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FTO Genotype and 2-Year Change in Body Composition
and Fat Distribution in Response to Weight-Loss Diets

The POUNDS LOST Trial

Xiaomin Zhang,'? Qibin Qi,! Cuilin Zhang,®> Frank B. Hu,'"* Frank M. Sacks,"* and Lu Qi'*

Recent evidence suggests that the fat mass and obesity-associated
gene (FTO) genotype may interact with dietary intakes in relation
to adiposity. We tested the effect of FTO variant on weight loss in
response to 2-year diet interventions. F'70 rs1558902 was geno-
typed in 742 obese adults who were randomly assigned to one of
four diets differing in the proportions of fat, protein, and carbo-
hydrate. Body composition and fat distribution were measured by
dual-energy x-ray absorptiometry and computed tomography. We
found significant modification effects for intervention varying in
dietary protein on 2-year changes in fat-free mass, whole body
total percentage of fat mass, total adipose tissue mass, visceral
adipose tissue mass, and superficial adipose tissue mass (for all
interactions, P < 0.05). Carriers of the risk allele had a greater
reduction in weight, body composition, and fat distribution in
response to a high-protein diet, whereas an opposite genetic ef-
fect was observed on changes in fat distribution in response to
a low-protein diet. Likewise, significant interaction patterns also
were observed at 6 months. Our data suggest that a high-protein
diet may be beneficial for weight loss and improvement of body
composition and fat distribution in individuals with the risk allele
of the FTO variant rs1558902. Diabetes 61:3005-3011, 2012

he prevalence of overweight and obesity has in-

creased substantially in the U.S. and worldwide,

and the health burden of obesity-related com-

plications has grown accordingly (1-3). Obesity
is primarily determined by both genetic and lifestyle fac-
tors, including diet, as well as their interactions (4). In the
past few years, genome-wide association studies (GWASSs)
have identified a group of genetic loci associated with BMI
and obesity risk (5-7). Among them, the fat mass and
obesity-associated gene (FT0O) locus shows the strongest
effect (5,8). Accumulating evidence has suggested that this
locus is involved in the hypothalamic regulation of appe-
tite and dietary energy intake (9,10).
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Recently, several studies have examined the effect of
the FTO-diet interaction on body weight, but the results
are not entirely consistent. Several cross-sectional studies
showed that dietary factors such as low fat intake might
modify the genetic effect of FTO on BMI or fat distribution
(11-13). However, the gene by diet interaction was not
univocally observed in randomized intervention trials
(13-17), although one study found that a Mediterranean
diet intervention modified the association between the
FTO variant and weight changes in a population with high
cardiovascular risk (18). These intervention trials, how-
ever, largely are limited by relatively small sample size or
the short term of follow-up. In addition, animal studies
have suggested that F'T0O might differentially affect various
body compositions and fat distribution at different depots
(19-21). Few studies have evaluated systematically the
effect of the FTO variant on these measurements.

The POUNDS LOST Trial thus far is the largest 2-year
randomized intervention trial that tested the effect of four
diets varying in proportions of fat, protein, and carbohy-
drate on weight loss in overweight or obese subjects (22).
By use of the data from this trial, we evaluated whether
various weight-loss diets might modify the effect of the
FTO variant on weight loss and long-term changes in body
composition and fat distribution.

RESEARCH DESIGN AND METHODS

Study population. The POUNDS LOST Trial was conducted from October
2004 through December 2007 at two sites as follows: Harvard School of Public
Health and Brigham & Women’s Hospital in Boston, Massachusetts; and the
Pennington Biomedical Research Center of Louisiana State University System,
Baton Rouge, Louisiana. The design and sample collection have been de-
scribed previously in detail (22). In brief, the study population was composed
of 811 overweight or obese (BMI ranged from 25 to 40 kg/m?) participants
aged 30-70 years. Major criteria for exclusion were the presence of diabetes or
unstable cardiovascular disease, the use of medications that affect body
weight, and insufficient motivation as assessed by interview and question-
naire. Among the 742 participants who were genotyped successfully, 61% were
women, 80% were white, 15% were black, 3% were Hispanic, and 2% were
Asian or other ethnic groups by self-report. The participants were assigned
randomly to one of four diets constituting a two-by-two factorial design; the
target percentages of energy derived from fat, protein, and carbohydrate in the
four diets were 20, 15, and 65%; 20, 25, and 55%; 40, 15, and 45%; and 40, 25,
and 35%. After 2 years, 645 participants (80% of total population) completed
the trial. The study was approved by the human subjects committee at each
institution and by a data and safety monitoring board appointed by the Na-
tional Heart, Lung, and Blood Institute. All participants provided written in-
formed consent.

Measurements. In the morning before breakfast, body weight and waist
circumference (WC) were measured on 2 days at baseline; 6, 12, and 18 months;
and 2 years. BMI was calculated as weight by height squared (kg/m®). A dual-
energy X-ray absorptiometry (DEXA) scan was performed on 50% of a random
sample from the total study participants (n = 424), including 242 (57.1%)
women, using a Hologic QDR 4500A (Waltham, MA) (23). Total fat mass (kg),
total fat-free mass (FFM; kg), whole body total percentage of fat mass (FM%)
and percentage of trunk fat were obtained once at baseline, 6 months, and 2
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years. Computed tomography (CT) was used in 50% of a random sample from
those participants who had DEXA scans, resulting in a sample of 25% of the
total participants (n = 195), including 113 (58.2%) women. Total adipose tissue
(TAT) mass, visceral adipose tissue (VAT) mass, deep subcutaneous adipose
tissue (DSAT) mass, and superficial adipose tissue (SAT) mass within the
abdomen were measured by standard methods (24), once at baseline, 6
months, and 2 years. Because of radiation exposure, premenopausal women
would not subject themselves to CT scans. A series of eight single-slice images
were obtained every 10 cm from 2 below and 5 above the fourth and fifth
lumbar vertebrae interspaces. These contiguous cross-sectional images were
analyzed, and then the total volume was calculated from the individual slices.
In this analysis, we only included data at baseline, 6 months, and 2 years with
all the outcomes because the DEXA and CT scans were only performed at
these three time points.

Genotyping. DNA was extracted from the buffy coat fraction of centrifuged
blood using the QIAmp Blood Kit (Qiagen, Chatsworth, CA). Single nucleotide
polymorphism (SNP) rs15568902 was selected because it had emerged as the top
variant of FTO locus for BMI and WC in recent obesity-related GWAS (25,26).
The SNP was genotyped successfully in 742 of 811 total participants and 603 of
645 participants who completed the trial using the OpenArray SNP Genotyping
System (BioTrove, Woburn, MA). Of the 424 participants who received DEXA
scans, 391 were genotyped at baseline, and 224 participants who completed the
trial were genotyped. Of the 195 participants who received CT scans, 175 were
genotyped at baseline and 105 participants who completed the trial were geno-
typed. The genotype success rate was 99% in available DNA samples. Replicated
quality control samples (10%) were included in every genotyping plate with greater
than 99% concordance (27). The allele frequency in two major ethnic groups
(white and black) was compatible with Hardy-Weinberg equilibrium (P > 0.05).
Statistical analysis. The primary outcomes were changes in body weight and
WC. Secondary outcomes were changes in body composition including total fat
mass, FFM, FM% and percentage of trunk fat, and fat distribution (TAT, VAT,
SAT, and DSAT). Data were pooled from the diets for the two factorial com-
parisons: low protein versus high protein and low fat versus high fat (22).
Because the majority of the study population were white (80%), we also an-
alyzed the main effects and interactions among white participants separately.
The Hardy-Weinberg equilibrium and comparison of categorical variables at
baseline were assessed with x> test. Differences in continuous variables at
baseline were tested using ANCOVA, with adjustment for age, sex, and eth-
nicity. The main effects of genotype and diet intervention on outcome changes

at 6 months and 2 years were analyzed using general linear regression models,
with adjustment for covariates including age, sex, ethnicity, carbohydrate, the
baseline value for the respective outcome, and baseline BMI. We excluded
individuals with missing measures at each time point in the analysis. More-
over, to analyze the potential interactions between genotype and diet in-
tervention, an interaction product term of genotype-diet was included in the
models. In a secondary analysis, we used linear mixed models, with time as
arepeated measurement factor, to test genetic associations with the trajectory of
changes in outcomes in the participants who provided measurements at baseline,
6 months, and 2 years in each of four diet groups over the 2-year intervention by
including genotype-time interaction terms. Because an additive genetic effect was
reported in the original large-scale GWAS in which the SNP was identified (25,26),
additive models were analyzed for genotype. All reported P values were two-sided
and a P value of 0.05 was considered statistically significant. All data were ana-
lyzed with SAS version 9.1 (SAS Institute, Inc., Cary, NC).

RESULTS

Characteristics of study population. Baseline charac-
teristics of participants according to the FTO rs1558902
genotype are presented in Table 1. The minor allele fre-
quency (MAF; A allele) was 0.402 in the total population.
The genotype frequencies were significantly different
among the sexes and ethnicities. After adjustment for age,
sex, and ethnicity, all variables such as weight, BMI, WC,
body composition, and fat distribution had no association
with genotype at baseline. Baseline characteristics were
similar among participants in the four diet groups (Sup-
plementary Table 1). Likewise, no associations between
the FTO genotypes and these measures were observed in
the white participants (data not shown).

Effects of FTO rs1558902 genotype on weight and
waist: overall and two-factorial analysis. After adjust-
ment for age, sex, ethnicity, baseline BMI, and diet groups,
no main effects of the FT0 rs15658902 genotype on changes
in weight or WC were found in any participants at 6

TABLE 1
Baseline characteristics of the study participants according to F'70 rs15658902 genotype
Participants (n) TT TA AA P*
n 281 325 136
Age, years 742 49.8 £ 94 51.8 = 9.3 51.56 = 84 0.575
Sex 0.037
Female 453 188 (41.5) 188 (41.5) 77 (17.0)
Male 289 93 (32.2) 137 (47.4) 59 (20.4)
Race or ethnic group <0.0001
White 594 179 (30.1) 285 (48.0) 130 (21.9)
Black 112 84 (75.0) 25 (22.3) 3 (2.7)
Hispanic or other 36 18 (50.0) 15 (41.7) 3 (8.3)
Height, m 742 1.68 £ 0.08 1.69 = 0.09 1.69 = 0.08 0.550
Weight, kg 742 934 = 14.9 92.7 = 16.3 94.7 = 15.1 0.887
BMI, kg/m* 742 32.9 £ 3.8 32.3 = 4.0 33.1 = 3.7 0.595
WC, cm 742 103.0 £ 12.6 103.6 * 13.7 105.1 * 12.3 0.522
Body composition 391 150 170 71
Total fat, kg 348 £ 7.7 348 =79 36.1 £ 8.1 0.197
FFM, kg 60.8 = 13.2 60.3 = 13.3 60.0 = 12.8 0.915
FM% 36.7 = 7.1 36.8 = 6.7 37.8 £ 6.9 0.159
Trunk fat% 37.7 = 6.1 37.8 = 6.1 38.8 = 6.1 0.208
Fat distribution
VAT/DSAT 175 57 83 35
VAT 5.7 = 2.6 55 *+ 2.6 54 =23 0.442
DSAT 58 £ 1.7 57+ 1.8 57+ 14 0.981
SAT/TAT 151 52 68 31
SAT 11.0 £ 2.7 11.1 £ 2.8 114 £ 25 0.693
TAT 16.7 = 4.1 16.6 = 4.3 16.8 = 3.3 0.474

Data are n (%) or mean * SD unless otherwise indicated. *P values were calculated by x* test for categorical variables and multivariate
ANCOVA for continuous variables after adjusting for age, sex, and ethnicity. Boldface P values indicate statistical significance.

3006 DIABETES, VOL. 61, NOVEMBER 2012

diabetes.diabetesjournals.org


http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db11-1799/-/DC1
http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db11-1799/-/DC1

X. ZHANG AND ASSOCIATES

months and 2 years (data not shown). We next examined
the genetic effects on changes in weight and WC following
a two-factorial design: low versus high fat and low versus
high protein. We found that the risk allele (A) was signif-
icantly associated with a 1.51-kg greater weight loss in the
high-protein group (P = 0.010), but not in the low-protein
group, by the end of intervention (2 years). The changes in
weight and WC were less significant at 6 months (Table 2).
In subgroups treated by different proportions of dietary
fat, we did not find significant genetic effects on changes in
weight and WC (all P > 0.05; Supplementary Table 2).
Similarly, in the white participants, we found the risk allele
was associated with a 1.38-kg greater weight loss in the
high-protein group at 2 years (P = 0.028), but not in other
subgroups (data not shown).

The FTO rs1558902 genotype and changes in body
composition by diet intervention. Consistent with the
observations of change in body weight, we found that the
rs15589002 risk allele (A) was associated with greater loss

TABLE 2

The effects of the FTO rs1558902 genotype on weight, body
composition, and fat distribution response to dietary protein
intervention

At 6 months At 24 months
B* SE P B* SE P

Low proteinf

Weight, kg —0.11 0.46 0.807 0.07 0.65 0.914
WC, cm 0.02 048 0971 -0.31 0.69 0.654
Body composition
Total fat, kg 0.29 0.47 0.544 0.73 0.84 0.381
FFM, kg 054 025 0.029 0.64 0.45 0.150
FM% —0.01 0.32 0.983 0.36 0.48 0.455
Trunk fat % 0.09 0.43 0.840 0.41 0.61 0.495
Fat distribution
TAT 0.53 0.47 0.260 2.11 0.65 0.001
VAT —0.01 0.22 0.949 0.35 0.29 0.223
DSAT 0.27 0.20 0.164 0.31 0.24 0.211
SAT 0.61 0.29 0.040 146 0.42 0.0004
High protein::
Weight, kg —0.33 043 0434 -1.51 0.58 0.010
WC, cm 0.04 0.46 0.933 -0.68 0.62 0.270
Body composition
Total fat, kg —0.80 0.43 0.061 -1.60 0.63 0.011
FFM, kg —0.49 0.23 0.031 —0.63 0.30 0.035
FM% —0.46 0.29 0.112 -1.13 0.41 0.006
Trunk fat % —-0.54 039 0.162 —1.42 0.54 0.009
Fat distribution
TAT —-0.72 0.32 0.024 —-1.31 0.55 0.017
VAT —0.43 0.13 0.001 -0.64 0.24 0.007
DSAT —-0.09 0.12 0425 -0.10 0.20 0.625
SAT —-0.24 0.19 0.215 -0.58 0.31 0.059

Boldface P values indicate statistical significance. *$3 represents change
in each trait for each A allele of the FTO genotype. Values calculated
from the regression models with each trait as the outcome, adjusting
for age, sex, ethnicity, carbohydrate, baseline values for respective
outcomes, and baseline BMI. fData included from 375, 329, and 301
participants for weight; 375, 328, and 278 participants for WC; 198,
149, and 99 participants for body composition; 80, 57, and 38 partic-
ipants for TAT and SAT; and 89, 66, and 49 participants for VAT and
DSAT in the low-protein group at baseline, 6 months, and 2 years,
respectively. $Data included 367, 336, and 302 participants for weight;
367, 334, and 283 participants for WC; 193, 161, and 125 participants
for body composition; 71, 56, and 46 participants for TAT and SAT; and
86, 71, and 56 participants for VAT and DSAT in the high-protein group
at baseline, 6 months, and 2 years, respectively.

diabetes.diabetesjournals.org

of total fat, FFM, FM%, and percentage of trunk fat at 2
years in the high-protein group, but not in the low-protein
group (Table 2). Tests for genotype-diet protein in-
teraction were significant on changes in FFM and FM%
(for interactions, P = 0.034 and 0.049, respectively) ad-
justed for age, sex, ethnicity, carbohydrate, baseline BMI,
and the baseline value of body composition (Fig. 1). At 6
months, we only observed gene by protein diet in-
teraction on changes in FFM (P = 0.008 for interaction;
Fig. 1). The risk allele carriers in the high-protein group
had greater loss of FFM than noncarriers, but those in the
low-protein group had less loss of FFM compared with
noncarriers (Table 2).

We did not find significant genetic effect and inter-
actions between the FTO variant and dietary fat intake on
changes in body composition in total participants (Sup-
plementary Table 2 and Supplementary Fig. 1). The results
in the white participants were similar (data not shown).
The FTO rs1558902 genotype and changes in fat
distribution by diet intervention. We further analyzed
body fat distribution measured by CT. At 2 years, we found
significant interactions between the F7T0 rs1558902 geno-
type and protein diet intervention on changes in TAT, VAT,
and SAT (for interactions, P = 0.001, 0.012, and 0.002, re-
spectively; Fig. 2). The risk allele (A) was associated with
greater loss of TAT and VAT in the high-protein group but
with less loss of TAT and SAT in the low-protein group
(Table 2). At 6 months, gene-protein interactions were
observed on changes in TAT and SAT (for interactions,
P =0.026 and 0.050, respectively; Fig. 2), and the risk allele
carriers in the high-protein group had greater loss of TAT
and VAT than noncarriers, but those in the low-protein
group had less loss of SAT than noncarriers (Table 2).

We did not find significant genetic effects and inter-
actions on changes in fat distribution in subgroups treated
by different dietary fat components (all P > 0.05; Supple-
mentary Table 2 and Supplementary Fig. 2).Similar results
were found in the white participants (data not shown).
The trajectory of changes in body composition and fat
distribution by F'TO rs1558902 in response to protein
diet. In a secondary analysis, we used linear mixed models
to assess the genotype by time effect over the 2-year trial
in those treated by the four dietary compositions. We ob-
served significant genotype-time interactions on changes
in total fat, FM%, and percentage of trunk fat in response
to the high-protein diet. When assigned to the high-protein
diet, participants who carried the AA genotype had greater
loss in total fat, FM%, and percentage of trunk fat than
those without this genotype. No genotype-time interaction
on changes in body composition was found in the low-
protein group (Fig. 3).

We also observed significant genotype-time interactions
on changes in fat distribution in response to the low- and
high-protein diets. Participants with the AA genotype had
greater decrease in fat distribution in response to the high-
protein diet compared with those without this genotype. In
contrast, participants with the AA genotype were associ-
ated with less loss in TAT and SAT in response to the low-
protein diet (Fig. 4).

We found genotype-time interactions on changes in total
fat, FM%, and percentage of trunk fat in response to the low-
fat diet (Supplementary Fig. 3), but no genotype-time in-
teractions on changes in fat distribution were found in
response to the low- or high-fat diets (Supplementary Fig. 4).
A similar trend was observed in the white population (data
not shown).
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FIG. 1. Interaction between the FTO rs1558902 genotype and dietary protein intervention on changes in total fat (4), FFM (B), FM% (C), and
percentage of trunk fat (D) at 6 months and 2 years. P values are adjusted for age, sex, ethnicity, carbohydrate, baseline values for respective
outcomes, and baseline BMI. Data included 52 and 60 (TT), 66 and 73 (TA), and 31 and 28 (AA) participants in the low-protein group and the high-
protein group at 6 months, respectively (total n = 310), and 34 and 44 (TT), 46 and 61 (TA), and 19 and 20 (AA) participants in the low-protein

group and the high-protein group at 2 years, respectively (total n = 224).

DISCUSSION

In the POUNDS LOST Trial, a 2-year, randomized weight-
loss intervention, we found that dietary protein intake
significantly modified the effect of an FTO variant on
changes in body composition and fat distribution. Carriers
of the risk allele (A allele) of the rs1558902 genotype had
a greater loss of weight and regional fat in response to
a high-protein diet compared with noncarriers, whereas an
opposite genetic effect was observed regarding changes in
fat distribution in response to a low-protein diet. Our data
indicate that the modification effects of dietary treatment
were more evident with prolonged intervention. We did
not observe significant modification of dietary fat intake
on the genotype effects.

The rs1558902 genotype was reported to show the
strongest association with obesity in the European (25,26)
and other ethnic populations (28), and it has strong linkage
disequilibrium with other obesity-associated FTO variants
such as the rs9939609 genotype. In this study, the MAF of
the polymorphism in all participants was similar to those
in the HapMap CEU population (0.45). At baseline, no
significant difference was observed in anthropometrics
and metabolic estimates, body composition, or fat distri-
bution across genotypes. The lack of association with
baseline BMI is probably largely due to the fact that
the participants were all overweight or obese, so that the
groups had relatively smaller variances in BMI than the
general population.

Several cross-sectional studies showed that diets might
modify the effect of the F'TO variant on obesity, but the data
from randomized diet intervention trials are conflicting

3008 DIABETES, VOL. 61, NOVEMBER 2012

and limited by small sample size or short term of follow-
up (Supplementary Table 3). Two lifestyle intervention
studies with follow-up periods of 9 and 12 months did
not find significant influence of FTO polymorphisms
(rs8050136 and rs9939609) on changes in body weight or
fat distribution related to diet among 200 overweight and
obese individuals treated by diets with reduced fat and
increased fiber or reduced fat and sugar (13,14). In another
10-week, hypo-energetic diet intervention with either low
fat or high fat content, the FTO variant had an effect on
only changes in resting energy expenditure, insulin re-
lease, and sensitivity, not on weight loss (15). Similarly, in
the Finnish Diabetes Prevention Study, the FTO variant
did not modify weight change by individualized diet in-
tervention with reduced fat and increased fiber during the
4-year follow-up of 255 individuals with impaired glucose
tolerance (16). In our study, when macronutrient compo-
nents of diets were not considered, we found no main
effects of the F'TO variant on changes in weight and body
composition during the intervention.

Grau et al. (15,29) reported that dietary fat/carbohydrate
content interacted with some genetic variants including
the FTO variant on weight reduction or change in obesity-
related phenotypes. In our study, we also found significant
gene-diet interactions on changes in body composition and
fat distribution. However, our data indicate that it is the
dietary protein component, rather than dietary fat, that
might drive the observed interactions. In previous studies,
high-protein intervention has been found to result in
a greater weight loss and abdominal fat mass (30-32). Our
results suggest that individuals with a certain genetic

diabetes.diabetesjournals.org
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FIG. 2. Interaction between the FTO rs1558902 genotype and dietary protein intervention on changes in TAT (A4), VAT (B), DSAT (C), and SAT
(D) at 6 months and 2 years. P values are adjusted for age, sex, ethnicity, carbohydrate, baseline values for respective outcomes, and baseline BMI.
Data included 17, 18, 18, and 17 (TT); 30, 35, 35, and 30 (TA); and 10, 13, 13, and 10 (AA) participants in the low-protein group and 18, 22, 22, and
18 (TT); 26, 35, 35, and 26 (TA); and 12, 14, 14, and 12 (AA) in the high-protein group for TAT, VAT, DSAT, and SAT at 6 months (total n = 137);
and 12, 15, 15, and 12 (TT); 18, 25, 25, and 18 (TA); and 8, 9, 9, and 8 (AA) participants in the low-protein group and 15, 17, 17, and 15 (TT); 23, 30,
30, and 23 (TA); and 8, 9, 9, and 8 (AA) in the high-protein group for TAT, VAT, DSAT, and SAT at 2 years (total n = 105).

background may benefit more in weight loss by following
a high-protein diet. The mechanism of how protein intake
interacts with F'TO genotype is unclear.

Our data indicate that the genetic effects on certain fat
compositions or depots may be more evident than the
effects on overall adiposity. Functional studies have shown
that the loss or overexpression of F70 in mice led to dif-
ferent changes in fat distribution at different dissected sites
(19-21). FTO mRNA expression was fat depot—specific and
was found to differ significantly in subcutaneous fat and in
visceral fat (33-35). Epidemiological studies also have
shown that FTO variants are significantly associated with
distribution of fat depots (13,36,37). Taken together, these
data suggest that genetic effects of F7T0O on the change of fat
mass at various sites may be different, and changes in
anthropometrics may not adequately reflect the effects of
an FTO variant.

The genetic effect in our study seemed to be more ev-
ident at 2 years than that at 6 months. The results were in
line with a recent study by Razquin et al. (18) in which it
was found that FTO risk allele carriers had the highest
weight reduction after 3 years of intervention with
a Mediterranean diet compared with several short-term
diet interventions (less than 1 year) in which no influence
of an FTO variant on weight loss or change in fat distri-
bution was found (13-15,17). Of note, between 6 months
and 2 years of intervention in our trial, the participants
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regained weight. Therefore, it seems that the genetic
variant might affect both the reduction and regain of
the adiposity measures. These data suggest that the
modification effects of diet treatment on an F70 geno-
type effect are more likely to be identified in long-term
interventions.

Several limitations need to be considered when inter-
preting our findings. Even though our study is thus far
the largest and longest diet intervention weight-loss trial, the
relatively small sample size of the subgroups may limit the
power to detect very moderate genetic effects or inter-
actions. We did not adjust for multiple testing according to
the recommendation by Rothman (38) and Lai et al. (39)
because outcomes and the repeated measurements at
6 months and 2 years were highly correlated in our study.
Overadjustment for multiple comparisons may increase
the type II error and reduce power to detect significant
differences. In addition, the majority of the total partic-
ipants were white, and further studies are needed to de-
termine whether our findings are generalizable to other
ethnic groups. Even though the randomized clinical trial is
thought to be the best model to test gene-environment
interactions, we acknowledge that replication in diverse
populations is needed to verify our findings.

In summary, we found that dietary protein intake
might modify the FTO variant’s effect on changes in
body composition and fat distribution. A high-protein
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FTO-DIET INTERACTION ON WEIGHT LOSS
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FIG. 3. Changes in total fat (A), FFM (B), FM% (C), and percentage of trunk fat (D) in the low-protein and the high-protein diet groups according to
the FTO rs1558902 genotype from baseline to 6 months and 2 years. P values are adjusted for age, sex, ethnicity, carbohydrate, baseline values for
respective outcomes, and baseline BMI. Data included 198, 149, and 99 in the low-protein group and 193, 161, and 125 in the high-protein group for body
composition at baseline, 6 months and 2 years, respectively. (A high-quality color representation of this figure is available in the online issue.)
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