equally likely and unlikely to have metastasis. By d = 3, metastasis is predicted to be near-
certain.
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Figure 4.
Kaplan–Meier estimate of probability of progression to stage III as function of primary
tumor size from Brown & Palmer [3].
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