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Telomere length (TL) has been implicated in the pathogenesis of age-
related disorders. However, there are no prospective studies directly
investigating the role of TL and relevant genes in diabetes de-
velopment. In the multiethnic Women’s Health Initiative, we identi-
fied 1,675 incident diabetes case participants in 6 years of follow-up
and 2,382 control participants matched by age, ethnicity, clinical
center, time of blood draw, and follow-up duration. Leukocyte TL
at baseline was measured using quantitative PCR, and Mendelian
randomization analysis was conducted to test whether TL is causally
associated with diabetes risk. After adjustment for matching and
known diabetes risk factors, odds ratios per 1-kilobase increment
were 1.00 (95% CI 0.90–1.11) in whites, 0.95 (0.85–1.06) in blacks, 0.96
(0.79–1.17) in Hispanics, and 0.88 (0.70–1.10) in Asians. Of the 80
single nucleotide polymorphisms (SNPs) in nine genes involved in
telomere regulation, 14 SNPs were predictive of TL, but none were
significantly associated with diabetes risk. Using ethnicity-specific
SNPs as randomization instruments, we observed no statistically sig-
nificant association between TL and diabetes risk (P = 0.52). Although
leukocyte TL was weakly associated with diabetes risk, this associa-
tion was not independent of known risk factors. These prospective
findings indicate limited clinical utility of TL in diabetes risk stratifica-
tion among postmenopausal women.Diabetes 61:2998–3004, 2012

C
apping both ends of a chromosome, telomeres are
DNA-protein complexes fundamental to the main-
tenance of genome integrity and stability (1,2).
Because the gradual loss of telomeric DNA in

dividing somatic cells contributes to senescence, apoptosis,
and neoplastic transformation (3), telomere length (TL)
may serve as an important biomarker for cell aging (4).

Individual variation in TL is large with strong correlations
across different tissues, indicating that both TL at birth and
the rate of TL shortening may be genetically determined
(5,6). Emerging data indicate that telomere shortening may
contribute to the pathogenesis of several age-dependent
complex disorders. In several cross-sectional studies, vari-
ous measures of TL have been linked to diabetes risk (7–9)
and insulin resistance (7,10–13). However, there are as yet
no prospective studies directly examining the predictive
role of TL and relevant candidate genes in the devel-
opment of clinical diabetes. Thus, we conducted a case-
control study of postmenopausal women nested in the
multiethnic Women’s Health Initiative Observational
Study Cohort (WHI-OS). We also evaluated whether single
nucleotide polymorphisms (SNPs) in nine candidate genes
coding for telomere binding proteins and telomerase may
explain the individual variability in TL and clinical diabetes
risk. To provide further evidence minimizing residual con-
founding and reverse causation that could explain the asso-
ciation between TL and diabetes risk, we used a Mendelian
randomization analysis using TL-related polymorphisms as
instruments (14).

RESEARCH DESIGN AND METHODS

Study participants. Details regarding our study design have been described
elsewhere (15–17). In brief, of the 93,676 postmenopausal women enrolled in the
WHI-OS (18), 82,069 had no prior history of cardiovascular disease and/or di-
abetes at baseline. During a follow-up of 6 years, 1,675 incident diabetes case
participants were identified among 82,069 WHI-OS participants without apparent
cardiovascular disease and/or diabetes at baseline (15). A total of 1,675 incident
diabetes case participants were individually matched with 2,382 control partic-
ipants on age (62.5 years), ethnicity, clinical center, time of blood draw (60.10 h),
and length of follow-up. This study included whites (n = 2,035), blacks (n = 1,219),
Hispanics (n = 493), and Asians/Pacific Islanders (n = 308). All study participants
provided informed consent prior to study enrollment in the Women’s Health
Initiative. The Institutional Review Board at UCLA approved the current study.
Assays for leukocyte TL. We adapted a quantitative PCR method originally
proposed by O’Callaghan et al. (19) using an Applied Biosystems high-
throughput 7900HT PCR System (Life Technologies Corporation, Carlsbad,
CA). This method has the advantage of measuring TL in kilobases (kb) by in-
corporating standard oligonucleotides of known lengths. In short, 10 ng of buffy
coat–derived genomic DNA was dried in a 384-well plate and then resuspended
in 10 mL of either the telomere (TEL) or single-copy-gene (36B4) PCR reaction
mixture. The TEL reaction mixture consisted of 13 Faststart Universal SYBR
Green Master Mix (Roche Applied Science, Indianapolis, IN), 200 nmol/L telomere
forward primer (CGGTTTGTTTGGGTTTGGGTTTGGGTTTGGGTTTGGGTT),
and 200 nmol/L telomere reverse primer (GGCTTGCCTTACCCTTACCCT-
TACCCTTACCCTTACCCT). The 36B4 reaction consisted of 13 Roche Faststart
Universal SYBR Green Master Mix, 200 nM 36B4U primer (CAGCAAGTGG-
GAAGGTGTAATCC), and 200 nM 36B4D primer (CCCATTCTATCAT-
CAACGGGTACAA). Both reactions proceeded for 10 min at 95°C, followed
by 40 cycles at 95°C for 15 s and at 56°C for 1 min. The standard curve of TEL
contained 30 pg of the TTAGGG repeat 84-oligomer oligonucleotide at serial
dilutions of 1021 to 1026. The number of repeats in each standard was calculated
as follows: 30 pg 84-oligomer TEL standard = (303 10212 g)O (26,667.2[MW]/6.023
1023[Avogadro’s number]) 3 84O 1,000 = 5.69 3 107 kb of telomere sequence in the 13
telomere standard. The standard curve of 36B4 contained 100 pg of the 36B4
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75-oligomer oligonucleotide at a serial dilution of 1021 to 1026. The number
of repeats in each standard was calculated as follows: 100 pg 36B4 75-oligomer
standard = (100 3 10212 g) O (23,268.1[MW]/6.02 3 1023[Avogadro’s number]) O 2 =
1.29 3 109 diploid genome copies in the 13 (100 pg) 36B4 standard. Carrier
RNA (Qiagen, Inc., Valencia, CA) was added to each standard to maintain a
constant 10 ng of total DNA per reaction. Average TL per chromosome was
calculated using the following formula: (TL O copies of diploid genome) O 46.
All samples for TEL and 36B4 reactions, as well as standard curves, were
performed in duplicate on the same plates. As part of routine quality control,
10% of the samples were blind duplicate samples. The overall intraplate co-
efficient of variation was 0.8%, and the interplate coefficients of variation of
the telomere and 36B4 assays were 5.7 and 3.4%, respectively.
SNP genotyping. We identified genes coding for proteins involved in telomere
regulation, including those directly associated with telomere structure (TRF1,
TRF2, POT1, RAP1, TIN2, and TPP1) and those involved in TL maintenance
(TERT, TERC, and TEP1). As described in details previously (20,21), we chose
haplotype-tagging SNPs (tSNPs) using the National Center for Biotechnology
Information database SNP supplemented by the HapMap database (22) to cap-
ture the majority of common variation in the genetic region covering 30 kb
upstream and 30 kb downstream of each telomere-related gene. The initial set of
SNPs was selected based on the following criteria: 1) functional priority (non-
synonymous SNPs . splice site SNPs . synonymous SNPs . 59 untranslated
region SNPs . 39 untranslated region SNPs . intronic SNPs); 2) minor allele
frequency $5% in at least one ethnic group; and 3) tSNPs evenly spaced across
the gene region (23). In total, we selected 82 SNPs in 9 gene regions for geno-
typing. Additionally, we included rs2487999 (OBFC1), which was associated
with leukocyte TL in a recent genome-wide association study of leukocyte TL
(24). For these 82 SNPs, genotyping was performed in all samples using TaqMan
SNP genotyping assays. Specific primers and probes were custom designed by
Applied Biosystems. All samples were genotyped using the 96.96 Dynamic Array on
the Biomark system (Fluidigm, San Francisco, CA) according to standard proce-
dures. Two SNPs, rs4092743 of TRF1 and rs11556639 of RAP1 (selected because
they were tSNPs with nonsynonymous variation), were not polymorphic in our
samples and were therefore excluded in the final analysis. The average un-
determined genotype rate was ,0.5%, and the concordance rate was .99% in the
duplicate samples.
Statistical analysis. TLs in our samples approximated a normal distribution.
We thus conducted analysis with the TL variable treated as either continuous or
categorical (quartiles). The distributions of diabetes risk factors were examined
by case-control status across race/ethnicity. Generalized linear models (GLMs)
were used to conduct tests for trend of continuous variables. Unconditional
logistic models were used to test for trend across quartiles of TL. Differences in
mean TL (kb) according to ethnic groups and case-control status were ex-
amined using GLMs. To account for the correlation within matched case-
control sets, we used mixed-effects regression modeling case-control clusters
as a random effect.

To examine the prospective association between TL and clinical diabetes
risk, conditional logistic regression was used to estimate the odds ratio (OR)
and 95% CI for clinical diabetes in each TL quartile using the lowest quartile
as the reference category. To test for log-linear trends, we modeled the
median TL within each quartile as a continuous variable. Finally, we esti-
mated the OR of developing diabetes risk per 1-kb increase in TL in each
race/ethnic group. Our base model used conditional logistic regression to
account for matching factors (age, ethnicity, clinical center, duration of
follow-up, and time of blood draw). In the full model, we further adjusted for
potential confounders, including BMI (modeled as a continuous covariate),
smoking (never, past, and current smokers), alcohol intake (never, past, and
current drinkers), physical activity (quintiles), and current postmenopausal
hormone use (yes or no).

To determine the associations between genetic variants and TLs, we cal-
culated the mean differences of leukocyte TL according to SNP genotypes by
fitting GLMs, treating TL as a dependent variable and SNPs as independent
variables. The additive inheritance model was used in the single SNP
analysis, resulting in the mean change in TL per each additional copy of the
minor allele. Conditional logistic regression models were used to estimate
the OR for diabetes risk associated with each additional copy of the minor
allele for each SNP. Multivariable models were adjusted for matching
factors (age, clinical center, time of blood draw, duration of follow-up, and
ethnicity) and other potential confounders, including BMI, physical activity,
current postmenopausal hormone use, alcohol consumption, and cigarette
smoking. To account for potential false positives due to multiple com-
parisons, we calculated the false discovery rate by incorporating all
P values from multiple tests performed for SNPs in the GLM analysis (25).
The PROC MULTTEST procedure in SAS 9.2 was used to obtain the mul-
tiple testing-adjusted P values.

To further evaluate whether the association between TL and risk of clinical
diabetes was causal, we conducted instrumental variable analyses using genetic
instruments (i.e., Mendelian randomization analysis) (14,26). As described
previously (14), SNPs had to satisfy three classical assumptions in order to be
considered for use as instrumental variables: 1) robustly associated with TL, 2)
independent of diabetes factors, and 3) affected diabetes only through their
effects on TL. Instrumental variables were selected separately for each racial/
ethnic group to account for potential allelic heterogeneity. In total, we selected
six instruments for whites (rs34368910, rs4888444, rs4975605, rs938886,
rs2228041, and rs12880583), four for blacks (rs872072, rs938886, rs1713458,
and rs4387287), seven for Hispanics (rs35276863, rs729421, rs11972248,
rs4635969, rs2853669, rs2736098, and rs2853676), and two for Asians
(rs11556640 and rs2297613). The predicted OR of diabetes per kb increase in
TL was estimated from the joint contributions of the ethnicity-specific instru-
mental variables. We subsequently pooled the ethnicity-specific OR via a ran-
dom-effects model. All other analyses were performed with SAS software,
version 9.2 (SAS Institute, Cary, NC).

TABLE 1
Baseline characteristics according to race/ethnicity and diabetes case-control status in 4,057 postmenopausal women

White Black Hispanic Asian

Cases Controls P value Cases Controls P value Cases Controls P value Cases Controls P value

n 1,012 1,023 400 819 162 331 101 207
Age (years)* 63.96 63.92 0.90 60.97 60.95 0.96 60.15 60.21 0.92 63.37 63.58 0.82
BMI (kg/m2)* 32.53 26.46 ,0.001 33.32 29.74 ,0.001 31.30 27.78 ,0.001 26.83 23.96 ,0.001
Waist (cm)* 99.50 82.83 ,0.001 97.28 87.81 ,0.001 93.81 83.80 ,0.001 84.64 75.84 ,0.001
Blood pressure*
Systolic 132.97 126.48 ,0.001 132.80 129.64 0.002 129.52 124.37 0.002 113.83 129.55 0.06
Diastolic 76.34 74.52 ,0.001 78.46 77.91 0.35 75.29 74.63 0.46 79.16 78.07 0.34

Smoking (ever)† 47.72 50.45 0.22 49.20 56.59 0.02 29.27 37.27 0.08 27.18 30.69 0.52
Alcohol (ever)† 86.71 89.72 0.04 80.15 84.22 0.08 74.52 79.20 0.25 62.38 59.90 0.68
Physical
activity*‡ 9.98 13.86 ,0.001 8.74 11.45 0.001 9.96 12.82 0.06 13.38 12.76 0.72

T2D family
history† 48.96 29.75 ,0.001 62.72 39.38 ,0.001 65.84 39.51 ,0.001 52.48 36.23 0.04

Hormone
therapy
(ever)† 51.78 62.95 ,0.001 35.34 47.07 ,0.001 43.21 55.59 0.01 65.00 66.67 0.77

Telomere
length (kb)* 3.87 3.90 0.62 4.11 4.25 0.11 4.29 4.49 0.18 3.88 4.04 0.37

*Mean. †Percentage. ‡Total METs per week (kcal/week/kg). Energy expenditure from recreational physical activity.
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RESULTS

Baseline characteristics according to diabetes case
status. The mean TL was 3.97 kb (SD = 1.37 kb) among
diabetic case participants and 4.12 kb (SD = 1.40 kb) among
control participants who remained free of the disease. As

expected, case participants generally had higher BMI, larger
waist circumference, higher systolic blood pressure, higher
percentage of current or former smokers, less physical ac-
tivity, higher proportion with a family history of diabetes,
and lower proportion with past use of hormone therapy

FIG. 1. TL (kb) by clinical diabetes status and race/ethnicity. The boxplots show the mean (+), median, and interquartile range. The vertical line
indicates the minimum and maximum value of TL in each group. (A high-quality color representation of this figure is available in the online issue.)

TABLE 2
Baseline characteristics according to leukocyte TL among 2,382 (control participants) postmenopausal women

TL (kb) Quartile 1 Quartile 2 Quartile 3 Quartile 4 P value for trend

n 591 590 589 591
Median 2.65 3.57 4.35 5.07
Range§ 2.21–2.91 3.36–3.78 4.17–4.58 5.18–6.34
Age (years)* 63.00 63.00 62.00 60.00 ,0.0001
Ethnicity†
White 47.55 48.64 42.69 32.66 ,0.0001
Black 33.50 28.64 34.69 41.29
Hispanic 9.98 13.05 14.63 17.60
Asian 8.97 9.66 7.99 8.46

BMI (kg/m2)* 26.74 26.23 26.58 26.54 0.14
Waist (cm)* 82.40 82.00 82.50 81.80 0.82
Blood pressure (mmHg)*
Systolic 126.00 126.00 125.00 127.00 0.73
Diastolic 75.00 75.00 76.00 76.50 0.20

Fasting insulin (mIU/mL)* 6.53 6.28 6.56 6.56 0.70
Fasting glucose (mmol/mL)* 5.11 5.06 5.11 5.06 0.93
HOMA-IR* 1.50 1.43 1.44 1.47 0.81
Smoking (ever)† 46.14 44.94 40.65 43.66 0.20
Alcohol (ever)† 83.76 85.01 82.36 83.79 0.82
Physical activity*,‡ 8.00 9.50 8.33 7.50 0.55
T2D family history† 33.45 32.26 34.47 39.42 0.05
Hormone therapy (ever)† 57.36 56.95 55.69 57.29 0.87

HOMA-IR, homeostasis model assessment of insulin resistance. *Median. †Percentage. ‡Total METs per week (kcal/week/kg). Energy ex-
penditure from recreational physical activity. §Interquartile range.
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(Table 1). Mean TL also varied across ethnic groups in both
case participants and control participants (Fig. 1). Within
each ethnic group, diabetes case participants appeared to
have consistently shorter baseline TL (30–200 base pairs [bp])
than control participants, but this difference was modest.
Black and Hispanic participants had relatively longer TLs
compared with whites and Asians, even after adjusting for age.
Baseline characteristics according to TL quartiles.
Table 2 shows the distribution of diabetes-related character-
istics by TL quartiles in controls. As expected, there were
significant TL differences by age in that older women had
shorter TLs than their younger counterparts (P , 0.0001
for linear trend). TLs also appeared to differ by ethnicity
but not by other traditional diabetes risk factors such as
BMI, waist circumference, fasting glucose, fasting insulin,
homeostasis model assessment of insulin resistance, al-
cohol, smoking, hormone therapy, or physical activity level.
Prospective association between TL and clinical
diabetes risk. In pooled analysis combining samples from
all ethnicities assuming a linear relation (Table 3), every 1-kb
increase in the TL was associated with a decreased risk of
clinical diabetes (OR 0.94 [95% CI 0.89–0.99]) after ad-
justing for matching variables (age, ethnicity, date of
blood collection, duration of follow-up, and clinical center).
The relation between TL and diabetes risk was attenuated in
multivariable analysis after further adjustment for known
diabetes risk factors. Moreover, there was no significant
relation between TL and diabetes in stratified analysis by

race/ethnicity. ORs for diabetes risk (95% CI) per 1-kb in-
crement in TL were 1.00 (0.90–1.11) in whites, 0.95 (0.85–1.06)
in blacks, 0.96 (0.79–1.17) in Hispanics, and 0.88 (0.70–1.10) in
Asians.
Associations between SNPs, TL, and risk of clinical
diabetes. Of the 80 SNPs genotyped, 29 SNPs were asso-
ciated with leukocyte TL levels in pooled samples combin-
ing all ethnic groups (Supplementary Table 1). For 16 of 29
SNPs, each additional copy of the minor allele was associ-
ated with decreased TL (the mean per-allele decrease
ranged from 0.07 to 0.33 kb; all P , 0.05). Eight SNPs
(rs2981084, rs2975852, rs6979, rs1865493, rs1760904,
rs1760897, rs1713458, and rs3772190) remained signifi-
cantly associated with decreased TL after accounting for
multiple comparisons. In contrast, the minor alleles of the
remaining 13 SNPs were associated with increased TL, with
the mean per-allele increase ranging from 0.07 to 2.04 kb (all
P , 0.05). Six SNPs (rs34368910, rs10244817, rs938886,
rs1288583, rs17111188, and rs4387287) remained significantly
associated with increased TL. The minor allele frequencies of
the SNPs that were associated with TLs also appeared to
vary by ethnicity. However, no significant associations were
observed between these 29 SNPs and the risk of developing
clinical diabetes, except rs4387287 on OBFC1 (OR 0.88
[95% CI 0.78–1.00]) (Supplementary Table 2).

Genomic risk score (GRS) based on SNPs identified was
directly associated with TL, indicating a strong instrument
(Fig. 2). Genetic instruments were selected independently

TABLE 3
Adjusted OR (95% CI) of diabetes risk according to leukocyte TL in 4,057 postmenopausal women

Quartile 1 Quartile 2 Quartile 3 Quartile 4
P value
for trend

Continuous
(per 1 kb)

All*
Median (range)§ 2.63 (2.21–2.91) 3.58 (3.36–3.78) 4.36 (4.17–4.58) 5.61 (5.18–6.34)
n (case/control) 469/591 422/590 395/589 382/591
Base 1 0.89 (0.73–1.07) 0.85 (0.70–1.03) 0.87 (0.71–1.07) 0.16 0.94 (0.89–0.99)
Base + matching† 1 0.89 (0.74–1.08) 0.85 (0.70–1.33) 0.88 (0.71–1.08) 0.17 0.94 (0.89–0.99)
Full model‡ 1 0.90 (0.71–1.13) 0.84 (0.67–1.07) 0.93 (0.72–1.19) 0.44 0.96 (0.90–1.02)

White
Median (range)§ 2.59 (2.20–2.82) 3.42 (3.26–3.62) 4.16 (3.98–4.34) 5.27 (4.86–6.02)
n (case/control) 275/253 246/253 229/253 258/253
Base 1 0.90 (0.68–1.19) 0.82 (0.63–1.07) 0.90 (0.68–1.19) 0.37 0.98 (0.91–1.06)
Base + matching† 1 0.89 (0.69–1.15) 0.82 (0.62–1.06) 0.90 (0.68–1.18) 0.35 0.98 (0.91–1.06)
Full model‡ 1 0.86 (0.60–1.22) 0.87 (0.61–1.26) 0.97 (0.66–1.42) 0.90 1.00 (0.90–1.11)

Black
Median (range)§ 2.62 (2.20–2.93) 3.70 (3.46–3.94) 4.56 (4.45–4.80) 5.77 (5.37–6.54)
n (case/control) 101/203 110/205 95/203 92/204
Base 1 1.07 (0.75–1.53) 0.92 (0.64–1.32) 0.90 (0.62–1.32) 0.44 0.92 (0.84–1.02)
Base + matching† 1 1.07 (0.75–1.52) 0.91 (0.63–1.31) 0.89 (0.61–1.31) 0.40 0.92 (0.84–1.01)
Full model‡ 1 1.12 (0.75–1.69) 0.92 (0.61–1.40) 0.96 (0.61–1.49) 0.60 0.95 (0.85–1.06)

Hispanic
Median (range)§ 2.91 (2.39–3.19) 3.87 (3.74–4.00) 4.68 (4.40–4.91) 6.27 (5.68–7.26)
n (case/control) 49/81 29/82 50/81 33/82
Base 1 0.57 (0.32–1.01) 0.97 (0.56–1.68) 0.60 (0.31–1.14) 0.35 0.87 (0.74–1.02)
Base + matching† 1 0.54 (0.30–0.97) 0.96 (0.55–1.66) 0.61 (0.32–1.18) 0.40 0.87 (0.74–1.32)
Full model‡ 1 0.56 (0.27–1.14) 1.06 (0.55–2.07) 0.85 (0.39–1.84) 0.94 0.96 (0.79–1.17)

Asian
Median (range)§ 2.51 (2.10–2.85) 3.48 (3.37–3.68) 4.35 (4.10–4.51) 5.61 (5.18–6.44)
n (case/control) 33/51 23/53 22/51 23/52
Base 1 0.63 (0.31–1.29) 0.64 (0.30–1.39) 0.57 (0.25–1.27) 0.19 0.89 (0.73–1.09)
Base + matching† 1 0.64 (0.29–1.33) 0.63 (0.29–1.36) 0.54 (0.24–1.23) 0.16 0.87 (0.71–1.29)
Full model‡ 1 0.53 (0.23–1.21) 0.65 (0.28–1.52) 0.53 (0.21–1.32) 0.23 0.88 (0.70–1.10)

*Further adjusted for ethnicity. †Adjusted for age, date of blood collection, and clinical center. ‡Adjusted for age, date of blood collection,
clinical center, BMI, physical activity, hormone therapy, alcohol consumption, and smoking. §Interquartile range.
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across each ethnic group. The pooled results from the
ethnicity-specific Mendelian randomization analysis did
not support a causal role of TL in the development of clin-
ical diabetes, using either multiple instruments in a joint
model (P = 0.82) or as a GRS (P = 0.52) (Table 4).

DISCUSSION

In this large multiethnic cohort of postmenopausal women
followed for an average of 6 years, leukocyte TL was mod-
estly associated with risk of clinical diabetes. However, the
modest association between TL and diabetes risk could be
explained by traditional diabetes risk factors. Mendelian
randomization analysis showed no significant association
between genetically elevated TL levels and risk of clinical
diabetes.

To date, six proteins, including telomeric repeat binding
factor 1 and 2 (TRF1 and TRF2), human TRF2-interacting
telomeric protein (hRap1), TRF1-interacting nuclear factor
2 (TIN2), TIN2- and POT1-organizing protein (TPP1), and
protection of telomeres 1 (POT1), have been identified,
forming the so-called shelterin complex, a constitutive

component of telomeres (27). Mutations in these telomere-
regulating proteins may disrupt telomere structure, leading to
chromosome instability (28). Previous studies have identified
the crucial role of TRF2 in protecting chromosomal ends in
that TRF1 appears to serve as a negative regulator of TL
(29,30). In addition, POT1 is known to bind specifically to
telomeric overhangs and regulates the access of telomerase
to the repeats that affect telomerase activity (31–34). Thus,
POT1 is thought to be the major regulator of TL (35,36). More
recently, TPP1, a newly identified telomeric protein, was
identified as a regulator of POT1 for telomeric targeting (36).
However, the exact mechanistic functions by which these
proteins interact in telomere homeostasis remain unknown,
though mutually reinforcing mechanisms seem likely to in-
volve both telomere-associated proteins and telomerase ac-
tivity (37). In a meta-analysis of genome-wide association
studies (24), the region containing OBFC1 (rs4387287) was
identified to show significant associations with leukocyte TL,
which was confirmed by a subsequent study that also iden-
tified TERC (rs3772190) to be significantly associated with
TL (38). Consistent with these previous reports, we observed
that each copy of the A allele (rs4387287 in OBFC1) was

FIG. 2. TL by GRS according to race/ethnicity. The boxplots show the mean (◇), median, and interquartile range. The vertical line indicates the
minimum and maximum value >1.5 times the upper quartile of TL in each group. Outliers (○) are displayed when the individual TL is >1.5 times
the interquartile range of the upper quartile value. GRS represents the unweighted sum of alleles from the selected SNPs. The selected SNPs for
each of the ethnic groups are as follows: 1) whites, rs34368910, rs4888444, rs4975605, rs938886, and rs12880583; 2) blacks, rs872072, rs938886,
rs1713458, and rs4387287; 3) Hispanics, rs35276863, rs729421, rs11972248, rs4635969, rs2853669, rs2736098, and rs2853676; and 4) Asians,
rs11556640 and rs2297613. (A high-quality color representation of this figure is available in the online issue.)
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associated with a TL increment of 0.08 kb. Further, we
found that each additional copy of the T allele for
rs3772190 (TERC) was associated with a 0.09-kb de-
crease in TL. Despite ethnic differences, several common
genetic variants in the telomere and telomerase regulating
proteins were robustly associated with TL. However, these
SNPs were not associated with risk of clinical diabetes in
these women.

Findings from previous studies directly relating TL to
diabetes risk have been mixed and limited by their cross-
sectional design. In a study of 74 patients with type 2
diabetes, Jeanclos et al. (39) found that age-adjusted
leukocyte TLs were not significantly different from age-
matched nondiabetic controls (P = 0.1). In contrast, five
other cross-sectional studies (7–9,40,41) reported that
diabetes case participants had shorter TLs than control
participants. Notably, telomere shortening is accelerated in
human premature-aging syndromes (i.e., Werner syndrome,
ataxia telangiectasia, and dyskeratosiscongenita) (37) and
positively associated with mitochondrial DNA content
(41). It is estimated that humans on average lose 20–60 bp
of telomere DNA per year (5,42,43). However, such esti-
mates for rates of shortening are not precise as they were
not done prospectively but rather in cross-sectional stud-
ies where TLs were simply compared in different age-
groups. For example, among 383 adults (291 men and 92
women) from 173 families comprising 258 sibling pairs,
Vasa-Nicotera et al. (4) found a mean TL shortening of
29.9 6 5.6 bp per year in men and 16.8 6 9.9 bp per year in
women (mean age, 65.86 6.4 years; range, 47–82 years). In
this prospective cohort, we observed an average TL de-
crease of 24.6 6 4.25 bp per year. However, there were no
statistically significant differences in TL between case
participants and control participants after adjustment of
traditional risk factors. One possible limitation may be that
the follow-up time was not long enough to detect a poten-
tial inverse relation between TL and diabetes risk. As such,
we cannot completely exclude the possibility that the mag-
nitude of effects on diabetes risk due to TL, if any, may be
greater if more case participants were identified during
a longer period of follow-up.

Nevertheless, to further examine whether any modest
TL-diabetes association previously observed was due to re-
sidual confounding and/or reverse causation, we used genetic
variants that were associated with changes in TL and

tested whether the effect of TL on diabetes risk is causal.
Previous simulation work has shown that combining
multiple genetic variants into a single instrument can im-
prove the strength and power of the instrument (44). Thus,
we assessed both allele counts (GRS) and multiple varia-
bles as separate covariates in the same regression model
as instruments in the Mendelian randomization analysis.
However, our instrumental analysis did not detect any
significant association between genetically determined TLs
and diabetes risk.

In summary, although baseline leukocyte TL was weakly
associated with diabetes risk in this large multiethnic co-
hort of postmenopausal women followed for 6 years, this
association was not independent of known risk factors.
These prospective data do not support the utility of TL in
risk stratification for clinical diabetes among postmeno-
pausal women.
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