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Task preparation is a complex cognitive process that implements
anticipatory adjustments to facilitate future task performance.
Little is known about quantitative network parameters governing
this process in humans. Using functional magnetic resonance
imaging (fMRI) and functional connectivity measurements, we
show that the large-scale topology of the brain network involved
in task preparation shows a pattern of dynamic reconfigurations
that guides optimal behavior. This network could be decomposed
into two distinct topological structures, an error-resilient core
acting as a major hub that integrates most of the network’s com-
munication and a predominantly sensory periphery showing more
flexible network adaptations. During task preparation, core–pe-
riphery interactions were dynamically adjusted. Task-relevant vi-
sual areas showed a higher topological proximity to the network
core and an enhancement in their local centrality and interconnec-
tivity. Failure to reconfigure the network topology was predictive
for errors, indicating that anticipatory network reconfigurations
are crucial for successful task performance. On the basis of a unique
network decoding approach, we also develop a general framework
for the identification of characteristic patterns in complex networks,
which is applicable to other fields in neuroscience that relate dy-
namic network properties to behavior.
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The human brain forms a highly complex network that is or-
ganized into a large number of specialized regions. During

goal-directed behavior, like the preparation of an upcoming task,
relevant cortical regions are anticipatorily modulated (1–5),
which has been shown to facilitate the detection and analysis of
task-relevant stimuli (6–13).
However, little is known about how these task-specific adjust-

ments are integrated across distinct brain regions and how pre-
paratory mechanisms are reflected in a large-scale network to-
pology (14–16). It has been shown that attention can modulate
interarea correlations between distant cortical regions, inde-
pendent from changes in regional blood flow (17–19). However,
these studies were usually limited to a small selection of cortical
regions (2, 7, 15, 18–20). With recent developments in functional
connectivity analysis, it has become possible to study the role of
large-scale networks for cognitive processing and to quantify
network properties using global and local graph theoretical
measures (21–26).
On the one hand, task preparation involves dynamic adjust-

ments in regions that carry out computations that are specific to
a given task. On the other hand, it also requires the stable main-
tenance of task goals (7) and reconfigurations of the network based
on these goals. Given these characteristics and the organization of
brain networks into modules with distinct functional properties
(27, 28), we hypothesized that task-specific processes, whose
involvement varies from trial to trial, are reflected in dynamic
adjustments of more peripheral components of the brain network.
We further hypothesized that task goals are represented in a stable
network core that we expected to be densely connected and to
have direct access to large portions of the network (29, 30).

According to this reasoning, reconfiguration of brain networks
for different tasks should involve dynamic adaptations focused on
task-relevant areas in the periphery of the brain network, but
should also influence core–periphery interactions. Given the
high interconnectivity of frontal areas and their role in sustaining
attentional control, we further expected that frontal areas would
feature prominently in the core. In contrast, we expected areas
more closely related to stimulus processing to be part of the
periphery.
We tested these predictions using functional magnetic reso-

nance imaging (fMRI) in healthy adults during the preparation
phase of a demanding visual discrimination task (Fig. 1A). The
aim of our study was twofold. First, we aimed at examining how
functional brain networks are reconfigured in the context of
changing task demands. This was done by investigating whether
we could predict from the network topology during task prepa-
ration for which task (i.e., color or motion; Fig. 1A) the participant
was preparing. Importantly, our analyses focus on the preparation
interval of the task, thus allowing us to investigate top–down-
controlled network reconfigurations independent of bottom–up
stimulus effects or motor execution. Second, and crucially, to test
how relevant these reconfigurations are for task performance, we
planned on investigating whether we could predict from the to-
pology of preparatory network reconfiguration whether the task
would be performed correctly. On the basis of functional neu-
roimaging studies focusing on local population activity (5, 15, 29)
we expected dynamic adjustments to be centered on task-rele-
vant visual areas V4 (involved in color processing) and hMT
(motion processing).
Functional connectivity graphs (Fig. 1C) were derived from

fMRI data by calculating, for each subject, the temporal corre-
lation (coherence) between a functionally defined set of 70 brain
regions (nodes) that were found to be involved in task prepara-
tion (Fig. 1B). The lack of previous studies on topological network
properties during task preparation motivated the development of
a completely data-driven, inverse modeling framework. Using
graph theory, we extracted a comprehensive set of global and
local network characteristics that were combined to create a net-
work fingerprint for each subject and condition (schematic visu-
alization in Fig. 2A). A pattern classification algorithm was applied
to identify patterns common to task condition-specific network
topologies and revealed nodes and network characteristics most
informative for distinguishing the network states during prepa-
ration for different tasks (Fig. 2B; see Materials and Methods for
details on the experimental paradigm and analysis).
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Results
Network Construction. Comparing blood oxygen level dependent
(BOLD) activity during preparation and no-preparation trials,
we identified a widely distributed set of cortical and subcortical
regions involved in top–down preparatory control (Fig. 1B, Left
and SI Materials and Methods). Most importantly, this network
included color-sensitive area V4 and motion-sensitive area hMT,
as well as a number of frontal and parietal areas previously as-
sociated with task preparation and top–down attentional control
(6, 7, 30–33). The preparatory network was used to derive 70
spherical, nonoverlapping network nodes (Fig. 1B, Center) from
which low-frequency (0.06–0.12 Hz) BOLD time series were
extracted (23). Pairwise correlations between nodes were com-
puted and used to construct the functional network graphs for
each subject and condition (Fig. 1C).

Network Decomposition. To divide the network into core and
periphery, we used k-core decomposition, a recursive pruning

strategy (34) that has previously been applied to structural brain
imaging data (35, 36). This approach identified a core with 24
nodes (58% in frontal cortex) and a periphery consisting of the
remaining 46 nodes, including V4 and hMT (13% in frontal
cortex; Fig. 3 A and B). To investigate the functional properties
of the core and periphery subgraphs, we estimated their robust-
ness to simulated failure. We applied a random edge attack (36,
37), which revealed a clear distinction between core and periph-
ery. In contrast to the periphery, the core was highly error resilient
(P < 0.001; 1,000 permutations), indicated by its conserved global
efficiency even when large proportions of this subgraph were re-
moved (Fig. 3C). When considering the effect of the simulated
failure on the overall network (Fig. 3D), we found that the core
attack, as expected by its densely connected structure, had a bigger
impact on the global efficiency (P < 0.001; 1,000 permutations).

Network Reconfiguration. To test our prediction that task prepa-
ration involves the reconfiguration of core–periphery inter-
actions, we included two graph measures for the quantification of
these interactions. Core centrality quantifies the centrality of the
core by calculating the number of shortest paths between any
noncore nodes that pass through the core (36). Core closeness
reflects the ease of information flow between a periphery node and
the core and is defined as the inverse average distance to all core
nodes. Anticipatory reconfigurations of network properties were
quantitatively assessed using these measures in addition to an
established set of 9 local and 10 global graph-theoretical measures
(21 measures in total; Materials and Methods and Fig. S1) (25, 26).
Our inverse modeling framework (Fig. 2B) combined all network
measures into one high-dimensional description of a network
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Fig. 1. Paradigm and functional network construction. (A) A letter cue
instructed participants to prepare for a task (“C” for color or “M” for mo-
tion) or was uninformative regarding the upcoming task (“N” for neutral).
After a variable preparation interval of 5,000–9,000 ms a target was pre-
sented that required a color or motion judgment (Materials and Methods).
(B) Searchlight analysis of BOLD activation data shows a functionally defined
network that was activated for preparatory trials (cues C and M) compared
with no-preparation trials (cue N), and that was used to define 70 non-
overlapping nodes. (C) Time courses from the preparation periods (cue onset
until one TR immediately before target onset; frames in boldface type in A)
were extracted for each node and concatenated over trials to calculate
pairwise correlation matrices for each subject and condition. Displayed are
three randomly chosen node time courses of 400 s from one participant, the
condition-specific time windows used for concatenation, and resulting task-
specific networks.

Training

Validation

S1 Color
Motion

S2 Color
Motion

Sn
prediction
prediction

f(x)

B

Measure importance

Node importance Node-measure importance

Σ Σ Σ

Σ

Degree CentralityClusteringA Graph

Fingerprint

Fig. 2. Schematic of the inverse network modeling approach. (A) A network
graph is characterized by multiple topological measures (here shown for
degree, clustering, and centrality), each focusing on different functional
aspects of the connectivity structure, resulting in a rich description (finger-
print) of the functional connectome. (B) A pattern classifier is trained on fin-
gerprints of all but one subject to detect possible network reconfigurations
between conditions. Normalized weights of the learned classification model
are used to infer the relative importance of individual graph measures and
nodes for the discrimination. The resulting model is validated using the re-
maining subject (leave-one-subject out). Darker colors indicate higher values.
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state (fingerprint) and used a pattern classification algorithm
(sparse multinomial logistic regression with leave-one-subject-
out cross-validation) to detect characteristic patterns and net-
work nodes that were most informative for distinguishing the
preparatory network states under investigation.
Results showed that we could distinguish with a high accuracy

between color and motion preparation on the basis of network
topologies during the task preparation interval (classification
performance 94.4%, P = 8.9 × 10−5; 10,000 permutations). Impor-
tantly, our approach also successfully predicted whether subjects
would perform the upcoming task correctly or incorrectly. Again,
this prediction was based on network states of the preparation
period alone (classification performance color task, 77.8%, P =
3.1 × 10−4; motion task, 88.9%, P = 2.7 × 10−4; 10,000 per-
mutations each).
The strength of our inverse modeling approach is the data-

driven selection of discriminative network nodes and corresponding
measures, which revealed a highly structured reconfiguration
pattern (Fig. 4 A–C). Confirming our hypothesis, preparation was
characterized by dynamic adjustments centered on V4 and hMT
bilaterally. When a perceptual area became task relevant (e.g.,
V4 during the color task), it showed a tighter integration into the
large-scale network topology, as reflected exclusively in three
local graph measures (compare classifier weights in the leftmost
plot in Fig. 4A): clustering (reflecting interconnectivity: neighbors
of a node are themselves neighbors, forming a closed triangle
structure), centrality (reflecting hubness: relative amount of shortest
paths crossing a node), and core closeness. In contrast, the in-
tegration of the task irrelevant visual area (e.g., hMT during the
color task) was reduced (Fig. 4B). Modulation in core closeness,
but not in closeness centrality (closeness to the whole network)
shows that the change in closeness was specific to the core.
In error trials, the decreased integration of V4 and hMT was

accompanied by a reduction in core centrality (Fig. 4 A and C), a
global measure that can be interpreted as the topological ability

of the network core to integrate and control information flow. As
no differences in mean connectivity were found (SI Materials and
Methods), the loss in core centrality cannot be attributed to a
general breakdown of information flow during error trials. In-
stead, it can be interpreted as maladaptive core–periphery
interactions resulting in information transfer omitting the core.

Preparation and BOLD Amplitude. In comparison with the recon-
figurations in network topology, we found only small or no
effects for changes in mean activity. We adapted the analysis to
classify the conditions under investigation on the basis of the
mean BOLD amplitude in all 70 nodes. Whereas it was possible
to decode with marginal significance whether subjects were pre-
paring for the color or the motion task (classification performance,
61%; P = 0.058; permutation test), we were not able to predict the
task performance (classification performance color task, 44%;
motion task, 55%; all P values >0.2). Similar dissociations be-
tween mean response amplitude and connectivity have been pre-
viously reported in other cognitive domains (15, 17, 19). Thus, it
appears unlikely that the observed topological changes can be
explained by differences in BOLD amplitude.

Discussion
We demonstrate how functional networks flexibly adjust their
connectivity structure to facilitate performance in an upcoming
visual discrimination task. By focusing on a graph theoretical
perspective, we uncover substantial topological changes in the
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Fig. 3. Network decomposition and error resilience. (A) k-core decompo-
sition assigned each node a k-shell index. (B) k-shellmax nodes form the densely
connected network core (red) and the remaining nodes form the periphery
(blue). (C and D) Simulated attack shows the error resistance of the core, rel-
ative to the periphery (C), and its importance for the efficiency of information
transfer in the overall network (D) when increasing numbers of edges are
removed. Asterisks indicate statistical significance (*P < 0.001; 1,000 per-
mutations); shaded areas indicate SEM.
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Fig. 4. Reconfiguration patterns in network topology. (A) Stacked bar plots
show the relative importance of nodes and measures for the classification of
preparatory conditions. Reconfigurations are centered on V4 and hMT, bi-
laterally. For the prediction of the task (color vs. motion) topological adjust-
ments of V4 and hMT were equally predictive. For the prediction of task
performance (correct vs. incorrect) reconfigurations of the respective task-
relevant visual area (i.e., V4 for color, hMT for motion) became more accen-
tuated. (B) Effective integration of task-relevant areas into the large-scale
network topology. Color preparation during correct trials is characterized
by a heightening in clustering, centrality, and core closeness in color-sensi-
tive area V4 and a reduction of the same measures in motion-sensitive
area hMT. The effect is mirrored for hMT during motion preparation. (C )
Higher centrality of the core during correct preparation trials. Error bars
indicate SEM.
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network structure and capture aspects of anticipatory network
reconfigurations that cannot be derived from local BOLD acti-
vation data alone. Our findings suggest that preparatory attention
can selectively modulate the topological connectivity structure
based on current task goals. Observed network modulations in-
clude an enhanced integration of task-relevant as well as a re-
duced integration of task-irrelevant regions. This observation
emphasizes the flexibility of the large-scale network architecture
for adapting to rapidly changing task demands. Our results show
that reconfiguration of the large-scale connectivity pattern is tightly
linked to behavioral performance and add to a growing body of
evidence showing the importance of network reconfiguration for
various cognitive functions (21, 23) including attention and working
memory, which was, however, so far mostly based on neurophys-
iological data (2, 15, 23, 38, 39).

Network Core and Effective Integration of Task-Relevant Areas. The
core is a highly connected and error-resilient network structure
that is important for efficient information transfer in the network.
In that sense it is closely related to the concept of densely con-
nected “rich-club” nodes (36). Given these topological proper-
ties and its location primarily in frontal cortex, the core appears
to be in an ideal position to exert control over the periphery (4,
30, 40, 41). We interpret the increased core closeness of task-
relevant areas to reflect an enhancement in bidirectional infor-
mation flow. The tighter integration of sensory regions with the
frontal core complements previous findings focusing on altered
connectivity between frontal and individual sensory regions (20)
and can reflect top–down control but also anticipatory facilita-
tion for more efficient routing of sensory information upon target
presentation to higher-order cognitive areas involved in percep-
tual evaluation (20), decision making (42), and motor control. The
fact that fewer shortest periphery-to-periphery paths crossed the
core (i.e., reduced core centrality) during preparation in incorrect
trials further supports our assumption that task preparation (and
potentially other cognitive control mechanisms) is partly dependent
on a highly connected, central network structure with inherent
topological properties that enable stable representation of cur-
rent task goals and efficient control of information flow.
In the network’s periphery, we observed task-specific modu-

lations in graph metrics (i.e., clustering and centrality) centered
on visual areas V4 and hMT. The enhancement in local clus-
tering is commonly believed to reflect an increase in distinct local
information processing (25, 26). Here we show that the local
interconnectivity can be dynamically adjusted for task-relevant
and irrelevant areas, possibly allowing for more stable feature-
specific processing upon target presentation, and that this ad-
justment is critical for successful task performance.
Centrality is based on the concept of the shortest path avail-

able to transfer information from one node to another. If many
shortest paths are crossing a certain node, this node might be
crucial to efficient communication (26). During visual stimula-
tion, neural responses at any level of the visual hierarchy result
from a mixing pattern of bottom–up afferents from sensory areas
and top–down signals from higher areas (1, 18). It is plausible
that the enhanced centrality preceding correct trials reflects an
anticipatory embedding of task-relevant visual areas into a con-
nectivity structure that facilitates the integration of visual signals
upon target presentation (19).
The co-occurrence of enhanced clustering and centrality/core

closeness in task-relevant visual areas reflects two contrasting but
complementary properties of functional brain networks. The
local interconnectivity of brain regions allows for distinct pro-
cessing of sensory attributes that need to be globally integrated
to achieve coherent behavioral performance (43). Importantly,
anticipatory adjustments of the large-scale connectivity structure
during successful task preparation revealed a dynamic interplay
of both local segregation and global integration.

Methodological Considerations. The application of graph theory
has proved to be a powerful tool for the analysis of complex brain
networks (21, 25). However, the availability of a large set of
abstract measures leads also to technical challenges. Little is
known about the functional relevance or interpretation of graph
measures (26), which makes it crucial to explore their relation to
human behavior. Given the lack of studies exploring differences
between graph measures, preselecting a subset of graph meas-
ures to focus analyses on is a questionable approach. On the other
hand, including all measures and testing their relevance inde-
pendently leads to the ensuing problem of multiple comparisons
(14). Our inverse modeling approach tackles this problem by
combining all available measures into one statistical model (fin-
gerprint). Using pattern classification and cross-validation, impor-
tant measures and their functional relevance are investigated in an
unbiased fashion. We consider the data-driven selection of network
characteristics as a substantial improvement that helps to increase
objectivity in exploratory network analysis and might prospectively
serve to define more concrete hypotheses about dynamic recon-
figurations in specific network characteristics. In our study, the
number of included participants is rather small. It is therefore
desirable to replicate our findings with a larger sample size in
the future.

Conclusion
We found the human large-scale network architecture to be
dynamically adjusted during preparation for an upcoming task.
Consistent with our hypotheses, we found (i) that task prepa-
ration changed the interaction of a densely connected, frontally
dominated core with peripheral areas specific for perceptual
processing in the respective task and (ii) that changes in network
topology were centered on task-relevant visual areas. Most impor-
tantly, the observed network reconfigurations were (iii) consistent
across participants and predictive for the success of subsequent
behavior. This consistency underscores the importance of dy-
namic reconfigurations in large-scale brain networks for task
preparation and reveals important insights into the mechanisms
underlying human behavioral flexibility.

Materials and Methods
Participants. Ten healthy volunteers (5 males, mean age 25.3 y) participated
with informed consent in accordance with the local ethics committee of the
University Hospital in Cologne, Germany. After exclusions for incomplete
scans, 9 participants were retained for subsequent analyses. All were right-
handed, had normal or corrected-to-normal vision, and had no history of
psychiatric or neurological diseases and no structural brain abnormalities.

Experimental Paradigm. Target stimuli consisted of 200 colored and moving
dots (0.06° × 0.06° each; lifetime, 50 ms; speed, 14°/s) randomly positioned in
a circular fashion around the center of the screen (covering a visual angle of
8°). The dominant movement direction was either inward or outward. We
included random movement, such that only a certain percentage of all dots
moved coherently inward or outward. The dominant color was either red or
blue. Three distractor colors were included that had the same luminance as
the target colors (green, yellow, and purple). Depending on a letter cue (C or
M) presented at the beginning of each trial, participants had to prepare for
either the color or the motion task. In the color condition, participants had
to indicate by button press whether the dominant color was red or blue, and
in the motion condition participants had to indicate whether the dominant
movement direction was inward or outward. Participants were instructed to
respond as fast and as correctly as possible. As a control condition, we in-
cluded trials where participants were not able to prepare for the upcoming
task (cue N). Targets in nonpreparation trials consisted either of stationary
colored dots or of moving gray dots, so that participants unambiguously
knew which task to perform upon target presentation.

Task difficulty, determined by the coherence of the task-relevant feature,
was adapted individually for each participant in a 12-min practice session
before the fMRI experiment. On the basis of a pilot study, color coherence
values were set to 34% andmotion coherence values were adjusted to obtain
similar reaction times and error rates. These values were then chosen as
starting values for the fMRI session during which the values were further
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adapted, if necessary. The behavioral results confirmed that there were no
differences in task difficulty between the tasks [reaction times, color, 705 ms ±
15 SEM; motion, 687 ms ± 16 SEM; t(8) = 1.41; P > 0.20]. Also, we found no
differences in error rates [color, 14.78 ± 2.29 SEM; motion, 11.44 ± 1.65
SEM; t(8) = 1.53; P = 0.17].

Timing was as follows: A cue was presented for 1,000 ms, followed by a
variable preparation delay of 5,000, 7,000, or 9,000 ms. The target was
presented for 1,000 ms, followed by an intertrial interval of 3,000 ms. Each
condition (neutral, color, motion) was presented 72 times in counterbalanced
order. After 18 consecutive trials, visual feedback was given to inform about
errors in the previous task block. The feedback was followed by a null event
(10–14 s). The total duration of the experiment was 49 min.

Data Acquisition and Analysis. Functional data were acquired on a Siemens
Trio 3T scanner, using an echo planar imaging sequence with 30 interleaved
axial slices of 3 mm [field of view 192 mm, 3 × 3 mm in-plane, repetition time
(TR) 2 s, echo time 30 ms, flip angle = 90°], as well as a T1-weighted high-
resolution MDEFT scan. Image preprocessing was performed using the Ox-
ford Center for Functional Magnetic Resonance Imaging of the Brain (FMRIB)
Software Library (FSL). Unsmoothed functional volumes were motion and slice-
time corrected (Fig. S2 for frequency of head motion).

Node Definition. Preparation and no-preparation conditions were modeled
using a general linear model (GLM) and resulting parameter estimates were
subjected to a multivariate searchlight analysis (radius 8 mm, across-partic-
ipant cross-validation) to functionally define a map of brain regions gener-
ally involved in task preparation [i.e., (color and motion) vs. neutral; Fig. 1B].
This map was parcellated into 70 nonoverlapping nodes (radius = 12 mm). For
more details, see SI Materials and Methods and Table S1.

Network Construction. For each fMRI dataset, linear and quadratic trends
were removed and potential sources of global effects were regressed out
(estimated movement parameters; global mean of each trial). Resulting voxel
time courses were shifted by 6 s to account for the hemodynamic lag (44). For
each condition the relevant time points from the preparation delay were
extracted (excluding the TR immediately before target presentation) and
concatenated over trials [total time points (average ± SEM): color correct,
231.3 ± 7.1; motion correct, 238.7 ± 4.7; color incorrect, 56.7 ± 7.1; motion
incorrect, 49.3 ± 4.7]. Mean regional BOLD time series were then subjected
to a wavelet decomposition to reconstruct wavelet coefficients in the 0.06-
to 0.12-Hz range (scale two). The correlation (coherence) between all pos-
sible pairs of regions was calculated to construct four 70 × 70 weighted
connectivity matrices, one for each condition. Negative correlations and
those that did not pass false discovery rate (FDR) correction [FDR(q = 0.01)]
were set to zero.

Network Decomposition. Functional connectivity matrices were Fisher z
transformed and averaged over all preparation conditions and subjects. In
contrast to the individual data, the group-averaged matrix was thresholded
to retain only 20% of the strongest connections and converted to a binary

graph. K-core decomposition first removes all nodes with one connection
only (including their edges) and assigns them to the k = 1 shell. The pro-
cedure is then repeated for all nodes with two or fewer connections, which
are assigned to the k = 2 shell. This is repeated with increasing k, until all
nodes are assigned to a k-shell (Fig. 3A). Second, on the basis of the k-shell
index, nodes are divided into the core (nodes with k-shell index = kmax) and
the periphery (nodes with indexes smaller than kmax). A control analysis
confirmed the stability of the core when analyzing all conditions sepa-
rately (Fig. S3).

Graph Analysis: Network Quantification. To characterize functional network
topologies, a list of 21 weighted network measures (10 local and 11 global
measures: namely, local and global degree; average shortest path length;
local and global clustering; assortativity; transitivity; modularity; local, global,
cost, and nodal efficiency; small-world scalar; betweenness and current flow
betweenness centrality; eigenvector, closeness, and core centrality; Page-
Rank; vulnerability; and core closeness) were calculated separately for each
subject and condition and concatenated into a network fingerprint containing
711 entries in total (i.e., 10 local measures × 70 nodes plus 11 global measures),
per subject. All metrics were calculated using the networkX software pack-
age (http://networkx.lanl.gov; corresponding formulas are listed in SI Materials
and Methods and interdependence of metrics is shown in Fig. S1).

Network Decoding. For each subject and condition, indexes of the network
fingerprint were transformed to z-scores and subjected to a pattern classi-
fication algorithm [sparse multinomial logistic regression (45), λ = 0.1,
implemented in PyMVPA (46)]. The classifier was trained on all but one
subject and the remaining subject was used as an independent test set. This
leave-one-subject-out procedure was repeated until every subject had been
used in the test set once. The classification performance (for decoding tasks,
i.e., color vs. motion, and performance, i.e., correct vs. incorrect separately
for each task) was assessed and the resulting classification weights were
taken as indicators for the relative importance of each node and measure
for the classification (Fig. 2). For values of the discriminative graph measures
see Table S2. To determine the statistical significance of the classification
performance and related weights, we performed a nonparametric permu-
tation test with 10,000 permutations (47). All reported weights of the clas-
sification function were significant (P < 0.05) and were corrected for
multiple comparisons (711, regions and metrics), using FDR (q = 0.05).

ACKNOWLEDGMENTS. We thank Mark D’Esposito and John-Dylan Haynes for
helpful comments on an earlier version of the manuscript. This research was
supported by a Vidi grant from the Netherlands Organization for Scientific
Research (Grant 45209006 to C.J.F.). C.J.F. is further supported by an Emmy
Noether grant from the Deutsche Forschungsgemeinschaft (FI848/3-1) and by
the Hessian initiative for the development of scientific and economic excel-
lence (LOEWE). M.T. is supported by the German Federal Ministry of Education
and Research (Grant 01GW0772) and by the Deutsche Forschungsgemein-
schaft-funded clinical research unit KFO-219.

1. Kanwisher N, Wojciulik E (2000) Visual attention: Insights from brain imaging. Nat Rev

Neurosci 1:91–100.
2. Donner TH, et al. (2007) Population activity in the human dorsal pathway predicts the

accuracy of visual motion detection. J Neurophysiol 98:345–359.
3. Wylie GR, Javitt DC, Foxe JJ (2006) Jumping the gun: Is effective preparation con-

tingent upon anticipatory activation in task-relevant neural circuitry? Cereb Cortex

16:394–404.
4. Bressler SL, Tang W, Sylvester CM, Shulman GL, Corbetta M (2008) Top-down control

of human visual cortex by frontal and parietal cortex in anticipatory visual spatial

attention. J Neurosci 28:10056–10061.
5. Langner R, et al. (2011) Modality-specific perceptual expectations selectively modu-

late baseline activity in auditory, somatosensory, and visual cortices. Cereb Cortex 21:

2850–2862.
6. Sakai K, Passingham RE (2006) Prefrontal set activity predicts rule-specific neural

processing during subsequent cognitive performance. J Neurosci 26:1211–1218.
7. Sakai K, Passingham RE (2003) Prefrontal interactions reflect future task operations.

Nat Neurosci 6:75–81.
8. Morishima Y, et al. (2009) Task-specific signal transmission from prefrontal cortex in

visual selective attention. Nat Neurosci 12:85–91.
9. Serences JT, Boynton GM (2007) Feature-based attentional modulations in the ab-

sence of direct visual stimulation. Neuron 55:301–312.
10. Cohen MR, Maunsell JHR (2009) Attention improves performance primarily by re-

ducing interneuronal correlations. Nat Neurosci 12:1594–1600.
11. Mitchell JF, Sundberg KA, Reynolds JH (2009) Spatial attention decorrelates intrinsic

activity fluctuations in macaque area V4. Neuron 63:879–888.

12. Ress D, Backus BT, Heeger DJ (2000) Activity in primary visual cortex predicts per-
formance in a visual detection task. Nat Neurosci 3:940–945.

13. Pestilli F, Carrasco M, Heeger DJ, Gardner JL (2011) Attentional enhancement via
selection and pooling of early sensory responses in human visual cortex. Neuron 72:
832–846.

14. Siegel M, Donner TH, Engel AK (2012) Spectral fingerprints of large-scale neuronal
interactions. Nat Rev Neurosci 13:121–134.

15. Hipp JF, Engel AK, Siegel M (2011) Oscillatory synchronization in large-scale cortical
networks predicts perception. Neuron 69:387–396.

16. Gross J, et al. (2004) Modulation of long-range neural synchrony reflects temporal
limitations of visual attention in humans. Proc Natl Acad Sci USA 101:13050–13055.

17. Haynes JD, Tregellas J, Rees G (2005) Attentional integration between anatomically
distinct stimulus representations in early visual cortex. Proc Natl Acad Sci USA 102:
14925–14930.

18. Friston KJ, Büchel C (2000) Attentional modulation of effective connectivity from V2
to V5/MT in humans. Proc Natl Acad Sci USA 97:7591–7596.

19. Freeman J, Donner TH, Heeger DJ (2011) Inter-area correlations in the ventral visual
pathway reflect feature integration. J Vis 11:11.

20. Zanto TP, Rubens MT, Thangavel A, Gazzaley A (2011) Causal role of the prefrontal
cortex in top-down modulation of visual processing and working memory. Nat
Neurosci 14:656–661.

21. Bressler SL, Menon V (2010) Large-scale brain networks in cognition: Emerging
methods and principles. Trends Cogn Sci 14:277–290.

22. Bassett DS, Meyer-Lindenberg A, Achard S, Duke T, Bullmore E (2006) Adaptive re-
configuration of fractal small-world human brain functional networks. Proc Natl Acad
Sci USA 103:19518–19523.

16718 | www.pnas.org/cgi/doi/10.1073/pnas.1207523109 Ekman et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1207523109/-/DCSupplemental/pnas.201207523SI.pdf?targetid=nameddest=SF2
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1207523109/-/DCSupplemental/pnas.201207523SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1207523109/-/DCSupplemental/pnas.201207523SI.pdf?targetid=nameddest=ST1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1207523109/-/DCSupplemental/pnas.201207523SI.pdf?targetid=nameddest=SF3
http://networkx.lanl.gov
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1207523109/-/DCSupplemental/pnas.201207523SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1207523109/-/DCSupplemental/pnas.201207523SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1207523109/-/DCSupplemental/pnas.201207523SI.pdf?targetid=nameddest=SF1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1207523109/-/DCSupplemental/pnas.201207523SI.pdf?targetid=nameddest=ST2
www.pnas.org/cgi/doi/10.1073/pnas.1207523109


23. Bassett DS, et al. (2011) Dynamic reconfiguration of human brain networks during
learning. Proc Natl Acad Sci USA 108:7641–7646.

24. Kitzbichler MG, Henson RNA, Smith ML, Nathan PJ, Bullmore ET (2011) Cognitive
effort drives workspace configuration of human brain functional networks. J Neu-
rosci 31:8259–8270.

25. Bullmore E, Sporns O (2009) Complex brain networks: Graph theoretical analysis of
structural and functional systems. Nat Rev Neurosci 10:186–198.

26. Rubinov M, Sporns O (2010) Complex network measures of brain connectivity: Uses
and interpretations. Neuroimage 52:1059–1069.

27. Meunier D, Lambiotte R, Bullmore ET (2010) Modular and hierarchically modular
organization of brain networks. Front Neurosci 4:200.

28. Power JD, et al. (2011) Functional network organization of the human brain. Neuron
72:665–678.

29. Tootell RB, et al. (1995) Functional analysis of human MT and related visual cortical
areas using magnetic resonance imaging. J Neurosci 15:3215–3230.

30. Corbetta M, Shulman GL (2002) Control of goal-directed and stimulus-driven atten-
tion in the brain. Nat Rev Neurosci 3:201–215.

31. Maunsell JH, Treue S (2006) Feature-based attention in visual cortex. Trends Neurosci
29:317–322.

32. Brass M, von Cramon DY (2002) The role of the frontal cortex in task preparation.
Cereb Cortex 12:908–914.

33. Brass M, von Cramon DY (2004) Decomposing components of task preparation with
functional magnetic resonance imaging. J Cogn Neurosci 16:609–620.

34. Carmi S, Havlin S, Kirkpatrick S, Shavitt Y, Shir E (2007) A model of Internet topology
using k-shell decomposition. Proc Natl Acad Sci USA 104:11150–11154.

35. Hagmann P, et al. (2008) Mapping the structural core of human cerebral cortex. PLoS
Biol 6:e159.

36. van den Heuvel MP, Sporns O (2011) Rich-club organization of the human con-
nectome. J Neurosci 31:15775–15786.

37. Achard S, Salvador R, Whitcher B, Suckling J, Bullmore E (2006) A resilient, low-fre-
quency, small-world human brain functional network with highly connected associ-
ation cortical hubs. J Neurosci 26:63–72.

38. Gregoriou GG, Gotts SJ, Zhou H, Desimone R (2009) High-frequency, long-range
coupling between prefrontal and visual cortex during attention. Science 324:
1207–1210.

39. Palva JM, Monto S, Kulashekhar S, Palva S (2010) Neuronal synchrony reveals working
memory networks and predicts individual memory capacity. Proc Natl Acad Sci USA
107:7580–7585.

40. Armstrong KM, Fitzgerald JK, Moore T (2006) Changes in visual receptive fields with
microstimulation of frontal cortex. Neuron 50:791–798.

41. Ruff CC, et al. (2006) Concurrent TMS-fMRI and psychophysics reveal frontal influ-
ences on human retinotopic visual cortex. Curr Biol 16:1479–1488.

42. Philiastides MG, Auksztulewicz R, Heekeren HR, Blankenburg F (2011) Causal role of
dorsolateral prefrontal cortex in human perceptual decision making. Curr Biol 21:
980–983.

43. Tononi G, Sporns O, Edelman GM (1994) A measure for brain complexity: Relating
functional segregation and integration in the nervous system. Proc Natl Acad Sci USA
91:5033–5037.

44. Aguirre GK, Zarahn E, D’Esposito M (1998) The variability of human, BOLD hemo-
dynamic responses. Neuroimage 8:360–369.

45. Krishnapuram B, Carin L, Figueiredo MA, Hartemink AJ (2005) Sparse multinomial
logistic regression: Fast algorithms and generalization bounds. IEEE Trans Pattern
Anal Mach Intell 27:957–968.

46. Hanke M, et al. (2009) PyMVPA: A python toolbox for multivariate pattern analysis of
fMRI data. Neuroinformatics 7:37–53.

47. Nichols TE, Holmes AP (2002) Nonparametric permutation tests for functional neu-
roimaging: A primer with examples. Hum Brain Mapp 15:1–25.

Ekman et al. PNAS | October 9, 2012 | vol. 109 | no. 41 | 16719

N
EU

RO
SC

IE
N
CE

PS
YC

H
O
LO

G
IC
A
L
A
N
D

CO
G
N
IT
IV
E
SC

IE
N
CE

S


