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Abstract

It is the purpose of this article to review results that have long been known to communications
network engineers and have direct application to epidemiology on networks. A common approach
in epidemiology is to study the transmission of a disease in a population where each individual is
initially susceptible (S), may become infective (I) and then removed or recovered (R) and plays no
further epidemiological role. Much of the recent work gives explicit consideration to the network
of social interactions or disease-transmitting contacts and attendant probability of transmission for
each interacting pair. The state of such a network is an assignment of the values {S, /, R} to its
members. Given such a network, an initial state and a particular susceptible individual, we would
like to compute their probability of becoming infected in the course of an epidemic. It turns out
that this and related problems are NP-hard. In particular, it belongs in a class of problems for
which no efficient algorithms for their solution are known. Moreover, finding an efficient
algorithm for the solution of any problem in this class would entail a major breakthrough in
theoretical computer science.
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1. Introduction

Mathematical modelling of epidemics is often traced to the celebrated SIR model of
Kermack and McKendrick [1]. This model posits a population of constant size whose
members fall into one of three classes: susceptible (S), infective (/) and removed (~).
Approximating these as continuous and assuming well-mixing, i.e., each individual is in
equal contact with and equally likely to infect each other individual, allows for an
approximate description of the infection dynamics using ordinary differential equations
(ODE).

© 2012 Elsevier Inc. All rights reserved.
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Clearly, as it has been argued by many in theoretical [2, 3, 4] as well as experimental studies
[5], the well-mixing assumption is not an accurate representation of real contact patterns.
Thus, much recent work has focused on the role of the network of disease-transmitting
contacts. (Reviewed in [6]. See also, [7, 8]. For a comparison of well-mixed and network-
based models, see [9].) Indeed, Kermack’s and McKendrick’s ODE model arises as the
limiting case as the number of people goes to infinity of a simplistic network model in
which each individual has an equal chance of infecting every other. However, real-world
social contact networks exhibit complex patterns of interconnection between individuals.
Further, the probability of transmitting disease from one individual to another depends on
the nature, frequency and duration of the contact as well as the immune competence of the
target individual. This leads to a modelling formalism of social networks as a probabilistic
graph ¢ = (G, Pr). Here Gis the graph G= (V, E), each vertex v € Vis an individual, each
edge e= (¢, V) € Erecords the fact that « might infect vand Pr. £— [0, 1] gives the
probability that v infects vif v becomes infective while vis susceptible. In this formalism, ¢
is a fixed graph G = (V; E) with labelling ~r.

This relatively new modelling paradigm has triggered an enormous amount of research in
theoretical epidemiology. The field has greatly benefited from approaches that range from
applications of bond percolation theory and other techniques from statistical physics [10, 11,
3,7,12,13, 14, 15, 16, 17, 18, 19] to large scale simulation endeavours [4, 20, 21, 22, 23].
Given that this mathematical formalism seems accurate and powerful to describe the spread
of infectious diseases, the natural question arises as to whether calculations performed
within this formalism can be used in practical situations to make useful predictions. Such
calculations are based on potentially measurable parameters such as network topology and
transmission probabilities [24]. For instance, one could attempt to calculate the probability
that, given a social contact network ¢, an epidemic starting with a set P of infectives results
in the infection of an initially susceptible individual «. Are there any computational
limitations when trying to calculate such magnitudes? If yes, how limiting are they?
Fortunately, to address the computational issues associated with this and similar
calculations, we don’t need to start from scratch, given that network engineers have already
studied since the 1970s problems that are essentially the same.

In the era of electronically digitalized information and digital computers, communications
networks have become the biggest and count among the most important networks. The size
of these networks is exponentially increasing. For instance, the size of the Internet shows
exponential growth since its creation in the early nineties (http://www.isc.org/). As the
components of such networks are subject to failure, engineers face the problem of designing,
constructing and operating networks that meet the required standards of reliability. Of
particular interest is the estimation of how reliable a given network is in performing its
function, provided some knowledge about the reliability of its components is available. In
many cases, the functionality of the network can be expressed as the ability of its topology
to support the network’s operation. In other words, the network is functional if and only if
certain connectivity properties are fulfilled. Consider a network of computers which use this
network to transmit messages. Let us suppose that each of these computers is reliable, but
that each communication link has some chance of failure when called upon to transmit a
message. We then encounter the same formalism explained above for social networks. A
communications network is given by ¢ = (G, Pr). Here G = (V, E) where each vertex v € V
is a computer, each edge e= (¢, V) € Eiis acommunication link and Pr.. £— [0, 1] is the
reliability of the communication link from «to v. One might ask, given a communications
network ¢, a set of computers Pand a computer & P, if the computers in Pall send a
message, what is the chance it will reach ¢? We will see that this is the same problem we
stated above in the context of epidemics on social contact networks.
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It has long been known in the communications network literature that this problem is
computationally intractable. A standard benchmark of computational complexity is the class
of NP-complete problems. This class has the following properties:

e At present, no algorithm for an NP-complete problem is known to have a running
time which is bounded by a polynomial. Indeed, many algorithms for NP-complete
problems have exponential running time. It is unknown whether any NP-complete
problem can be solved by an algorithm with polynomial running time.

» Ifany problem in this class can be solved by an algorithm whose running time is
bounded by a polynomial, then every problem in this class can be solved by an
algorithm whose running time is bounded by a polynomial.

In view of the second, it is considered unlikely that any NP-complete problem has a
polynomial time solution. The communication among computers problem (and hence the
epidemiology problem) listed above is known to be as hard as any NP-complete problem.
Such problems are termed NP-hard. This is not the first problem in network epidemiology
known to be NP-hard. Previously known examples include the following: Given a social
contact network and limited resources

»  What is the optimal strategy for vaccinating a limited number of individuals?
»  What is the optimal strategy for quarantining a limited number of individuals?

»  What is the optimal strategy for placement of a limited number of sensors for
monitoring the course of an epidemic?

(See [25, 26, 27, 28].) These problems involve the search for an optimum among subsets of
the vertices or edges of the given social contact network. It might be hoped that finding the
probability of infection of a single individual would be computationally less demanding. As
the engineers have taught us, this is not so. While this result has been recently reported in
the physics and operations research community [29] and has recently been applied to the
spread of influence on social networks [30], it seems almost unknown among
epidemiologists.

This article is organized as follows: In Section 2 we give a very brief overview of the
relevant concepts and methods in computational complexity. This provides the unacquainted
reader with the basic tools for understanding the main message of this paper. Section 3
provides the elementary formal mathematical framework for studying SIR epidemics on
networks, including the connection with percolation theory. In Section 4 we present a series
of problems that have been studied in network engineering and demonstrate their structural
isomorphism with certain problems concerning S/R epidemics on networks. Section 5 is
devoted to studying the computational complexity of extended/generalized epidemiological
problems. We finish in Section 6 with some concluding remarks.

2. Computational complexity

In this section we give a brief introduction to some of the major classes in the study of
computational complexity. Perhaps chief among these is the class NP-complete which is
used as a common benchmark for describing problems which are algorithmically soluble but
computationally intractable. We start with a quick overview of the classes diagrammed in
Figure 13 and then proceed to fill in some of the mathematical details. For those wishing a
fuller account we recommend [31].

3We wish to thank Prof. Benjamin Hescott for advising us on the status of the question as to whether #P-complete exhausts the
intersection of NP-hard and #P.
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The classes P, NP and #P are defined by the running times of the algorithms that solve them
and the capacities of machines these algorithms run on. The classes NP-complete and #P-
complete play analogous roles in the classes NP and #P. They consist of the “hardest”
problems of the class in the following sense: a solution for any NP-complete problem can be
quickly transformed into a solution to any problem in NP. Accordingly, if there is an
efficient solution to any NP-complete problem, there is an efficient solution to every
problem in NP. (#P-complete problems play a similar role in #P.) It will be the work of this
section to give more precise accounts of the terms problem, running time, transform and the
classes of machines involved.

In describing the class NP-complete, it is useful to describe the class P, and necessary to
describe the class NP.

The computational complexity of a problem I is measured in terms of the running time
necessary for an algorithm which solves II. Defining these terms requires some
preliminaries. First, note that a problem IT consists of a collection of instances, Dy. Thus,
“Determine whether 18 is composite” is an instance of the problem, “For any integer 7,
determine whether nis composite.” This is an example of a decision problem, that is, for
each instance, the answer is either “yes” or “no”. A decision problem I can be formalized as
the pair (D, Yir), where Yir C Dy consists of the yes instances. In this example, Dy is the
set of integers and Y7y is the set of composite integers. We will refer to this problem as

I composite-

Notice that each instance = € IT has a size, { ) and that the computational cost of solving
the problem grows with the size of the problem. In this example, the size ) of the instance
nis the number of digits in 7. If we then have an algorithm A7which solves II, we can
consider the running time ry, (7z) required by M when applied to the instance . This could
be measured in elapsed time or in terms of the number of steps carried out by Min this
computation. We would like to know the worst (i.e., longest) running time for all instances
of a given size. Now depending on the problem, there is no guarantee that there is at least
one instance of every size. When no instance of size nexists we will take the worst running
time for instances of that size to be zero. We refer to the function which gives the worst
running time at each size to be the running time of M defined as follows:

r. ()= { 0 if{nlf(m)=n}=2

max{r, (m|(r)=n} otherwise

The class P consists of those decision problems which can be solved with a polynomial
running time. Stated formally, a decision problem IT belongs to the class P if there is an
algorithm A which solves IT and a polynomial p(7) such that ry, (1) < p(n). An example of a
problem in the class P is I1,, defined as follows: An instance of I1,,,, is three integers, a, b
and c¢. The size of an instance is the total number of digits in &, 6and c. These constitute a
yes instance if ax b= ¢ Itis not hard to convince oneself that the amount of computation
necessary to decide whether ax 6= cis bounded by a polynomial in the total number of
digits.

The class NP consists of non-deterministic polynomial time problems. That is, a decision
problem is NP if a machine which is allowed to guess can verify a yes instance in
polynomial time. IT copposite Provides an example of a problem which is NP. Given an
instance of I gomposite 1.6, an integer ¢, if cis, in fact, composite, a correct guess as to its
factors aand b, can be verified in polynomial time by calling I1 ./ One can define this
class in terms of the operation of non-deterministic Turing machines. See, for example, [32].
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Clearly P C NP. In view of the perceived complexity of many problems in NP, it is
generally believed that P # NP, although no rigorous proof is known.

The class NP-complete consists of the hardest problems in NP. The problems in NP-
complete have the following property: Suppose that IT; is NP-complete. Suppose that IT; is
NP. Then there is an algorithm A/which translates any instance r, of Il into an instance m;
of IT; such that 7y is a yes instance of I, if and only if r, is a yes instance of II,. Further,
both the computational cost of translating 7 into 71 and the size { ;) are bounded by a
polynomial in {7z). It follows that if any NP-complete problem can be solved
(deterministically) in polynomial time, then every NP problem can be solved in polynomial
time. Put another way, if any NP-complete problem can be solved in polynomial time, we
will then have P = NP.

Hundreds of problems are known to be NP-complete [31]. These come from fields such as
graph theory, number theory, scheduling, code optimization and many others. They are
widely believed to be intrinsically intractable, but this remains an open question. Other
problems which are not necessarily NP-complete (e.g., because they are not decision
problems) are known to be at least as hard. This is because for such a problem, say T, there
is an NP-complete problem II that can be reduced to I, where the computational cost of this
reduction is bounded by a polynomial in the length of the instance problem considered.
Thus, T" can be used to solve II. These problems are called NP-hard. Since NP-complete
problems transform to each other, all NP-complete problems can be solved by a reduction to
any NP-hard problem. NP-hard problems are found in fields as diverse as epidemiology and
origami [33].

Finally, we turn to the classes #P and #P-complete. The class NP consists of decision
problems, e.g., I composite Which asks whether a given integer ¢ can be written as the product
of two factors, ax b= ¢ The class #P consists of counting problems, e.g., given an integer
¢, how many different ways are there to write it as the product a x 6= ¢? Let us call this

Hf,,mpmi,g. Thus, for the instance 18 of I1ymposize the answer is “yes”, while for the instance

18 of Hf,)mpm,e, the answer is 4, as witnessed by the products 2 x 9=18,3x6=18,6 x 3=
18and 9 x 2 =18.

We have seen that a problem I is NP if there is a non-deterministic algorithm M which
verifies the yes-instances of IT in polynomial time. M is allowed to make guesses. For each
instance 7 of II, we can ask how many different guesses A can make which will lead to the
verification of 7 as a yes-instance. Of course, if r is not a yes-instance, this number is zero.
Let us refer to this counting version of IT as IT¥. The problem IT* belongs to the class #P if
for every yes-instance r, every computation verifying = has length bounded by a
polynomial in ).

Clearly, any counting problem can be turned into a decision problem by asking whether the
count is non-zero. In this way, every #P problem can be turned into a problem in NP.
However, #P problems may well be strictly harder than NP problems in the following sense.
Even if it turns out that P=NP, there may still be problems in #P that can’t be solved in
polynomial time.

Among the problems in #P, there are some which qualify as being the hardest in the sense
that a solution for any one of these can be quickly transformed into a solution for any
problem in #P. These problems are referred to as #P-complete. Among the #P-complete
problems are some which are the counting versions of NP-complete problems. It follows

from this that every #P-complete problem is NP-hard. To see this, let l‘I*f be any #P-
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complete problem, and let Hﬁ be a #P-complete problem whose corresponding decision
problem II, is NP-complete. A solution to l‘I’f can be transformed into a solution to Hg, and

this, in turn answers II,, hence any problem in NP. It follows that 1‘[’}t is NP-hard. As we
shall see below, some problems in network epidemiology are #P-complete and thus NP-
hard.

3. SIR epidemics on networks

We start by describing a network SIR model in which both the population (which is finite)
and the transmission probabilities between individuals are constant with respect to time. A
network in question is a graph G = (V, E) where the vertices Vrepresent individuals and the
presence of an edge (¢, V) € Eindicates that vzand vhave contact which would enable
disease transmission from «to v. This transmission is probabilistic. Each edge (¢, V) is
labeled with the probability that ¢ transmits the disease to v if ¢ becomes infected while vis
susceptible. We make no assumption as to the topology of this network. In this model,
disease transmission takes place at discrete times r=1,2,3 ....

A state of this system is the assignment of each individual to one of the classes S
(susceptible), / (infected) or R (recovered). (Figure 2 shows the state of a network at time ¢=
3.) Only susceptibles can become infective. Infected individuals remain so for one time step
and then become recovered. These latter are assumed immune to further infection and play
no further role in the spread of disease. The edges determine who can infect whom and
consequently which states can follow a given state. The transmission probabilities on the
edges determine the probability that any one of these states follows the given state. An
epidemic is a sequence of states each of which is a possible successor of the previous state.
We assume that the initial state consists of susceptibles and at least one infected, but make
no assumption as to the number of people who become infected in the course of the
epidemic. Given an initial state, we can speak of the probability that an epidemic evolves
through a given sequence of states and the probability that it arrives at a particular state. Let
us formalize this.

As above, a social contact network is a pair ¢ = (G, Pr) where G = (V, E) is the graph with
vertex set Vand edge set £. Each edge has the form (¢, V) with ¢, v€ Vand v# v. We make
no assumption on the topology of this graph. The function Prassigns a probability to each
edge, that is 2r - £— [0, 1]. The states of ¢ are given by*

St(G)={p|p:V — {S, 1, R}}.

Given states ¢ and ¢, the state ¢ is a possible (immediate) successor of ¢ if it satisfies the
following conditions for each ¢, vE€ V:

1. If ¢1(0) = R, then ¢(v) = R. (Recovered individuals stay recovered.)
2. If ¢1(v) = /, then ¢o(4) = R. (Infected individuals recover in one step.)

3. If ¢1(v) = S then (1) € {S, }. (Susceptible individuals either stay susceptible or
become infected.)

4. If go(v) = 1, then ¢1(v) = Sand there is a vertex g € VA{¢} and an edge (g, v) with
#1(g) = 1. (Infected individuals were susceptible and were infected by a neighbour.)

4n particular, a state ¢ can be seen as a subset of the Cartesian product V'x {S, /, R}, and therefore, it is meaningful to speak of the
probability of a state or of a collection of states.
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The requirement that individuals recover in exactly one time-step might appear to be a
drastic oversimplification. However, the formalism is rich enough to accommodate patterns
of latency and extended periods of infectivity. This can be done by replacing the individual
represented by vertex v by a sequence of vertices 4, b, ... representing von day 1, von
day 2, etc. See, e.g., [34].

An epidemic @ is a sequence of states ¢, ..., ¢, where ¢;.1 is a possible successor of g, for /
=1, ..., n— 1. We will assume that the initial state ¢; consists of infectives and susceptibles.
The length of this epidemic is {&) = n. Since individuals recover after one step and
recovered individuals cannot be reinfected, infection must be transmitted or die out. As a
consequence, no epidemic can be longer than the longest self-avoiding path in G= (V; E),
for otherwise, it must infect some vertex twice, a contradiction. If we assume that each edge
transmits or fails to transmit independently, then it is not hard to compute the probability
that a susceptible individual is infected by its infected neighbours. This, in turn, allows one
to compute the probability that a state ¢; is followed by a particular successor state ¢,. Let
us denote this probability by Pr(¢, | ¢1). This system enjoys the Markov property, that is, the
probability of a given state depends only on the previous state. Thus given an initial state
®4, the probability of the epidemic @ = ¢, ..., @, is

Pr(@lp)=] [Prgigi).
i=2

The probability that &becomes infected at the 7% step in the course of an epidemic starting
with ¢y is

Priga@=Iign=" >, Prgi,....¢ld0).

{P1,- ... ¢l
¢ (w)=1}

Abusing notation, we denote the probability that ¢ becomes infected in the course of some
epidemic starting with ¢; by

Pr(ulg)=) " Pr(¢;w=Iip1).

j=1

In this sum we consider each of these epidemics only up to the time at which ¢ becomes
infected. Because of this, no epidemic appearing in this sum is an initial sub-epidemic of
another. Accordingly, these are disjoint cases and we can take the total probability to be the
sum of the individual probabilities.

We will be interested in initial states ¢; consisting only of infectives and susceptibles. In this
case, we can identify ¢, with the set of infectives P=¢1‘1(1). This gives the notation Pr(u| P).

Let us formalize the problem I1gpjgemic Of finding Pr(w| A). An instance 7 of this problem
consists of

e Agraph G=(V, E).

Math Biosci. Author manuscript; available in PMC 2013 December 01.
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Theorem 1

Corollary 1

« Alabelling® Pr:£E—1[0,1] N Q.
e Aninitial infective set PC V.
e« Anindividual € V\ P.

A solution to s is the value Pr(u| P).
We take {11) = | U.

The epidemiological viewpoint we have just described follows the evolution of probabilities
over time. If we ignore the order of events, we come to the simpler viewpoint of percolation.
Percolation methods have been used in epidemiology. (See, for example, [36, 37, 34, 3, 12,
38]. The latter two contain extensive references.) Since an individual is only infected for one
time step in the course of any epidemic, an edge can transmit at most once in the course of
an epidemic. This allows us to consider a random variable that takes as values subgraphs of
G. Given ¢, we take © to be the random variable which takes values in {G" = (V, E) | E C
E}. The probability that © takes the value G’ is given by

PrG )= [ﬂpr(e)] (H(I—Pr(e))] e

ecE’ egE’

We may think of £ as determining whether = (1, V) transmits in the course of an epidemic
if that epidemic has a state ¢ with ¢(¢) = /and ¢(g) = S. Given a path zin G, we will abuse
notation by writing z C Gand e € zfor the edges of z. Given a path z, the probability that it
appearsin G’ = (V, E) is

PriGrc G’}:ﬂpr(e).

eeT

The following theorem is equivalent to observation (3) of [34, Lemma 3.5, pp 720-21]. The
reference [34] uses ¢ € {0, 1}£ to induce a subgraph G’ = (V, 1(1)) of G= (V, B).

Suppose ¢ is social contact network. Then

Pr(u|P)=Pr {G/|G/ contains a path from P to u}.

Pr(u| P) is a finite sum of terms of the form (*). In particular, it is a polynomial in the values
Pr(e) with integer coefficients and degree at most |£].

This Theorem and its Corollary provide the link between epidemiology and communications
networks. We will see that in the case where Pris taken to have the single value pthe

SThere are technical issues here concerning the values of these probabilities. To avoid these issues they are usually assumed to be
rational numbers and bounds are placed on the sizes of their denominators. For details, see [35]. Since Q is dense in R, this is not a
limitation on the possible probability values relevant in real applications.
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polynomial of Corollary 1 corresponds to the reliability polynomial as described below (see
also [35]).

4. NP-hard problems on communications networks: Consequences for
epidemiological calculations

We assume that a communications network consists of a set of computers, each of which is
reliable and a set of communication links each of which has a known likelihood of failure
and that the communication links function or fail independently. There is no loss of
generality in regarding each node as infallible, since a fallible computer can be modelled as
a pair of nodes with a fallible link connecting its input to its output. Once again, we can
formalize this as ¢ = (G, Pr), where G = (V, E) represents installed capacity (V/being the set
of computers and £ the set of communication links), Pr.. £— [0, 1] the reliability of each
link and & is the random variable assuming values in {G" = (V, £') | E C E}. Each G =
(V, E') is the subnetwork of functioning links left after the failure of the edges e € AE .
Successful transmission of a message on this network depends on the connectivity of the
subgraph realized by ©. Network engineers focus on several kinds of connectivity. We first
examine two of the simplest.

The two-terminal reliability problem is defined as the calculation of the probability that
there is at least one correctly functioning path in the network connecting a predefined source
node to a predefined target node. An instance 7z of 11 4, serminas CONSists of the following:

« Agraph G=(V, E).

* Alabelling Pr- E—[0,11N Q.
» Asource terminal v € V.

e Atarget terminal vE V\{4}.

A solution to s is the value Pr(v| 4).

By Corollary 1 this value is given by an integer polynomial in the values Pr(e) for e € E. If
we restrict to the case where every edge takes the same value, this becomes an integer
polynomial in one variable called the reliability polynomial. Thus a related problem is the
following:

An instance 7z of g/ poyy i
o« Agraph G=(V, E).
» Asource terminal v € V.
o Atargetterminal ve V\{u}.

A solution to  is the coefficients of the reliability polynomial.

A number of additional network reliability problems have been studied (see [35], an
excellent introduction to this field). These include

e kterminal reliability. This requires that & chosen terminals are mutually pair wise
connected.

«  Broadcasting, also known as all terminal reliability: This requires that all terminals
are pair wise connected.

Note that while we have defined the reliability polynomial using the two-terminal problem.
By Corollary 1 these also give polynomials in a similar way.
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Theorem 2

Corollary 2

Naturally, in addition to the network reliability problems presented above, many other
reasonable problems can be defined or could arise from practical applications. Formally,
once a model ¢ = (G, Pr) of the network has been chosen, a general mechanism to define a
reliability problem is the following: A network operation is specified by defining a set
Op(G) C{G’ =(V, E))| E C E} of states considered to be functional. The set O(G) is
sometimes called a stochastic binary system; the elements of Op(G) are termed pathsets.
Specifying the pathsets for G determines the whole stochastic binary system, and therefore
defines the network operation. The reliability problem consists of finding the probability
Pr(Op(G)) that the probabilistic graph & assumes values in the set Op(G).

A first naive algorithm to solve a network reliability problem formulated in this general
manner is to enumerate all states of ¢ (i.e., the cardinality of the set {G’ = (V, E) | E €
E}), determine whether a given state is a pathset or not using some predesigned recognition
procedure6, and sum the occurrence probabilities of each pathset. Due to the statistical
independence assumed, the probability of occurrence of a pathset is simply the product of
the operation probabilities of the edges in the pathset and the failure probabilities of the
edges not present in the pathset. Complete state enumeration requires the generation of all
2/& states of ©, implying that the running time of this algorithm would exponentially depend
on the number of links in the network.

A substantial amount of effort has been put into finding more efficient algorithms for exact
calculation of network reliability problems (see [35]). However, efficient exact solutions
seem unlikely as witnessed by [39, Theorem 1, p 158]:

The problems Ty terminar@nd T re/ poyy are NP-hard.

These problems belong to the class #P-complete [40, 41, 42, 43, 44, 35] and are thus NP-
hard (see Section 2 above).

The problem I gpjgemic is NP-hard.

To see this, notice that every instance of Ty ferminasis an instance of M gpjgemic, Namely, an
instance in which P consists of a single vertex.

More generally, despite dedicated efforts, no algorithm of polynomial running time has been
found that allows for the exact calculation of the probability Pr{Op(G)) of a given set of
pathsets Op(G), unless very specific assumptions are made on the topology of the
underlying probabilistic network ([35, 45]). We consider it an open question as to which (if
any) of these more general network reliability problems (defined through the choice of a
suitable stochastic binary system Op(G)) correspond to epidemiological problems.

5. NP-hardness of extended problems in epidemiology

Epidemic on networks with time-varying transmission probabilities

As we have seen in the previous section, the seemingly simple problem of finding an
individual’s chances of infection is NP-hard. This is even so in the case where the set of
initial infectives is a single individual.

Bsuch recognition procedures generally boil down to path-finding or spanning tree methods, which are efficient (i.e., of polynomial
running time) and well-know procedures in algorithmic graph theory and computer science.
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We can generalize I1gpjgemic by allowing transmission probabilities to vary over time. We
have seen that the length of any epidemic is at most the length of the longest self-avoiding
path in G. Consequently, time-varying transmission probabilities can be encoded as

PrEx{l,...,|El} = [0,1].

In this case, percolation methods no longer apply. However, every instance of Il gpjgemic can
be mapped into an instance of this extended problem. Thus, the time-varying version of this
problem is NP-hard.

Epidemic on networks with disease latency

One might also generalize I gpjgemic to allow patterns of latency and extended periods of
infectivity”. We will take 7 to be a sequence of distinct states, {/, b, ..., /y}. We assume
that for each stage /;there is an infectivity p;and a probability of recovery p; We take py =
1. We now consider a social contact network ¢ and infectivity pattern z. We refer to this as
an S 7 Rnetwork. The states of this network are

{plp:V — {S}U Z U{R}}.

We modify the definition of possible successor states so that the allowable transitions are
from Sto /i, from /;to /54 for /=1, & mldr;, V-1 and from /;to Rfor /=1, ..., N. If ¢(¢)
= /; utransitions to state /R with probability p;and to state /51 with probability 1 — p;. If =
(4, V) € Eand ¢(u) = 1; and ¢(V) = S, then vinfects vwith probability Prz (e i) = uPr(é).
We assume that 7 is non-trivial in the sense that there is /with u;# 0 and p;# 1. This
ensures that at least one state is capable of transmitting infection and that an infected
individual has a positive probability of reaching such an infective state. As before, under the
assumption that transmissions and recoveries happen independently, we can develop an
expression for Prz (u| P).

Fix Z. An instance of I1z is an instance of IT gpjgemic

A solution to IT 7 is the value Prz (v| P)
Theorem 3—Given an non-trivial infectivity pattern 7, Tz is NP-hard.

Lemma 1—Given ¢ = (G, P and Z = {/, ..., Iy}, there is ¢ = (G, Pr’) so that for each P
CVand u€ P, Pre(u| P) = Pr(u|P).

Proof: Consider an edge e= (¢, V). Suppose that ¢1(¢) = /;and ¢1(V) = S. What are the
chances that vremains uninfected by ¢? (We assume for the moment that vis not infected
by some other neighbour during the next N/ steps.) We take i = Pr(€). Let us denote by v;
the probability that ¢ remains infected for 7steps, but not 7+ 1 steps. We then have

TFor a more general version of this see [34].
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vizpi| |(1-0p.
j=1

The probability that vremains uninfected by vis
N i
Ty(ﬂ):zvj
i=1

14

(100
j=1

We now define ¢' = (G, Pr’) by taking
Pr(e)=1-7 ,(Pr(e)).

This does what is required.

Proof (Proof of Theorem 3): We will show that IT,¢/ 50y, is polynomially reducible to Iz .

Fix 7 to be a non-trivial pattern of infectivity. Suppose we are given an instance s of

Iyel poly- This consists of a graph G = (V] £) and source and target vertices vand v. Suppose
also that we have a polynomial time algorithm for solving 1z . Let M be the degree of the
reliability polynomial we are trying to find. This is bounded by the length of the longest self-
avoiding path in G. We choose M + 1 arbitrary probabilities py, ..., pas1- These give us M+
1 instances of Il z by taking ¢ ;= (G, Pr;), where Pr;takes the constant value p;. By the
previous lemma, solving these M+ 1 instances of Il z solves M+ 1 distinct instances of

W epigemic Which consist of the graph G and differing constant functions Pr;.. These M+ 1
values give us M+ 1 independent linear equations whose unknowns are the coefficients of
the reliability polynomial. Solving for these is a polynomial time problem.

Expected number of total infections

One might hope that while computing an individual’s probability of infection is NP-hard,
there might be a way to compute the expected number of infections. This, too, is NP-hard.
Let us formalize this.

An instance 7z of M gypecreq is
e Agraph G=(V, E).
e Alabelling Pr: E—[0,1]1 N Q.
* Aninitial infective set PC V.

A solution to r is the expected number of infections,

ZPr(u|P).

ueV
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The following theorem was proved in [29, Theorem 1, p 483]. For the sake of completeness,
we provide a proof here.

Theorem 4—Ilexpecteq is NP-hard.

Proof: We will show that ITgpjgemic can be~polynomially reduced to I gypecreq SUppPOSE We
are given an instance 7 of Il gpjgemic- Let  be the instance of Tl gpjgemic which is formed from
7 by appending a single edge from vto v Vand assigning Pr(u, V) = 1. It is clear that the
expected number of infections in 7 differs from the number of expected infections in 7z by
exactly Pr(u| P). Thus, if we had a polynomial time algorithm for finding the expected
number of infections, we could find the probability of any individual becoming infected.

The fact that I1 ¢/ 50y, is NP-hard suggests that the difficulty lies not in the probabilities Ar
but in the topology of G. One problem which we have not addressed here is the question of
calculating the probability of infection in an SIR network where the graph G;= (V} £E)
changes over time due to stochastic births and deaths. It seems likely that this will also
provide a source of NP-hard problems. However, this requires a reformulation of the
underlying problem.

6. Discussion and conclusions

It has been the purpose of this paper to draw the attention of network epidemiologists to
results in communications network reliability which shed light on questions regarding the
computational aspects of epidemiology of S/R networks.

Theorem 2 and Theorem 4 tell us that generally, in the absence of a major break-through in
computer science we cannot expect to be able to compute exact probabilities of infection or
expected number of infection in large social contact networks. As [31] points out, problems
do not go away simply because we have deemed them NP-hard.

Since the network engineers have been here before us, it is tempting to ask whether their
solutions will work for epidemiologists. While we consider the case open, the prospects
seem mixed. Network engineers are often in the position of being able to choose the class of
networks under consideration. As opposed to scale-free [8, 46] and small-world network
structures [47, 48, 8], which frequently arise from a self-organization process during the
spontaneous growth of a network, engineered or purposefully designed networks show
rather different structures. Some of the classes that allow efficient calculations (exact or
approximate) include trees, full graphs, series-parallel graphs [35], and channel graphs [45].
(See Figure 3.) Unfortunately, these classes of networks seem unrealistic as models of social
contact networks.

Network engineers have turned to Monte Carlo simulation for the calculation of estimates of
network reliability. We would like to give pointers into their literature [49, 50, 51, 52, 53,
54, 55, 29]. This approach has received increased attention in the last decade due to the
power of modern computers and computing clusters. While Monte Carlo simulation only
calculates an unbiased point estimator for reliability probabilities, increasing the number of
simulated samples causes these estimates to converge to the actual value.

The fact that efficient and precise algorithms for computing infection probabilities are out of
reach (see Theorems 2, 3 and 4) has real-world consequences. Designing a response to an
emerging epidemic can depend on determining the kind of epidemiological probabilities we
have been discussing [56]. The effectiveness of interventions during an emerging epidemic
often crucially depends on timely implementation. Our results and those of [25] and [26]

Math Biosci. Author manuscript; available in PMC 2013 December 01.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Shapiro and Delgado-Eckert Page 14

place an emphasis on the search for efficient and quick methods that give good
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NP NP-Hard

Figure 1.

The class NP consists of decision problems, problems for which the answer is “yes or “no”.
Within this class is the class P of problems which can be solved with polynomial running
time and the class NP-complete of problems which are as hard as any other problem in this
class. It is not known whether P = NP. This diagram is drawn under the assumption that
these are not equal. The class #P consists of counting problems, problems for which the
answer is a count, a non-negative integer. Within this class is the class #P-complete of
problems which are as hard as any in #P. Every counting problem can be turned into a
decision problem, namely, “Is the count larger than zero?” In this way some #P-complete
problems become NP-complete problems, and thus all #P-complete problems (and all NP-
complete problems) belong to the class of NP-hard problems, those which are as hard as any
NP problem. The sliver to the right of the #P-complete problems indicates the possibility
that (NP-hard) N (#P) & #P-complete. This is currently unknown.
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Figure2.

The state of a social network on the third day of an epidemic which started at the lower left
and upper right corners. Susceptibles are shown in cyan, infectives in red and recovereds in
blue. Every infective is three edges from one of the two original infectives along some route
of transmission. Each infective shares an edge with at least one recovered, namely the
recovered that infected it. One susceptible will never become infected. The epidemic can
continue for at most six more steps. We have omitted the probabilities on the edges.
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Figure 3.

A. The full graph on seven vertices. Every edge is connected to every other. The Kermack-
McKendrick model arises as the limit of the full graph as the number of vertices goes to
infinity. B. Trees are connected graphs without loops. C. Series parallel graphs have a
distinguished source and target vertex. They are built up from the graph which consists of
two vertices and one edge (inset) by repeatedly combining smaller series parallel graphs
either in series or in parallel. The grey rectangles indicate the last two moves in assembling
this graph. The reader may wish to check that the three subgraphs are series parallel graphs.
D. Channel graphs also have a distinguished source and target vertex. The vertices are
partitioned into subsets and this set of subsets is ordered. Here each subset is grouped
vertically. The first and last of these subsets each consist of a single vertex. Each edge
connects vertices from adjacent subsets. While each of these classes of graphs allows for
efficient computation of epidemic probabilities, none of them seem likely to be useful
models of real world social networks.
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