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Several popular methods for phylogenetic inference (or hierarchi-
cal clustering) are based on a matrix of pairwise distances between
taxa (or any kind of objects): The objective is to construct a tree
with branch lengths so that the distances between the leaves in
that tree are as close as possible to the input distances. If we hold
the structure (topology) of the tree fixed, in some relevant cases
(e.g., ordinary least squares) the optimal values for the branch
lengths can be expressed using simple combinatorial formulae.
Here we define a general form for these formulae and show that
they all have two desirable properties: First, the common tree re-
construction approaches (least squares, minimum evolution), when
used in combination with these formulae, are guaranteed to infer
the correct tree when given enough data (consistency); second, the
branch lengths of all the simple (nearest neighbor interchange) re-
arrangements of a tree can be calculated, optimally, in quadratic
time in the size of the tree, thus allowing the efficient application
of hill climbing heuristics. The study presented here is a continua-
tion of that by Mihaescu and Pachter on branch length estimation
[Mihaescu R, Pachter L (2008) Proc Natl Acad Sci USA 105:13206–
13211]. The focus here is on the inference of the tree itself and
on providing a basis for novel algorithms to reconstruct trees from
distances.

phylogenetics ∣ distance-based methods ∣ statistical consistency ∣
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Atask with several relevant applications is the use of a matrix
of distances to construct a tree whose leaves’ relative posi-

tions somehow reflect the given distances. This is useful both
in evolutionary biology, where the tree is intended to represent
the evolution of a set of species, populations or genes, and in clus-
ter analysis, where the tree shows the similarities in a collection
of objects. In evolutionary biology, the distances are typically
estimated from molecular sequences using probabilistic models
of sequence evolution (1, 2). The resulting distances can be
expected to be approximately additive; that is, there exists a
(phylogenetic) tree with branch lengths, so that the lengths of
the paths between its leaves (sequences) are approximately equal
to the input distances. Finding this tree is the goal of several pop-
ular distance-based tree reconstruction methods.

For phylogenetic reconstruction—which this paper concen-
trates on—the main advantage of distance-based methods is their
speed of execution, which is orders of magnitude faster than
that of other (potentially more accurate) approaches. As a con-
sequence, distance methods are used whenever computational
efficiency is of critical importance: for the reconstruction of very
large trees, or—as in the case of bootstrapping—large collections
of trees or even to construct initial phylogenies for search heur-
istics based on more sophisticated approaches. In fact, a general
trend in bioinformatics and computational biology is the growing
demand for methods that can cope with massive datasets of DNA
sequences. Distance-based methods are a possible answer to this
demand, not only for phylogenetic inference but also for related
tasks such as sequence identification (e.g., in metagenomics) and
gene orthology inference (e.g., in functional genomics). A proof
of this demand is the continuing success of neighbor-joining
(NJ) (3), which to date remains the most cited algorithm in
phylogenetics.

The advantage in speed of distance methods is counterba-
lanced by a lower accuracy than methods that take full sequence
information into account (4), such as maximum likelihood (ML),
although it has recently been shown that under a certain measure
of statistical efficiency, some distance methods are essentially as
good as ML (5). A limitation of distance-based methods lies in
the fact that if the distances are estimated from pairwise sequence
comparisons only, then it may be impossible to infer some para-
meters common to the evolution of all the sequences (6). How-
ever, it is still possible to estimate these parameters from limited
sequence samples by ML and then use distance methods for the
whole sample.

If we consider the estimation of distances as a separate task,
virtually all distance methods are based on two components, cor-
responding to the two main unknowns in a phylogenetic tree:
branch lengths and topology. First, (i) we must define a method
to assign lengths to the branches of any tree of fixed topology, so
that the distances between leaves are as close as possible to the
input distances. Second, (ii) we must choose a criterion to discri-
minate among the trees with different topologies obtained with
the step above. Distance-based algorithms then look for the tree
that optimizes this criterion, typically using heuristics such as
successive agglomeration [e.g., NJ (3)] and hill climbing [e.g.,
FastME (7)].

For component i, a weighted least squares (WLS) approach is
usually adopted: The lengths of the branches in a tree T are set to
the values that minimize

∑
i;j

wijðδij − dT
ij Þ2; [1]

where the δij are the distance estimates, the dT
ij are the distances

between the leaves of T, determined by the lengths assigned to its
branches, and the weights wij > 0 are intended to account for the
variances of the δij: The higher the variance, the lower the weight
and the importance given to the corresponding residual δij − dT

ij .
Ideally, wij should be proportional to Var½δij�−1 (see Relationship
with WLS and the M&P Formulae below), but in practice setting
the weights is a delicate art, because the variances are not known;
for example, one trap to avoid is to assume zero variance (and
therefore an infinite weight) for the distance between two iden-
tical sequences (8). An even more ideal approach would be to
also consider the covariances between distances for different
pairs of taxa, which leads a generalized least squares (GLS) op-
timization criterion (9). The optimal branch lengths with respect
to 1, and even GLS, can be expressed succinctly in matrix form.
However, despite some progress (10), the matrix calculations
involved are computationally expensive and remain a limiting
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factor for the efficiency of the algorithms that use them [such as
those implemented in PAUP* (11)].

As for component ii, distance methods fall into two broad
categories: (pure) least squares (LS) methods (12, 13) use again
a least squares criterion such as 1 to score trees; on the other
hand, minimum evolution (ME) methods (14, 15) aim to find
the tree with minimum total length [which can be defined in
a number of different ways (8, 14, 15); see Statistical Consistency
for details], among those whose branch lengths are fitted with
component i. The intuition underlying ME is the same as that of
maximum parsimony for character-based tree reconstruction:
simpler (i.e., shorter) explanations are preferable to more com-
plicated ones.

An important realization has been that in some relevant cases
the branch lengths that minimize 1 can be expressed using simple
“combinatorial” formulae, which allow to avoid slow matrix
calculations. The best-known cases are that with constant weights
wij (ordinary least squares, OLS) (16, 17) and that with weights
proportional to 2−tij , where tij is the number of branches in the
path between i and j in T (the balanced case) (18). These formu-
lae allow to efficiently calculate branch lengths and to efficiently
update the tree length while performing a local search for the
optimal tree with respect to ME. For example, the balanced
branch length formulae (19) can be used to calculate in Oðn2Þ
time, for any tree with n leaves, not only all its branch lengths
but also the total lengths of all of its NNI (nearest neighbor inter-
change) (7) and SPR (subtree pruning and regrafting) rearrange-
ments (20, 21).

A key work on such combinatorial formulae for least squares
branch lengths has appeared recently (22). The authors show that
all the known formulae are particular cases of a more general
framework: Whenever the weights wij (or, equivalently, the as-
sumed variances w−1

ij ) have a particular “multiplicative” form
(see Relationship with WLS and the M&P Formulae), then the
optimal branch lengths with respect to 1 can be calculated using
simple formulae—such as those for OLS or the balanced case—
which here we refer to as the “M&P formulae” (from the authors
Mihaescu and Pachter or the word “multiplicative”). The multi-
plicative model is biologically and mathematically meaningful,
because it can be shown that the variances of the distance esti-
mates are approximately multiplicative for large distances (9,
22, 23).

In the following, we use the seminal work by Mihaescu and
Pachter (22) as a starting point. Whereas these authors focused
on the problem of branch length estimation, here we switch the
focus to tree reconstruction itself—namely, the statistical and
algorithmic consequences of the use of combinatorial branch
length formulae on tree reconstruction. Our results can be sum-
marized as follows:

1. We define a class of formulae for fitting branch lengths that
generalizes the M&P formulae and consequently also all
known combinatorial formulae.

2. We prove the statistical consistency of the main distance-based
tree reconstruction principles (LS and ME), when combined
with our formulae. In other words the optimal tree with re-
spect to any of these principles converges to the correct tree
as the input data become more and more abundant and the
estimated distances converge to their correct values. Particu-
larly in the case of ME, where it is problematic, this issue has
received much attention [e.g., (17, 21, 24–26)]. This addresses
the question by Mihaescu and Pachter (ref. 22, p. 13211) of
“what classes of semimultiplicative” (a minor generalization
of multiplicative) “variance matrices result in consistent tree
estimates,” by showing that all multiplicative variance matrices
have this property.

3. We investigate the computational efficiency of local search
heuristics in combination with our class of formulae. In parti-

cular, we describe an algorithm that calculates the branch
lengths determined by the adopted formulae not only for a
fixed tree T but also for all trees obtained by performing
one NNI on T. The entire calculation optimally requires
Oðn2Þ time. This algorithm can be used as the basic compo-
nent for local searches and can be combined with any classic
tree reconstruction principle.

Preliminaries: Branch Length Formulae
We employ the standard terminology used in the phylogenetics
literature (2, 4, 27) (phylogenetic tree, topology, branch lengths,
internal and external branches, etc.). For simplicity, we identify
the leaves of a phylogenetic tree with a set of taxa f1; 2;…; ng,
and we choose to consider only binary trees. We say that two
subsets of taxa A and B in a tree are separated by a branch e if
any path between an element of A and an element of B passes
through e. A and B are k-separated when they are separated
by exactly k distinct branches. A proper subset of taxa
A⊊f1; 2;…; ng is a clade if A and f1; 2;…; ng \ A are sepa-
rated by some branch e; in fact, e is unique and is called the
root branch of A; the endpoint of e to the side of A is called
the root node of A. A branch belongs to clade A if it lies in the
path between two elements of A.

We also adopt the following standard conventions for distance-
based methods: δ denotes the n × n input distance matrix and δij
its element expressing the distance between taxa i and j (in the
following, indices i and j are always assumed to be elements of the
set of taxa f1; 2;…; ng). The distances do not necessarily form a
metric, because only δij ¼ δji and δii ¼ 0 are assumed. Given a
tree T with branch lengths, dT denotes the distance matrix where
dT
ij coincides with the length of the path between i and j in T.

When δ ¼ dT for some T, we say that δ is additive (with respect
to T) (28).

In the rest of this section, we introduce a new class of formulae
that express the branch lengths of a generic topology T over
f1; 2;…; ng as a function of δ. This class is parameterized by
some quantities that we present using a probabilistic interpreta-
tion (see SI Appendix 1, for more details). Let T be a binary tree
topology. Assume that the rules for a random walk on T are de-
fined in the following way: If we enter an internal node from a
branch e, we can then exit this node from its two other adjacent
branches, f and g, with probabilities γef and γeg ¼ 1 − γef , respec-
tively. We require 0 < γef ; γeg < 1 (note the strict inequalities).
These parameters define a (nonzero) probability of reaching
any branch of T from any other branch of T.

This also defines a probability distribution over the leaves of
any clade A: For any i ∈ A, let pijA ¼ γe0e1 · γe1e2 · … · γek−1ek ,
where e0 is the root branch ofA and e1; e2;…; ek are the branches
on the path between the root ofA and i. (See Fig. S1) Clearly, the
probabilities fpijAji ∈ Ag form a distribution overA. We can then
define the average distance δAB between any two clades A and B
as the expected distance between two taxa chosen at random from
A and B according to the distributions defined above:

δAB ¼ ∑
i∈A
j∈B

pijApjjBδij:

Note that the δAB so defined depend on the γef parameters, as
well as on the underlying topology T, but for simplicity we do not
indicate this in the chosen formalism. Also note that δAB ¼ δBA.
For simplicity, we write δiA (or δAi) instead of δfigA.

In addition to the γef probabilities defined for each pair of
adjacent branches ðe; f Þ, we introduce a parameter λXY for each
unordered pair fX; Yg of 3-separated clades in T (recall the
definition of k-separated clades above). We constrain these
parameters so that, for every internal branch separating clades

16444 ∣ www.pnas.org/cgi/doi/10.1073/pnas.1118368109 Pardi and Gascuel

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1118368109/-/DCSupplemental/pnas.1118368109_SI.pdf?targetid=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1118368109/-/DCSupplemental/pnas.1118368109_SI.pdf?targetid=SF1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1118368109/-/DCSupplemental/pnas.1118368109_SI.pdf?targetid=SF1


A ¼ A1 ∪ A2 and B ¼ B1 ∪ B2 (see Fig. 1B), λA1B1
¼ λA2B2

>
0, λA1B2

¼ λA2B1
> 0 and λA1B1

þ λA1B2
¼ 1, meaning that only

one parameter among λA1B1
, λA2B2

, λA1B2
, and λA2B1

determines
all the others. A possible interpretation for λXY is as the prob-
ability of drawing T so that X and Y are consecutive in a clock-
wise ordering of the taxa (which explains why λA1B1

¼ λA2B2
,

λA1B2
¼ λA2B1

and λA1B1
þ λA1B2

¼ 1; see SI Appendix 1, for
details).

In summary, we have three free parameters per internal node
of T (γef ; γf g , and γge determine γeg; γf e , and γgf ) and one free
parameter per internal branch (λA1B1

determines λA2B2
; λA1B2

,
and λA2B1

). These parameters determine a set of formulae to
estimate the length ℓ̂e of any branch in T:

ðγT; λTÞ-formulae. Let the vectors γT ¼ ðγef Þ and λT ¼ ðλXY Þ
be defined for binary topology T, under the constraints described
above. Then, for any branch e in T:

ℓ̂eðδÞ ¼

8>>>>>>>>>>><
>>>>>>>>>>>:

1
2
ðδiA þ δiB − δABÞ

if e is external;
1
2
½λA1B1

ðδA1B1
þ δA2B2

Þ
þ ð1 − λA1B1

ÞðδA1B2
þ δA2B1

Þ
− δA1A2

− δB1B2
�

if e is internal;

where, if e is external, we define A, B, i as in Fig. 1A and, if e is
internal, we define A1, A2, B1, B2 as in Fig. 1B.

Note that because λA1B2
¼ λA2B1

¼ 1 − λA1B1
¼ 1 − λA2B2

, the
formula above for internal branch lengths is (as desired) indepen-
dent of how we assign names A1, A2 to the two subclades of A ¼
A1 ∪ A2 and how we assign B1, B2 to the two subclades of
B ¼ B1 ∪ B2. An interpretation of the ðγT; λTÞ-formulae as
averages of simpler formulae is given in SI Appendix 1.

These formulae are a generalization of all the combinatorial
formulae proposed in the past to fit the branch lengths of a tree
of fixed topology. In particular, the OLS branch lengths (16, 17)
can be obtained by setting λA1B1

¼ jA1jjB2jþjA2jjB1j
jAjjBj (same clade

naming as above) and by setting γef ¼ jA1j
jA1jþjA2j, for every pair

of adjacent branches e and f in the configuration of Fig. 1B. Note
that the γef parameters thus defined ensure that fpijX ji ∈ Xg is
uniform for any clade X (in fact the word “unweighted” is often
associated to OLS). Similarly, the balanced branch lengths (19) at
the basis of the balanced minimum evolution principle (7, 18, 29)
are obtained by setting all parameters to 1

2
. The next section shows

that the ðγT; λTÞ-formulae also generalize the M&P formulae by
Mihaescu and Pachter (22). It is easy to see that the ðγT; λTÞ-
formulae still satisfy the independence of irrelevant pairs (IIP)
property introduced by those authors (22) as a basic requirement
for their formulae.

Finally, we show that the ðγT; λTÞ-formulae above are correct;
that is, they calculate the correct values of the branch lengths
of any given tree whenever the distances are additive with re-
spect to that tree (proof in SI Appendix 1). Naturally, because
the input distances are only estimates of the real evolutionary
distances, they are usually only approximately additive. However,
this property is an important prerequisite of any branch length
formula, because it ensures the statistical consistency of the
branch lengths assigned to the correct topology (see Statistical
Consistency below).

Theorem 1. Let T be a binary topology. For any given branch e in T,
assign length ℓe to e, and let δ be additive with respect to the resulting
tree. Let ℓ̂eðδÞ be the length that is assigned to e by a ðγT; λTÞ-
formula. Then, ℓ̂eðδÞ ¼ ℓe.

Relationship with WLS and the M&P Formulae
The choice of the weights in 1 is a key factor for the accuracy of
least squares tree estimates. The weights wij should be propor-
tional to Var½δij�−1, because this implies that the branch lengths
that minimize 1 have minimum variance among all linear un-
biased estimators of the branch lengths (under the assumption
that the distance estimates are unbiased and uncorrelated for dif-
ferent pairs of taxa) (30). In this section, we consider the case
where the weights (and therefore the assumed variances) are
“multiplicative”: Given a tree topology T and a collection of
weights w ¼ ðwijÞ associated to pairs of taxa in T, we say that
these weights are multiplicative with respect to T, if we can assign
to each branch e of T a weight we > 0, so that, for every pair of
taxa i and j, wij ¼

Q
e∈PijðTÞwe; where PijðTÞ denotes the set of

branches in the path between i and j in T. This condition gen-
eralizes several well-known cases: that of constant weights (coin-
ciding with OLS and obtained by setting we to 1 for internal
branches and to a constant for external ones), that of taxon-spe-
cific weights (25) (obtained like for OLS but with we free to vary
for external branches) and also that of weights exponentially re-
lated to the number of branches separating each pair of taxa
[which, when the base of the exponent is b ¼ 1

2
, coincide with

the balanced weights (19) and are obtained by setting we ¼ b
for internal branches and to a constant for external ones].

Mihaescu and Pachter (22) have shown that if the assumed
weights w are multiplicative with respect to T, then the optimal
branch lengths of T with respect to the WLS criterion 1 are given
by their M&P formulae. We refer to SI Appendix 2, for a descrip-
tion of these formulae. The following theorem shows that the
class of the M&P formulae is contained in that of the ðγT; λTÞ-
formulae, and, conversely, it characterizes the values of γT and
λT corresponding to M&P formulae.

Theorem 2.Let T be a binary topology. (i) Given any wmultiplicative
w.r.t. T, the corresponding M&P formulae are also ðγT; λTÞ-formu-
lae for some choice of γT and λT satisfying the properties P1 and P2
below. (ii) Given any γT and λT satisfying the properties P1 and
P2 below, the corresponding ðγT; λTÞ-formulae are also M&P for-
mulae for some choice of w, multiplicative w.r.t. T.

P1. For every internal node of T, if e; f , and g are the three
branches incident to it, then γefγf gγge ¼ ð1 − γef Þð1 − γf gÞð1 − γgeÞ.

P2. For every pair of clades A and B separated in T by three
branches a; e, and b (with a being the root branch of A, and b being
the root branch of B), λAB ¼ γea þ γeb − 2γeaγeb.

Theorem 2, proved in SI Appendix 2, not only shows that the
M&P formulae are particular types of ðγT; λTÞ-formulae but it

i
e

A

B

A B

e

A1 A2

B1 B2

f ga

h b l

C

e'

A2

A1 B2

B1

h g

f l

Fig. 1. Standard naming of clades and branches when (A) e is external, and
(B) e is internal. (C) An NNI-neighbor (around e) of the tree in B.
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also provides an alternative set of parameters to represent the
M&P formulae: Instead of the branch-associated weights we,
one can use a set of γef parameters satisfying P1. This condition
implies that any of γef ; γf g and γge can be determined from the
other two and P2 implies that all the λXY parameters are deter-
mined by the γef parameters. This reduces the number of free
parameters needed to describe the ðγT; λTÞ-formulae that are
also M&P formulae to 2 per internal node, that is 2n − 4. This
is exactly one less than the 2n − 3 branch-associated parameters
we describing multiplicative weightings, which corresponds to the
fact that multiplying all the we for external branches by any po-
sitive constant results in equivalent weightings with respect to 1.

Theorem 2 establishes that the ðγT; λTÞ-formulae have enough
“expressive power” to optimize the least squares criterion 1, when
the weights are multiplicative. It is therefore important to discuss
this assumption. First, multiplicative weights generalize the ba-
lanced weights, which have been experimentally demonstrated
to behave well in combination with ME (18, 31). Second, in
the case of distances estimated from molecular sequences, we
note that for many models of sequence evolution [for instance
Jukes–Cantor (32); see ref. 1 or appendix B in ref. 2 for the gen-
eral technique], the variance of δij can be approximated by a func-
tion of the correct evolutionary distance dij that, for small values
of dij, behaves as a linear function of dij, and, for moderate-to-
large dij, as an exponential of dij. This means that, for pairs of
taxa separated by small dij, the variances of their distance esti-
mates will tend to be additive, whereas for pairs of taxa separated
by moderate-to-large dij, the variances will tend to be multiplica-
tive. The additive model for the variances (33), or its variant with
variances proportional to d2

ij (13), are used in practice with δij in
place of dij, as the latter is unknown. As a result, these ap-
proaches need some precautions for very small distance esti-
mates, so as to avoid an overconfidence in these estimates (for
δij tending to 0, also the assumed variance tends to 0, and wij
tends to infinity): For example, one possibility is to add pseudo-
counts to the numbers of observed differences between sequences
(8) (known as “Laplace smoothing”). In this context, the multi-
plicative model provides a simple and robust alternative for small
distances (for δij → 0, the assumed variance tends to a constant)
and is mathematically justified for moderate-to-large distances.

The other important assumption here, common to all WLS
methods, is that the δij are uncorrelated for different pairs of
taxa, which is clearly not true for distances estimated from mo-
lecular sequences (9). As mentioned above, covariances between
different distance estimates can be accounted for by adopting a
GLS criterion. However, setting the covariances and calculating
the resulting branch lengths (10) are difficult problems, which ex-
plains the lack (to the best of our knowledge) of practical imple-
mentations of GLS for phylogenetic reconstruction.

Statistical Consistency
A method for phylogenetic inference is said to be (statistically)
consistent if the probability that it reconstructs the correct tree
(within any given accuracy) converges to 1 as more and more data
are analyzed. For distance-based methods, the consistency of tree
inference usually depends in turn on the consistency of the
distance estimates; that is, the assumption that δ converges to
a matrix dT containing the distances in the correct phylogenetic
tree for the taxa under consideration. Even though in reality the
precise consistency of distance estimates cannot be expected to
hold—because the models used to obtain these estimates are
only approximations of reality—the ability to infer the correct
tree in such a best-case scenario is an essential property of any
phylogenetic inference method: It is a prerequisite for robust in-
ference of the correct topology with real distance estimates, sub-
ject to sampling errors and not perfectly consistent (34–36).

In this section, we state our main results on the statistical
consistency of the tree reconstruction methods using the

ðγT; λTÞ-formulae. We leave the proofs to SI Appendix 3. We as-
sume that, for any binary topology T over the taxa of interest
f1; 2;…; ng, a collection of parameters γT ¼ ðγef Þ and
λT ¼ ðλXY Þ is defined, thus defining in turn, for any such T, a
set of ðγT; λTÞ-formulae for estimating the branch lengths of
T. We call this a branch length estimation scheme based on
ðγ; λÞ-formulae. (Note the absence of superscript.) We stress that,
for the consistency results here, no connection between ðγT; λTÞ
and ðγT 0

; λT
0 Þ for different topologies T and T 0 needs to be as-

sumed; in other words, completely unrelated formulae can be
used for any pair of topologies.

Now combine a branch length estimation scheme with an op-
timization principle, such as LS or ME, that allows us to choose
among all the topologically-distinct fitted trees over f1; 2;…; ng.
We have already described LS (but also see SI Appendix 3). As for
ME, three variants of this principle have been proposed, essen-
tially differing for how tree length is defined in the presence of
negative branch lengths [which are allowed by many branch
length estimation schemes, including those based on ðγ; λÞ-for-
mulae]. We call them ME−1 (14), MEþ1 (15, 37), and ME0 (8).
Assuming that a tree has been assigned the branch lengths ℓ̂e,
MEi defines its length as

∑
e : ℓ̂e>0

ℓ̂e þ ∑
e : ℓ̂e<0

i · ℓ̂e:

The three versions of ME then differ in how they deal with ne-
gative branch lengths when calculating tree length: MEþ1 adds
together all branch lengths irrespective of their sign, whereas
ME0 ignores negative branch lengths and ME−1 takes their ab-
solute value. Gascuel et al. (24) previously named MEþ1, ME0

and ME−1, “all-BL,” “positive-BL,” and “absolute-BL,” respec-
tively. The following theorem shows that for these three versions
of ME, as well as for LS, tree inference is consistent when
ðγT; λTÞ-formulae are used.

Theorem 3.Assume that the input distances δ are consistent estimates
of the correct evolutionary distances dT �

, where T � is a binary tree
with positive branch lengths. Adopt a branch length estimation
scheme based on ðγ; λÞ-formulae. Then, the optimal trees with
respect to LS, MEþ1, ME0 and ME−1 are statistically consistent
estimates of T �.

Whereas the consistency of LS is a simple consequence of the
correctness of the ðγT; λTÞ-formulae, and is included here for
sake of completeness, the result for ME is somewhat surprising,
given that ME has been proven to be inconsistent when combined
with WLS branch lengths (for some particular values of the
weights wij) (24). Furthermore, Theorem 3 generalizes all pre-
viously known cases of consistency for the ME principle (17,
25, 18). In particular, it demonstrates the statistical consistency
of tree reconstruction when using the formulae by Mihaescu
and Pachter, thus answering their fundamental question men-
tioned in the Introduction.

Computational Efficiency
While the statistical consistency results above provide a theore-
tical basis for the use of ðγT; λTÞ-formulae, we now consider a
more practical advantage of these formulae: the fact that they
can be efficiently combined with hill climbing heuristics, a perva-
sive and successful tool for tree reconstruction. Hill climbing con-
sists of repeatedly applying small changes that improve the score
of a candidate tree, until no such change is possible anymore. The
behavior of hill climbing is essentially determined by the changes
allowed at each step, or in other words by a notion of neighbor-
hood defined over tree space. Here, we consider the simplest such
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changes, known as nearest neighbor interchanges (NNIs), which
consist of swapping the positions of two 3-separated subtrees
in a topology: for example, the topology in Fig. 1C can be ob-
tained from that in Fig. 1B by swapping clades A1 and B1. When
topology T 0 can be obtained from topology T in this way, we say
that T andT 0 areNNI neighbors. An NNI transforming T into T 0
is around e, if e is the middle branch among the three branches
separating the subtrees being swapped in T. While simple, NNIs
can be used to efficiently implement more complex changes (such
as SPRs) that can be obtained via a series of NNIs (21, 27).

Clearly, the computational efficiency of a hill-climbing heuris-
tic depends crucially on the ability to efficiently evaluate some/all
neighbors of any candidate topology. For all distance-based
optimization principles, the evaluation is essentially done on
the basis of some function of the assigned branch lengths. It is
then important to calculate efficiently the branch lengths of
the neighbors that are considered at each iteration. Here, we
show that if ðγT; λTÞ-formulae are used for computing branch
lengths, and a natural relation between the γT parameters for
NNI neighbors is assumed, then the Oðn2Þ branch lengths of
all the NNI neighbors of a candidate topology can be calculated
in Oðn2Þ time. This is optimal, because these Oðn2Þ branch
lengths depend on all the Oðn2Þ input distances.

In order to express the required relation between the γT para-
meters for NNI neighbors, we assume that when performing an
NNI around a branch e, all other branches keep their names. (For
example, see branches f , g, h, and l in Fig. 1 B and C.) Then, when
T 0 is obtained from T with an NNI around branch e, we say that
parameter sets γT ¼ ðγe1e2Þ and γT

0 ¼ ðγ 0
e1e2Þ, defined for T and

T 0, respectively, are almost identical, if γe1e2 ¼ γ 0
e1e2 , for every pair

of adjacent branches ðe1; e2Þ in T such that their common end-
point is not also an endpoint of e (in which case e1 and e2 are also
adjacent in T 0). The intuitive idea is that γT and γT

0 may only
differ locally around the location of the NNI. This requirement is
a prerequisite for the efficient evaluation of T 0 from that of T.
Note the difference here with the approach in the previous sec-
tion, where we assumed no relationship between parameter sets
for different topologies. Our result can now be stated as follows:

Theorem 4. Let T0 be a binary topology over taxa f1; 2;…; ng
and T1; T2;…; T2ðn−3Þ all its NNI neighbors. For all
i ∈ f0; 1;…; 2ðn − 3Þg, assume that the branch lengths of Ti are
defined by the ðγTi ; λTiÞ-formulae, with the constraint that γTi

and γT0 are almost identical. Then,

i. the branch lengths of T0 can be calculated in Oðn2Þ time;
ii. the branch lengths of all the NNI neighbors of T0 can be calcu-

lated in Oðn2Þ time.

We leave the proof of this result to SI Appendix 4. While point i
merely generalizes further a property already known for all M&P
formulae (22), the result in ii is novel. It is related to and some-
how explains the existence of a number of efficient hill-climbing
algorithms for distance-based tree reconstruction. In particular,
it predicts the efficiency of hill climbing for balanced minimum
evolution (BME), which assumes γT parameters always equal to

1
2
and therefore clearly having the property of being almost iden-

tical for NNI neighbors. The existing hill-climbing algorithm for
BME (7) directly updates the total tree length, rather than the
lengths of each branch, but the worst-case time complexity for
each iteration is still Oðn2Þ and results in one of the most accu-
rate and fast distance-based methods (18, 31). Theorem 4 also
predicts the efficiency of hill climbing for OLS: The γef para-
meters for OLS depend in fact on the sizes of the three clades
to the sides of e, f ; and g (where the latter is the branch adjacent
to both e and f ), and these do not change when performing an
NNI around a branch other than e, f , and g, which implies the
almost identity of the γef parameters for NNI neighbors.

Note that Theorem 4 has very wide applicability, not only
because of the generality of the formulae it assumes but also be-
cause it makes no assumption on the optimization criterion used
to score trees (apart from its dependence on the branch lengths).
This is unlike the hill-climbing algorithms we mentioned above,
which were only applicable to the classic version of ME (the
one we call MEþ1), where all branch lengths are added together,
irrespective of their sign.

Discussion
We presented here a framework unifying some of the most suc-
cessful approaches for distance-based tree reconstruction: For
example, ordinary least squares methods for clustering (38)
and balanced minimum evolution [BME, the optimization prin-
ciple behind neighbor-joining (29)] for phylogenetic inference.
We have shown that all the methods that fit into this general
framework have highly desirable statistical properties (the consis-
tency of the tree estimates) and algorithmic properties (efficiency
of hill climbing heuristics).

Our study opens the way for improvements of existing methods
and the development of new ones. Novel combinations of branch
length formulae and tree optimization principles can be envi-
saged. For example, our results enable the efficient implementa-
tion of hill climbing for the versions of ME discouraging negative
branch lengths (or at least not favoring them; see ME−1 and ME0

above), in combination with any of the classic branch length es-
timation schemes (e.g., OLS or that used in BME). Alternatively,
our framework enables the use of novel, biologically motivated
ways of estimating branch lengths, for example assuming multi-
plicative variance models based on the current tree estimate.

We conclude by noting that although the class of branch length
formulae we consider here is inspired by previous work on multi-
plicative variance models (22), nothing excludes that it may be
applicable to least squares criteria other than WLS with multipli-
cative weights. In fact, it is easy to construct covariance models
with nonzero covariances that result in GLS branch length esti-
mators coinciding with ðγT; λTÞ-formulae. Future research
should aim to elucidate the full potential of our class of formulae.
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