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Abstract

Precise determination of a noisy biological oscillator’s period from limited experimental data can
be challenging. The common practice is to calculate a single number (a point estimate) for the
period of a particular time course. Uncertainty is inherent in any statistical estimator applied to
noisy data, so our confidence in such point estimates depends on the quality and quantity of the
data. Ideally, a period estimation method should both produce an accurate point estimate of the
period and measure the uncertainty in that point estimate. A variety of period estimation methods
are known, but few assess the uncertainty of the estimates, and a measure of uncertainty is rarely
reported in the experimental literature. We compare the accuracy of point estimates using six
common methods, only one of which can also produce uncertainty measures. We then illustrate
the advantages of a new Bayesian method for estimating period, which outperforms the other six
methods in accuracy of point estimates for simulated data and also provides a measure of
uncertainty. We apply this method to analyze circadian oscillations of gene expression in
individual mouse fibroblast cells and compute the number of cells and sampling duration required
to reduce the uncertainty in period estimates to a desired level. This analysis indicates that, due to
the stochastic variability of noisy intracellular oscillators, achieving a narrow margin of error can
require an impractically large number of cells. In addition, we use a hierarchical model to
determine the distribution of intrinsic cell periods, thereby separating the variability due to
stochastic gene expression within each cell from the variability in period across the population of
cells.
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1. INTRODUCTION

Estimation of cycle length or period is a standard yet surprisingly difficult task in the study
of biological oscillators. One challenge is that the sample time series may not be sufficiently
long in duration to determine the overall behavior of the oscillator. Because biological
oscillators are stochastic in nature, the period will vary from cycle to cycle. Given a
relatively short time series, there may not be enough information to pinpoint the period of
the oscillator, and so it is important to have a measure of confidence in the point estimate. In
the frequentist approach, the confidence interval is a standard measure of such uncertainty in
the point esimate. For example, suppose multiple independent time series were sampled
from a single oscillator and the 95% confidence interval of the period was calculated for
each sample. Then, the period value that best describes the oscillator will be contained
within 95% of these intervals. A tighter confidence interval indicates a more reliable point
estimate. Factors such as biological noise, measurement error, relatively short time series,
and less frequent sampling can result in less reliable point estimates and wider confidence
intervals.

Bayesian statistics provides a natural framework in which to examine uncertainty in period
estimation for biological oscillators. We use a Bayesian parameter estimation method that is
rather different from period estimation methods in current use. Using simulated data, we
first show that the Bayesian approach is as accurate, if not more accurate, than these more
standard methods. To demonstrate the approach on experimental data, we focus on the
endogenous mammalian circadian clock that generates an ~24h oscillation via
transcriptional-translational feedback loops of gene expression (Bell-Pedersen et al., 2005).
Oscillations of the circadian clock can be measured in activity and temperature rhythm
outputs at the level of whole organisms or in gene expression within cells and tissues
(Dunlap et al., 2004). In particular, expression of clock genes like Period2 can be monitored
via bioluminescent reporters, e.g., through PER2::LUC imaging of cells from
mpPer2LuciferaseSV40 knockin mice (Welsh et al., 2004).

A variety of methods have been developed for determining parameters such as period,
phase, and amplitude from circadian activity and gene expression data, including
autocorrelation, periodograms, and wavelet transforms (Dowse, 2009; Levine et al., 2002;
Price et al., 2008). Here we introduce a period estimation method for circadian oscillations
that avoids some of the disadvantages of other methods, as discussed in Section 1.2.
Specifically, we apply a Bayesian model to 6-week-long PER2::LUC recordings of 78
dispersed fibroblasts from mice (Leise et al., 2012). Because prior work showed that all of
these fibroblast time series exhibit significant circadian rhythms with no other strong
periodicities (Leise et al., 2012), we apply a Bayesian estimation method focused on
determining the circadian period for each fibroblast. The results demonstrate how
uncertainty is related to experimental factors such as the length of the time series, sampling
rate, and the number of cells recorded. This information can be used when designing
experiments, for example, to ensure that sufficiently long time courses are recorded to
achieve reliable and experimentally reproducible results. The analysis of the PER2::LUC
recordings demonstrates how such experimental design elements can be determined.
Although we focus on a specific type of oscillator to illustrate the method, this is an
approach that can be applied more generally to time series arising from any noisy biological
oscillator, including estimation of multiple frequencies (Andrieu and Doucet, 1999) or time-
varying frequencies (Nielsen et al., 2011).

Uncertainty should be considered not only when calculating the period of an individual
oscillator, but also when measuring the mean period of a population of oscillators.
Uncertainty in the period estimate of individual oscillators necessarily translates to

J Theor Biol. Author manuscript; available in PMC 2013 December 07.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Cohen et al.

Page 3

uncertainty in the period estimate for a population. We apply a hierarchical Bayesian model
that jointly calculates uncertainty in period estimates at the individual and population level.
We introduce the Bayesian method for estimating period, briefly describe other more
commonly used methods, and then compare their performance.

1.1 Overview of the Bayesian parameter estimation method

Bayesian statistics is a powerful framework within which to investigate the uncertainty of
parameter estimates. Bayesian statistics treats probability as a degree of belief rather than as
a proportion of outcomes in repeated experiments, as assumed in classical frequentist
statistics (Hoff, 2009). To illustrate essential Bayesian concepts, we consider the
“experiment” of flipping a coin to determine 6, the probability of heads on a single flip. The
goal is to produce a distribution for 6 that assigns different degrees of belief, or likelihoods,
to values between 0 and 1. If the coin is fair, for example, the distribution should be centered
on 0.5.

This Bayesian degree of belief is built from several steps. First, a data model is specified.
The model formulates a relationship between the parameters and potential experimental
outcomes. For example, a coin flip experiment with A/trials is usually modeled as a
binomial distribution with parameter 8, the probability of a heads on each flip. The data
model is used to derive a /ikelihood function that gives the probability of experimental
outcomes given particular parameter values.

Second, priorprobabilities are defined that represent belief in the possible parameter values
before an experiment is conducted. The use of prior distributions enables a priori knowledge
to enter into the statistical process and can be based on knowledge from past research,
physical constraints, mathematical convenience, etc. In the coin example, if there is no
reason to believe that one value of © is more likely than another, a natural choice for the
prior probability is a uniform distribution from 0 to 1. That is, all values of © are equally
likely a priori.

Third, given new experimental data, Bayes’ theorem updates the likelihood of the possible
parameter values using the prior distribution and the likelihood function. The resulting
distribution, called the posterior probability, provides the likelihood of each possible
parameter value, given both our prior knowledge and experimental data. In the coin
experiment, suppose 4 out of 10 flips were heads. Combining the prior with the outcome of
this experiment produces the posterior distribution shown in Figure 1. Note how the belief in
the possible values of 6 has shifted away from the uniform prior and towards a distribution
with a mean near 0.40 as suggested by the experimental data. That is, there is a high
likelihood that © is near 0.40, but little chance that 8 > 0.85. The posterior can be updated
when more data become available. If the coin is flipped 20 more times with 15 heads, the
posterior is now centered near 0.63 (i.e., 4 + 15 = 19 heads out of 10 + 20 = 30 flips). As
more data are collected, the influence of the prior decreases and the posterior becomes
narrower, indicating greater confidence in certain parameter values.

Once the posterior probability distribution is calculated, it is possible to determine any
statistic of interest for the parameters, e.g., the mean, the standard deviation, the mode, and
so on. For example, the mean estimate of 0 after 30 flips, 0.625, shown in Figure 1, is the
mean of the posterior probability distribution. Note that, because of the influence of the
prior, this value is still slightly lower than the data mean of 0.63. (See (Kruschke, 2011) for
a friendly introduction to Bayesian statistics and a more detailed description of this coin
problem.)
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Bayesian statistics allows us to quantify how confident we are in our estimation of
parameter values. The credible interval (Cl) is a measurement of the uncertainty associated
with a parameter estimate. The Cl is the Bayesian equivalent of a confidence interval.
Unlike a standard confidence interval, however, the interpretation of a Cl is straightforward:
the probability that a parameter lies within a 95% Cl is 0.95. The margin of erroris defined
as half the width of a Cl. There are a few different ways to define a Cl. Here we follow the
most common practice and simply take the middle 95% of the posterior probability
distribution. The 95% CI for the 30 trial coin-flipping example is provided in Figure 1.

It is commonly difficult or impossible to produce an analytical solution to determine the
posterior probability. It is, however, often possible to determine the posterior to within a
scaling constant, that is, we only have access to an un-normalized form of the posterior.
From this un-normalized function it is possible to determine the relative likelihood of each
parameter value, but, without the normalizing factor, it is not possible to directly draw
samples or determine statistics from it. Thus, stochastic methods have been developed to
numerically approximate the posterior. Arguably the most important class of such methods
is Markov chain Monte Carlo (Gamerman, 1997; Hastings, 1970) in general and the
Metropolis Hastings (MH) algorithm (Chib and Greenberg, 1995) in particular. The key idea
behind the MH algorithm is to draw samples from a carefully chosen, easy-to-sample
distribution, called the proposal distribution, and then to use the relative likelihood provided
by the un-normalized posterior to accept or reject these samples as proposed samples from
the posterior. The proposal distribution must satisfy certain properties. For example, the
proposal distribution must be non-zero everywhere the posterior is non-zero. See (Andrieu et
al., 2003) for an accessible overview of rejection sampling, the MH algorithm, and MCMC
in general. The set of accepted samples can then be used to approximate the posterior
distribution and thereby estimate statistics on the parameter. Because these distributions are
built up from a set of discrete samples, they typically look more like histograms than the
smooth distributions of Figure 1. Software such as OpenBUGS (mathstat.helsinki.fi/
openbugs/) is readily available for running MCMC methods.

Because practical implementation requires fast computers, the Bayesian estimation of
frequency is a relatively young field. Jaynes (1987) and Bretthorst (1988) clarified the
relationship between Bayesian inference, spectral analysis, and parameter estimation, and
derived the earliest methods of Bayesian spectral analysis. In particular, Bretthorst (1988)
used a Bayesian framework to show that the peak frequency of the Schuster periodogram is
the optimal estimator under the assumption of a single sinusoid plus white noise, as well as
deriving a generalized framework for Bayesian spectral analysis. Dou and Hodgson (1995)
developed an MCMC algorithm for estimating period, phase, and amplitude of multiple
sinusoids. Andrieu and Doucet (1999) developed an approach based on the MH algorithm
that is more efficient than earlier methods and remains robust when the signal-to-noise ratio
is low, and that is extended to a dynamic sinusoidal model in (Nielsen, 2009; Nielsen et al.,
2011).

To apply a Bayesian analysis to the study of the period of biological oscillators, we follow
the procedure described in (Andrieu and Doucet, 1999; Nielsen, 2009; Nielsen et al., 2011),
to which we give the acronym BPENS (Bayesian parameter estimation for noisy sinusoids).
Following the steps outlined above in the coin-flipping example, we must first specify a data
model and then derive its likelihood function. A natural data model for a biological
oscillator is a noisy sinusoid

x=A cos(wt+p)+e&;.
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Here Ais the amplitude, ¢ is the phase angle, w is the frequency, Zis time, and e, represents
noise at time £ We assume e;at each time point to be independent and identically distributed
Gaussian noise with mean 0 and variance oe?, that is, e,= N(0, oe2). We can express this
model in the equivalent form

x=B cos(wt)+B; sin(wt)+e&;.

Because a parameter is removed from inside the cosine function, this form is mathematically
more convenient. A likelihood function is then derived from this equation. The likelihood
function gives the probability that this data model with particular values for parameters w,
B, By, and oe could produce the observed time series {x(#): /=1,...,N}. Chapter 4 of
(Nielsen, 2009) provides a derivation of the likelihood function associated with the noisy
sinusoid model, which is too technical to include here; also see (Andrieu and Doucet, 1999).

The second step is to select prior distributions for the parameters. We use the
mathematically convenient priors given in (Andrieu and Doucet, 1999) and (Nielsen, 2009).
For example, the prior distribution of w is assumed to be a uniform distribution from 0 to r
radians/time unit, meaning that all possible frequency values are judged equally likely a
priori. See Appendix C for details on the choice of prior distributions, and (Bretthorst, 1988)
for a general discussion of how to select prior distributions.

The third step is to determine the posterior distribution of the frequency parameter w, which
gives the probability of particular values for w given the observed time series. Given
experimental data, i.e., a time series, the prior distributions, and the likelihood function,
Bayes’ theorem yields an expression for the posterior distribution. The posterior is
proportional to the product of the prior distributions and the likelihood function. Because the
posterior contains an unknown scaling constant, the MH algorithm is used to approximate
the normalized posterior (with the scaling constant divided out). Statistics of interest can
then be derived from this approximated posterior. Specifically, the mean of this distribution
provides a point estimate of frequency and the ClI provides a measure of uncertainty. The
parameters By, By, and oe are considered nuisance parameters, and are removed by
integrating the Bayes’ Theorem expression with respect to each of these parameters. A
potential downside of the BPENS method is that, compared to the other methods described
below, it is relatively time consuming.

1.2 Summary of other period estimation methods

We next briefly survey some methods in common use for estimating period of biological
oscillations, particularly for circadian rhythms.

Direct sine-fitting calculates the amplitude, period, and phase angle for the sine curve that
best fits the data (sometimes including an exponential decay term for the amplitude). This
method is most appropriate for sinusoidal waveforms, such as circadian clock gene
expression rhythms measured using PER2::LUC reporter bioluminescence. Similar to
BPENS, sine-fitting methods offer a measure of uncertainty in the form of a confidence
interval or margin of error (half the width of the confidence interval) for the period estimate,
but these values are, unfortunately, rarely reported. In place of confidence intervals,
researchers often rely on goodness-of-fit. However, goodness-of-fit indicates how sinusoidal
the time series is, rather than giving a direct indication of how reliable the period estimate is.
The period estimate from a model fit with a goodness-of-fit value of R2=0.95 could be less
reliable than one for a different time series with R2=0.9 if, for example, the lower R? value
is due to the latter time series having a significant trend or non-sinusoidal waveform despite
exhibiting strong periodicity.
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All of the remaining methods provide point estimates for the period but no measure of
uncertainty.

The discrete Fourier transform (DFT) decomposes a signal into a sum of sinusoids, with the
Fourier coefficients giving the amplitude associated with each frequency. Numerical
methods, including the fast Fourier transform (FFT) and windowed variants, offer period
point estimates for a variety of data types. Because the frequencies for the DFT are
uniformly spaced by 1/ 7 cycles/hour, where T'is the length of the time series in hours, the
point estimate will have poor resolution unless the time course is reasonably long. For
example, the DFT of a time series 4 days in length will report frequencies in the circadian
range corresponding to 19.2h, 24.0h, and 32.0h periods. For a time series 32 days in length,
the resolution improves but is still limited, having values 22.59h, 23.27h, 24.0h, 24.77h, and
25.6h in the 22—-26h range. Although the point estimate resolution is poor, the DFT can be
used very effectively to detect whether a significant rhythm is present and to measure the
strength of rhythmicity (Ko et al., 2010; Leise et al., 2012).

Maximum spectral entropy analysis (MESA\) fits an autoregressive function to the data and
uses the coefficients to calculate the power spectrum with substantially better resolution than
the Fourier transform can offer. MESA can work quite well on even short noisy time series,
but does not provide a test for significance of the rhythm at a peak frequency (Dowse,

2009).

The coefficients of the autocorrelation sequence (ACS) give the correlation between a time
series and shifted versions of itself. A peak in the ACS occurs when the time series is shifted
by its period, thereby yielding a simple technique for detecting significant periodicity
(Dowse, 2009). If low frequency trend is first removed, this method can provide good point
estimates of circadian period, even for non-sinusoidal locomotor activity data.

The chi-square periodogram, a method often used to assess circadian rhythmicity of non-
sinusoidal locomotor activity records, essentially rasterizes or folds data, averaging together
data points separated by a given time interval to yield an educed waveform for each period
value, and then choosing the period resulting in the maximum variance of waveform values.
Unfortunately this method suffers from contamination by harmonics and subharmonics and
can be misleading in some cases, for example, mistakenly categorizing noisy rhythmic data
as arrhythmic (Dowse, 2009).

Another approach is to identify discrete phase markers such as peaks in bioluminescence
data or onsets in activity records. The average time between such phase markers can be used
as a point estimate of the period. For PER2::LUC bioluminescence, the mean peak-to-peak
times can produce good estimates if the time series is first smoothed, which is often done
using a running average.

Period point estimates produced by most of these methods can be improved by first filtering
the data. Many methods are available to remove a linear trend or smooth the data to reduce
high frequency noise. A particularly effective method is to apply discrete wavelet transforms
to remove high and low frequencies to extract the circadian component of a time series,
thereby smoothing the signal and removing nonlinear trends without distorting the circadian
frequency content (which is a danger of removing high order polynomial trends).

Because calculation of peak-to-peak times to estimate circadian period can be improved by
first applying a stationary discrete wavelet transform (Leise and Harrington, 2011), we
report this method in addition to the peak-to-peak estimate obtained from smoothing with a
running average.
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2. RESULTS

2.1 Comparison of the accuracy of point estimates

Before we examine the question of uncertainty in an individual period estimate, we compare
the accuracy of point estimates generated by our BPENS method and the six commonly used
methods described above. Each method is applied to 100 simulated noisy oscillatory time
series of different lengths with a known period of 24.9h that mimic the experimental data
(see Appendix A). See Figure 2 for an example. For each method, the absolute difference
between the true period and the estimated period averaged over the 100 simulations is given
in Table 1. Note that this procedure tests how close the estimated period is to the true period,
which is a distinct issue from the uncertainty of an individual period estimate for a time
series of unknown period (as occurs in the experimental context as discussed below). For all
methods, accuracy tended to increase with the number of cycles in the time series. Of the
seven methods tested, the BPENS method yielded the most accurate period estimates and
consistently generated fairly accurate values even for the short 4-cycle time series. We also
tested the sensitivity of the different methods to noise by comparing the errors for different
levels of noise in the simulated time series, shown in Table S1. For most methods, error
tends to increase with noise level.

We can further validate the accuracy of the BPENS method by comparing its results for real
experimental data with those of the wavelet-filtered peak-to-peak method. The peak-to-peak
method was selected for comparison because it is distinct from the sine-fitting methods and
performed well in the simulation test. For the fibroblast time series (Leise et al., 2012), the
peak-to-peak and BPENS methods produced strongly correlated period estimates (=0.96,
p<0.001), indicating that BPENS estimates are consistent with those of an established
method. Although the noisy sinusoid model underlying BPENS is appropriate for our
fibroblast data, methods not based on sinusoidal models may be more accurate for time
series with different waveforms.

2.2 Comparison of uncertainty measures

Recall that both the sine-fitting and the BPENS method provide measures of uncertainty for
individual time series. We compare the margin of error for the two methods applied to the
24.9h simulated data, with results in Table 2. Because they have different theoretical
interpretations, direct comparison of the margins of error produced by these two methods
would not be appropriate. Therefore, we instead take a frequentist approach and compare the
number of times that the true period lies within the estimated margin of error. The two
methods yield similar results, with the exception that BPENS provides a more conservative
assessment of the uncertainty when given only 4 cycles of data (as shown in Table 2) but in
all cases a more accurate point estimate of the period (as shown in Table 1). Noise level in
the simulated signals had little effect on the BPENS estimated margin of error, as shown in
Table S2.

2. 3 Uncertainty in fibroblast time series period estimates and its relation to the number of
observed cycles

The previous analysis demonstrates that the accuracy of the BPENS method is superior for
determining period point estimates (for time series similar in nature to the test data). We
now describe how the BPENS method can be used to determine the uncertainty in these
period estimates in experimental data. \We expect uncertainty to depend on properties of the
experimental time series, such as the length of the series and signal-to-noise ratio. Under the
assumption of a sinusoid plus white noise with known variance, Bretthorst (1988) derived an
expression for the frequency estimate that shows that uncertainty decreases as the signal-to-
noise ratio increases and as /V, the number of data points, increases. By increasing the
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number of cycles or the sampling rate, we increase Aand so reduce the uncertainty in the
period estimate. Similarly, we can more reliably estimate the period of a time series with a
larger signal-to-noise ratio. See Appendix F for details. For the experimental data we
consider, the assumptions necessary for this derivation do not hold, so we numerically
calculate the uncertainty.

We applied the BPENS method to a set of PER2::LUC recordings of 78 dispersed
fibroblasts from mice reported previously (Leise et al., 2012). The objective is to measure
uncertainty in the period estimates and use these results to determine the length of recording
necessary for accurate and reproducible period estimation for this type of noisy biological
oscillator. Figure 3 shows the posterior distributions for the period computed by the BPENS
method for a representative fibroblast using 4, 8, 16, and 32 cycles. Note that the reliability
of the period estimate increases with the number of cycles. In this example, the margin of
error is 0.57h, 0.17h, 0.054h, and 0.018h for 4, 8, 16, and 32 cycles, respectively. Figure 4
provides the distribution of margins of error for the four different lengths of times series. In
general, the margin of error decreases toward zero as the time series lengthens.

Note that, for the fibroblast shown in Figure 3, using only the first 4 cycles yields a
somewhat different mean period estimate than when using 32 cycles. This outcome is a
consequence of the stochastic variability in period across the 32 cycles. That is, the length of
each cycle varies over time. Because a short time series captures only a small random
sample of the cycle lengths, it will be less representative of the full distribution of cycle
lengths that can occur. Figure 5 illustrates how period estimates can vary over time for 4
fibroblast examples.

Because experiments also vary in how often measurements are recorded, we examined
different sampling rates. Figure 6 illustrates how sampling rate affects uncertainty in the
period estimate. For all sampling rates, the margin of error decreases with the number of
cycles in the time series. In addition, the margin of error also decreases as sampling rate
increases. The number of cycles had a much greater effect than sampling rate, consistent
with the theoretical analysis in Appendix F; sampling rate only had a strong effect when the
number of cycles was low. Regardless of the sampling rate, 16 cycles appears sufficient to
yield quite reliable estimates under the BPENS method.

2.4 Reliable determination of the population’s mean period

We assume that each oscillator has an intrinsic period that may differ from those of others in
the population and so we must consider not only stochastic variability over time within each
cell, but also variability across the population of cells. How many cells and how many
cycles do we need to estimate the mean period of the population to a given level of
accuracy? That is, how will the uncertainty in the mean period estimate for a population of
cells vary with the number of cells and the number of cycles?

BPENS was used to calculate a point estimate of the period for each of the 78 fibroblasts for
4, 8, 16, and 32 cycles. Histograms of these point estimates are shown in Figure 7. The mean
of these point estimates was taken as an estimate of the population’s mean period. A 95%
confidence interval can then be constructed for the population’s mean period. The estimate
of the population’s mean period and associated confidence interval are also shown in Figure
7. Three trends emerge from this analysis. First, the estimate of the mean period of the
population remains consistent when using 8 or more cycles per cell. Second, as more cycles
are used, fewer outliers appear. Third, uncertainty in the mean period decreases as the
number of cycles increases. Varying sampling rate had little effect on either this or the
following analysis and so is not reported.

J Theor Biol. Author manuscript; available in PMC 2013 December 07.
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The analysis above varied the number of cycles for a fixed number of cells. Given a fixed
number of cycles, we can extend this procedure to estimate how many cells are needed to
reach a desired CI width. We sampled with replacement from the 78 cell periods estimated
by BPENS for a fixed number of cycles. The number of cells sampled was varied. This
bootstrapping procedure was repeated 5000 times. Figure 8 shows the margin of error
resulting from the 5000 bootstrap samples, for each sample size. For example, with only 4
cycles, we need approximately 194 cells to reduce the margin of error to 30 min, but with 32
cycles the required number of cells drops to 14. This analysis provides a guideline for
determining the number of cells and cycles that should be recorded in similar experiments to
yield reproducible period measurements. Table 3 shows the number of cells required to
achieve a margin of error of 0.5h, 0.25h, or 0.125h for 4, 8, 16, or 32 cycles.

2.5 Decomposition of within-cell and between-cells variability to assess heterogeneity in
the population

Once a good estimate of the population’s mean period is obtained, the next natural question
concerns the variability in the cell periods. Consider the dataset of BPENS period estimates
consisting of 8 consecutive, non-overlapping 4-day segments from each of the 78 cells. We
can ask whether the intrinsic periods of all 78 oscillators are similar, with noise causing the
apparent differences, or whether the population is heterogeneous with some distribution of
periods. To address this question, we turned to a Bayesian hierarchical model to estimate
simultaneously the variability across cells and the variability of period over time within each
individual cell.

The model assumes that the intrinsic periods of the cells are normally distributed with
population mean p and standard deviation p. We further assume that each cell’s time series
exhibits some level of variability in cycle length. That is, each cell’s period is normally
distributed about its intrinsic period with some standard deviation o. A numerical parameter
estimation procedure involving the MH algorithm similar to that described above was used
to determine values for the three parameters ., p, and o (see Appendix E). Figure 9 provides
the posterior probabilities for each of these parameters. In agreement with the results above,
the best estimate of the population’s mean period, p, is 24.94h, with Cl [24.72,25.17]. The
standard deviation of periods across the population, p, is 0.89h, with CI [0.72,1.09]. The
within-cell variability, o, is 1.43h, with CI [1.34,1.51].

This result provides an estimate of the heterogeneity in the population of cells. Asin a
standard ANOVA, the magnitude of the between-cell variability, p, is best viewed in
relation to the within-cell variability, o. Because the posterior distributions of p and o are
not independent, we need a measure of how these parameters co-vary. Figure 10 provides a
set of 8,000 samples drawn from the joint distribution of p and o, numerically generated by
the MH algorithm. For this set of samples, p is always less than o, implying that the
between-cell variability is less than the within-cell variability.

We have assumed that within-cell variability involves fluctuations about some intrinsic
period for each individual oscillator, but a potential issue is that the period of the cell
population could change gradually over the duration of an experiment due to declining
health of the cells or changes in the medium. This appears to be only a minor concern for
our fibroblasts, as the mean period across the population shows only a very gradual increase
of 0.02 h/day, or 0.1% per day, as reported in (Leise et al., 2012).

3. DISCUSSION AND CONCLUSIONS

As a consequence of both intrinsic noise from the molecular dynamics of the intracellular
clock and extrinsic noise from other processes inside and outside the cell, cellular oscillators
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exhibit fluctuations in frequency (Elowitz et al., 2002; Gonze et al., 2002). In particular,
short recordings with few cycles may yield misleading results: overestimation of population
heterogeneity, large potential error in the estimated period of each cell, and difficulty in
assessing which cells are significantly rhythmic (Leise et al., 2012). On the other hand,
practical constraints for experiments limit how many cycles can be recorded. For circadian
oscillations in fibroblasts, our analysis suggests that 16 cycles is sufficient to generate
reliable point estimates for individual cell periods using the BPENS method. The stochastic
cycle-to-cycle variability illustrated in Figure 4 implies that short time series with only 4 or
even 8 cycles may yield erroneous estimates of the cell’s intrinsic period.

In addition to cycle-to-cycle variability in individual biological oscillators, a population of
genetically similar oscillators can exhibit a range of periods due to a combination of within-
cell and between-cell variability. It is important to distinguish the effects of variability due
to stochastic gene expression from heterogeneity in the population due, for example, to
differences in cell size or epigenetic changes. Our hierarchical modeling reveals that, while
there is some heterogeneity of intrinsic period in the population, the fibroblasts display
much greater within-cell variability than between-cell variability in period. This finding
agrees with the ANOVA results in (Leise et al., 2012), which used period estimates
generated by the wavelet-based peak-to-peak method.

For the fibroblast time series considered here, which exhibited stable circadian oscillations,
a simple single-frequency model was sufficient. However, in some situations, such as a
forced desychrony protocol (de la Iglesia et al., 2004), two or more periods may be present
in the time series, in which case the full multiple-sinusoid reversible jump MCMC algorithm
developed by Andrieu and Doucet (1999) would be appropriate. This algorithm is designed
to detect how many significant rhythms are present and then estimate their frequencies, and
it outperforms classical model selection techniques like the Akaike Information Criterion in
assessing the number of significant components. In the case of an oscillator for which the
period is expected to change significantly over time, a dynamic sinusoidal model as treated
by Nielsen et al. (2011) or probabilistic inference of instantaneous frequency as in (Turner
and Sahani, 2011) may be more appropriate.

We conclude that BPENS is a general, powerful method for determining period of
oscillatory time series, including short noisy time series, which generates both accurate point
estimates and a measure of uncertainty. Commonly used methods, including the FFT,
MESA, autocorrelation, and mean peak-to-peak time, provide less accurate period estimates
than BPENS and no information about uncertainty of the estimate. Thus, BPENS permits
not only the best available estimate of oscillatory period, but also an opportunity to evaluate
the reliability of point estimates based on noisy experimental data. By taking uncertainty
into account, one can calculate the number of cycles required to attain a desired precision of
period estimation and thereby be confident that experimental findings are reliable and
reproducible.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix A

Simulated data generation

The simulated time series were generated by sampling a modified waveform (at 0.5h
intervals) consisting of the constant % plus a cosine function with period 24.9h and unit
amplitude, with portions falling below zero set equal to zero, and then adding both Gaussian
and Brownian noise, each with standard deviation 0.2 (to mimic experimental time series;
see Figure 2 for an example). Because they have more low frequency noise and an altered
waveform, these simulated time series have properties differing from a simple sinusoid with
additive noise.

Appendix B
Fibroblast data

The complete set of experimental data can be found in the Supporting Information of (Leise
etal., 2012). We used 34 days from each recording (starting at the 4™ peak), in order to
obtain 32 cycles on average for each cell (the typical cycle length is approximately 25h).
Each time series was detrended using a stationary discrete wavelet transform as described in
(Leise and Harrington, 2011). Because they were too short for this analysis, we discarded
cells #42 and #61 from the original set of 80 fibroblast time series.

Appendix C
BPENS parameters

Determining the posterior distribution for the frequency parameter w follows algorithm 4.2
of (Nielsen, 2009) with the following parameter values: 7=10,000, A =0.2, g=6, a=5, b=
60, and o2 = (.5/N)2, where Nis the number of data samples. The initialization value for the
MH algorithm was 25 hours. The algorithm was robust to different starting values and
parameter values for the prior distribution. Burn-in time was 20% of total accepted samples.
T'is the number of total samples. The form of the prior follows equation (4.26) in (Nielsen,
2009), in which the assumed factorization is the least subjective prior distribution in the
absence of prior knowledge, as shown in (Andrieu and Doucet, 1999). The distribution of w
is assumed to be a uniform distribution from 0 to r radians/time unit, while the distribution
of oe? is the inverse-Gamma function /nv-G(oe?; a b), which is the conjugate prior for a
Gaussian distribution with known mean and unknown variance. The prior for the amplitude
parameter B is the normal distribution with mean zero and variance depending on oe?, w,
and the expected signal-to-noise ratio g. The proposal distribution is a mixture of the
normalized Fourier periodogram and a Gaussian with variance o. The mixing parameter is
A

Appendix D

Description of other period estimation methods

For the sine-fitting method, simulated time series with linear trend removed were fit to a
single sine function using the MATLAB Curve Fitting Toolbox (MathWorks, Inc., Natick,
MA, 2011), which uses nonlinear least squares with a trust-region algorithm. The simulated
time series also had linear trend removed before applying MESA and Fourier periodogram
methods, while before applying autocorrelation the simulated time series were wavelet-
detrended as described in (Leise and Harrington, 2011). The first peak-to-peak method used
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a 12h running average to smooth before selecting peak times, and the second peak-to-peak
method applied the wavelet-based procedure described in (Leise and Harrington, 2011).

Appendix E

Hierarchical model

The hierarchical modeling follows the procedure in Section 8.3 of (Hoff, 2009). We
assumed a fixed variance o2 for each group. Priors were 1/62 ~ y(vq/2, vo 602/2), 1/p? ~ 7y
(M0/2, opo?/2), i ~ N(io, y0?); within-group model: ¢ j = {8 j, 0%}, p(v| ¢ j) = N(8 j, 0?);
between-group model: y = {u, p2}, PO | v) = N(,p?). Parameter values were vp=1,
00%=2, No=1, pp?=3, Lo=25, y0%=0.25. 10,000 samples were used in the MH algorithm and
burn-in time was 20% of total accepted samples. Because each cell has only 8 observations
and to keep the number of parameters reasonable, we assumed all cells had the same value
of o.

All computations were done using MATLAB R2011b (MathWorks, Inc., Natick, MA,
2011).

Appendix F

Theoretical uncertainty of Bayesian frequency estimates

Bretthorst (1988) used a Bayesian framework to show that the peak frequency of the
Schuster periodogram is the optimal estimator under the assumption of a single sinusoid
Bycos(wd) plus white Gaussian noise with known variance o2. The Schuster periodogram
Cw) is defined by

2

N

) ia)tj
3 xje]
Jj=1

1
C((A))ZN

The value w’ at which ((w) attains its maximum is the best estimate. Using this approach
and under these assumptions, Bretthorst, following (Jaynes, 1987), derived a closed-form
expression for the frequency estimate and its standard deviation;

BiT VN

f;’stzf, +

(in cycles/time unit),

where £w/(2rtAd, Atis the sampling time step, 7 is the total duration of the time series,
and NVis the number of sampled time points. This expression shows that the uncertainty in
the frequency estimate is inversely proportional to the signal-to-noise ratio (B;/o), so
increasing the signal-to-noise ratio should reduce the uncertainty in the frequency estimate.
We also see that doubling the number of cycles recorded (thereby doubling both 7and A)
will have a greater effect in reducing the uncertainty than doubling the sampling rate (which
only doubles AVand not 7). Because we don’t know o for the fibroblast time series, we
cannot directly use this expression, but our experimental results are consistent with this
theoretical analysis.
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Figure 1.

Coin-flip illustration of Bayesian statistical concepts. In this example, the prior probability
distribution P(8) is the uniform distribution on [0,1], and P(6 | 10 flips, 4 heads) is the
posterior distribution resulting from the experiment that yielded 4 heads out of 10 coin flips.
The posterior P(6 | 30 flips, 19 heads) was computed using the experimental outcomes of a
total of 30 flips, and is shown as a solid curve with the mean as a dashed vertical line and the
95% Cl indicated with dotted vertical lines.
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Figure 2.
Example of simulated noisy oscillatory time series used to test the 7 period estimation
methods.
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Figure 3.

Application of the BPENS period estimation method to Fibroblast #57, whose time series is
shown at the top, using 4, 8, 16, or 32 cycles. Each histogram displays the computed
posterior distribution for the period, with 95% Cls indicated by dotted lines and the mean
value by a dashed line. The width of the Cls reflects the uncertainty of the period estimate.
Note that as the number of cycles increases, the range of the horizontal axis greatly
decreases.

J Theor Biol. Author manuscript; available in PMC 2013 December 07.



1duosnuey JoyIny vd-HIN 1duosnuey JoyIny vd-HIN

1duosnuey JoyIny vd-HIN

Cohen et al.

= 1.25
1
0.75

0.5
0.25

Margin of error

Figure4.

Page 19

+

=

H++

4 8 16 32
Number of cycles

Box plot of the margins of error for the fibroblast time series versus the number of cycles in
the time series. Median margins of error are 0.57h, 0.20h, 0.071h, and 0.031h for 4, 8, 16,
and 32 cycles, respectively. Plus signs indicate outliers.
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Estimated period for 4-cycle segments of four fibroblast time series starting at different time
points, revealing variability in estimated period over time. Cells 1-4 are Fibroblasts #57,

is marked with a circle.
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Figure6.

Effect of the number of cycles and sampling rate on the uncertainty in the BPENS period
estimate for Fibroblast #57. Error bars are 95% Cls with the mean marked. The margin of
error decreases as the number of cycles and the sampling rate increase.
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Histograms with 15 min bins showing the estimated mean fibroblast periods using the
BPENS method. Dashed lines indicate the mean value of the mean periods for 78 fibroblast
time series; the dotted lines give the 95% Cls for the mean of the mean periods. 7 outliers in

the 4 cycles histogram and 3 outliers in the 8 cycles histogram are not shown.
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The number of cells () required to achieve the desired margin of error for the mean period
of the population, given the number of cycles recorded (using 48 samples/day). The margin
of error decreases as the reciprocal of the square root of the number of cells.
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Hierarchical modeling of the 78 fibroblasts. The dashed lines mark the mean values and the
dotted lines indicate the 95% Cls for the parameters . (mean period of the population), p
(standard deviation of periods across the population), and o (standard deviation in cycle
length for each cell).
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Table 2

Comparison of margin of error computed using the two different methods, sine-fitting (using Matlab’s Curve
Fitting Toolbox) and BPENS, for the 100 simulated noisy oscillatory time series. The margin of error equals
half the width of the 95% CI. The percent of samples in which the estimated period value was within the 95%
Cl is given in parentheses.

Length of | Sinefitting BPENS
time series

4 cycles 17 min (71%) | 48 min (100%)

8 cycles 7.1 min (99%) | 13 min (100%)

16 cycles | 3.2 min (98%) | 3.5 min (100%)

32 cycles 1.3 min (99%) | 1.0 min (100%)

1duasnuey Joyiny vd-HIN 1duasnue Joyiny vd-HIN

wduosnue Joyiny vd-HIN

J Theor Biol. Author manuscript; available in PMC 2013 December 07.



1duasnuey Joyiny vd-HIN 1duasnue Joyiny vd-HIN

wduosnue Joyiny vd-HIN

Cohen et al.

Table 3

Page 28

Number of cells required to achieve a margin of error of 0.5h, 0.25h, or 0.125h, given experimental time series

of different lengths.

Length of timeseries | 0.5h | 0.25h | 0.125h
4 cycles 194 | 770 3073

8 cycles 31 124 494
16 cycles 18 71 283
32 cycles 14 58 231
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