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Nitric oxide (NO)generatedbyneuronalNOsynthase (nNOS) initiates
penile erection, but has not been thought to participate in the
sustained erection required for normal sexual performance. We now
show that cAMP-dependent phosphorylation of nNOS mediates
erectile physiology, including sustained erection. nNOS is phosphor-
ylated by cAMP-dependent protein kinase (PKA) at serine(S)1412.
Electrical stimulation of the penile innervation increases S1412
phosphorylation that is blocked by PKA inhibitors but not by PI3-
kinase/Akt inhibitors. Stimulation of cAMP formation by forskolin
also activates nNOS phosphorylation. Sustained penile erection
elicited by either intracavernous forskolin injection, or augmented
by forskolin during cavernous nerve electrical stimulation, is pre-
vented by the NOS inhibitor L-NAME or in nNOS-deleted mice. Thus,
nNOS mediates both initiation and maintenance of penile erection,
implying unique approaches for treating erectile dysfunction.
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Nitric oxide (NO) is well established as a mediator of penile
erection (1, 2). Neuronal NO synthase (nNOS) is highly lo-

calized to the penile innervation (3, 4). Electrical stimulation of the
cavernous nerve (CN) to the penis elicits penile erection, which is
abolished with NOS inhibitors and markedly reduced in nNOS-
α–deleted mice (nNOSα−/−) (5–7). Neuronal depolarization-
induced production of NO reflects calcium entry activating
calmodulin associated with nNOS to stimulate NO formation
(8, 9). This activation is short-lived and thus is believed to account
only for the initiation of penile erection (10, 11). Sessa and col-
leagues (12) established that increased blood flow and associated
shear stress, acting via PI3-kinase, augments the activity of the
serine protein kinase Akt, which phosphorylates vascular endo-
thelial NOS (eNOS) at serine(S)1179, causing prolonged NO for-
mation at resting intracellular calcium levels (13). The increased
penile blood flow through cavernosal vessels initiated by nNOS
activation similarly stimulates penile Akt to phosphorylate eNOS,
thereby promoting sustained maximal penile erection (14).
nNOS possesses a phosphorylation consensus sequence at S1412

that closely resembles the sequence surrounding eNOS-S1179,
and is thought to be a target for Akt in some systems (15–21). We
wondered whether nNOS phosphorylation at S1412 might regulate
penile erection.Using a highly selective antibody for phospho-S1412-
nNOS (P-nNOS) we report electrically stimulated nNOS phos-
phorylation via cAMP-dependent protein kinase (PKA) and not
through Akt. P-nNOS activity contributes to sustained erection in
concert with phospho-eNOS stimulation, and the neuronal and
endothelial NOS activities are independently regulated by sepa-
rate signaling cascades. We propose a model integrating the post-
translational phospho-stimulation of normal erectile physiology.

Results
Electrical Stimulation of Penile Innervation Augments Phosphorylation
of nNOS. We developed a C-terminal antibody that selectively rec-
ognizes P-nNOS. Immunoreactivity is absent in cells overexpressing

nNOS in which S1412 is mutated to alanine (Fig. S1). We also
developed an antibody selective for unphosphorylated nNOS (unP-
nNOS) that shows decreased affinity for P-nNOS but can be used
at higher concentrations to detect total nNOS. A commercial
N-terminus antibody that recognizes total nNOSα does not dis-
criminate nNOS S1412 phosphorylation.
Using an established physiologic model of erectile function,

we found electrical stimulation of the rat CN markedly increases
P-nNOS immunoreactivity but not unP-nNOS in penile lysates
(Fig. 1A). With 6-V stimulation, P-nNOS increases 15- or 27-fold
following 1 or 5 min of stimulation, respectively (Fig. 1 B and C).
Direct application of 1- or 6-V electrical stimulation to the rat
major pelvic ganglion (MPG) increases P-nNOS in the neuronal
tissue by two- or ninefold (Fig. 1 D and E).
nNOS is alternatively spliced (22–24). The alternatively spliced

forms are designated nNOS-β and nNOS-γ, whereas the pre-
dominant wild-type nNOS is designated nNOSα (25–27). Alter-
natively spliced nNOS isoforms retain some catalytic activity but
lack the N-terminal PDZ domain that links nNOS to PSD95 and
NMDA-glutamate receptors (25, 28, 29). We wondered whether
nerve stimulation would influence phosphorylation of S1412 in the
alternatively spliced isoforms (Fig. 1F). We detect very low levels
of phosphorylated nNOSβ and nNOSγ in the mouse MPG, with
no effect of electrical stimulation. Interestingly, unphosphorylated
nNOSγ is increased in nNOSα−/− mice, perhaps reflecting some
compensatory response (30).
The antibodies to P-nNOS and unP-nNOS are suitable for

immunohistochemistry. Both antibodies and the N-terminal
nNOS antibody selectively stain MPG neuronal cell bodies and
their processes in a pattern similar to the neuronal marker syn-
aptophysin (Fig. 2). All three antibodies similarly stain cytosolic
nNOS, with staining also evident at the plasma membrane.

Electrical Stimulation Provides Prolonged Activation of nNOS Phosphory-
lation Mediated by PKA. Physiologic depolarization-dependent in-
creases in intracellular calcium that maximally activate nNOS are
short lived, usually returning to baseline in seconds (31, 32). The
increase of P-nNOS in rat MPG elicited by electrical stimulation is
maintained for over a minute and then declines at 3 and 10 min
(Fig. 3 A and B), similar to other persistent calcium-dependent
signaling processes (33, 34). Although the proportion of P-nNOS
increases with electrical stimulation, total nNOS normalized to
β-actin is not significantly altered. Our prior work showed distinct
eNOS-dependent stimulation of erection by papaverine, with re-
markably decreased intracavernosal pressure (ICP) responses in
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eNOS−/− versus wild-type or nNOSα−/− mice. Papaverine dilates
blood vessels, increasing flow and shear stress, which augments
phospho-eNOS (12, 13) to produce penile erection. We investi-
gated whether intracavernosal papaverine in the rat would also
augment P-nNOS. Although papaverine increases phospho-eNOS
(Fig. 3C), there is no change in nNOS phosphorylation (14). Al-
though papaverine is a nonselective phosphodiesterase inhibitor,
it does not increase cAMP production in penile tissue (35, 36). This
finding suggests separate regulation of phosphorylation of eNOS
andnNOSbydistinct signalingpathways innormalerectilephysiology.
We used a pharmacologic approach to identify the kinase that

phosphorylates nNOS at S1412. Ten minutes after periganglionic
injection of inhibitors, the rat MPG and CN were electrically
stimulated for 1 min, whereupon the ganglion-nerve preparation
was snap-frozen for subsequent analysis (Fig. 3 D and E).
Electrical stimulation elicits three- to fourfold augmentation of
P-nNOS, which is prevented by treatment with PKA inhibitors
H89 and PKA inhibitor peptide (PKAI). In contrast, wortmannin
(Wrt) and LY294002 (LY), well-established inhibitors of PI3-
kinase, fail to alter P-nNOS levels. The response of phospho-Akt
to electrical stimulation is markedly different. Electrical stimu-
lation fails to alter phospho-Akt levels, which are reduced by Wrt
although not significantly decreased by LY. Surprisingly, H89
and PKAI significantly increase phospho-Akt.
The ability of PKA inhibitors to abolish the increase in P-nNOS

with electrical stimulation strongly implies that physiologic
phosphorylation of S1412 is uniquely mediated by PKA. The

sequence surrounding nNOS S1412 corresponds to a PKA con-
sensus site (Fig. 4A), and although another PKA consensus se-
quence is present at S370, direct phosphorylation of that site has
not been reported. Full-length nNOS purified from transfected
HEK293 cells can be selectively phosphorylated with [32P]ATP
and PKA. The phosphorylation is abolished in nNOS-S1412D
mutants (Fig. 4B and Fig. S1). Kemp and colleagues (37, 38)
reported that both Akt and PKA phosphorylate eNOS at S1179,
which is comparable to S1412 of nNOS and supports our findings.
To investigate the role of PKA in S1412-nNOS phosphorylation

in the intact penis, we performed injections of forskolin (FSK),
a potent and selective activator of adenylyl cyclase, beneath the rat
MPG, and monitored P-nNOS in ganglion/CN preparations
(Fig. 4C). Perigangliar FSK elicits a substantial increase in
neuronal P-nNOS, but the inactive derivative deoxy-forskolin
(dFSK) does not. No change in P-nNOS is detected with dFSK
treatment. We also examined penile P-nNOS levels following
intracavernosal injection of FSK or dFSK (Fig. 4D). FSK triples
penile P-nNOS, but dFSK has no effect. In contrast, FSK does not
influence penile phospho-eNOS levels. The unexpected absence of
increased P-eNOS in this preparation may reflect the shorter time
course before tissue collection (30–90 s for FSK, and 5–7 min for
papaverine). Thus, in the MPG and penile tissue P-nNOS immu-
noreactivity reflects PKA phosphorylation of nNOS at S1412.

Neurally Evoked Penile Erection Is Mediated by PKA Phosphorylation
of nNOS. We explored whether PKA phosphorylation of nNOS is
required for penile erection evoked by nerve stimulation. First
we examined the influence of FSK. As little as 0.25 μg FSK
injected intracavernosally in the mouse elicits a four- to fivefold
increase in ICP, with only modest increase at higher doses (Fig. 5A
and Fig. S2), but the inactive dFSK has no effect. The effect of low
doses of FSK (0.25–1 μg) is markedly reduced in nNOSα−/− mice
or following treatment with the NOS inhibitor L-nitro-arginine-
methylester (L-NAME). The increased ICP at high doses of FSK
(2.5–5 μg) is not influenced by nNOS deletion or inhibition,
consistent with known nNOS-independent actions of FSK medi-
ating smooth muscle relaxation. The similar changes in ICP at
higher doses of FSK suggest that different signaling pathways
mediate low- and high-dose FSK effects and that the smooth
muscle contractile apparatus is not modified in the nNOSα−/−
mice. The FSK effect on penile erection is evident in measurements
of both maximal ICP (Fig. 5A) and for the integrated total
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Fig. 1. Electrical stimulation increases P-nNOS in the penis and MPG. (A)
Electrical stimulation of the rat CN causes voltage-dependent increase in
penile P-nNOS. (B) The electrically stimulated increase in P-nNOS is also
time-dependent, but the total nNOSα detected with an N-terminal anti-
body is unchanged, showing that nNOS protein is stable during stimula-
tion. (C ) Quantification of P-nNOS in arbitrary units is performed by
densitometry. Each bar represents mean ± SE of P-nNOS/unP-nNOS expressed
relative to unstimulated sham control. (D) Direct electrical stimulation of the
MPG also increases P-nNOS in isolated nerve lysates, quantified in E. n = 4–7
animals per condition. *P < 0.05; **P < 0.001 compared with sham. (F) Rep-
resentative blots show differential phosphorylation of nNOS isoforms in
wild-type and double nNOS/eNOS- (dNOS−/−) deleted mice after direct
MPG stimulation.

Fig. 2. Immunohistochemical localization of P-nNOS in MPG. The rat MPG
was exposed and either sham or electrically stimulated (16 Hz, 4 V, 1 min),
immediately dissected, and fixed. Paraffin-embedded serial sections were
prepared for staining of total nNOS (N-terminal antibody), P-nNOS, and unP-
nNOS (Magnification: 100×). Basal is sham-treated. Synaptophysin staining
clearly identifies neuronal cell bodies in an untreated ganglion. No staining is
seen when primary antibody is omitted. The differential phospho-staining was
consistently apparent in multiple preparations from separate animals.
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pressure over time (area under the curve) (Fig. S3A). Previously,
Andersson and colleagues (39) reported increased ICP elicited
by FSK with no alteration following treatment with L-NAME;
however, their studies used a lower dose of L-NAME (50 mg/kg)
than was used in our experiments (100 mg/kg).
We explored the interaction between electrical stimulation and

FSK treatment (Fig. 5B and Fig. S3B). Modest electrical stimula-
tion of the CN and MPG alone (5 Hz/1 V) elicits a nearly twofold
increase in ICP. After injection of 5 μg intracavernosal FSK and
return to ICP baseline, the response to low-voltage electrical
stimulation is augmented fourfold. We cannot rule out the possi-
bility that this synergy is the result of an effect on smooth muscle;
however, the electrical stimulation is performed at a time point
when ICP has returned to baseline but P-nNOS remains elevated.
In nNOSα−/− mice, or after treating with L-NAME, no FSK-
dependent increase in penile erection is evident, suggesting that
P-nNOS may mediate the persistent effect of FSK. With maximal
electrical stimulation (16 Hz/4 V), ICP is similar to that elicited by
modest stimulation plus FSK, although no additive effect is ob-
served. nNOS deletion and L-NAME treatment markedly reduce
penile erection with maximal stimulation. As we previously
reported, nNOSβ mediates the NO-dependent change in ICP with
maximal electrical stimulation in nNOSα−/− mice. However,

nNOSβ activity is not sufficient to produce erectile function with
submaxmial electrical stimulation and nNOSβ is not phosphory-
lated by PKA, so it cannot mediate the increased response after
FSK treatment seen in wild-type animals expressing nNOSα.

Discussion
In the present study we demonstrate a major role for PKA phos-
phorylation of nNOS at S1412 in mediating penile erection. Using
a highly specific antibody to phospho-nNOS-S1412, we showed that
electrical stimulation of the CN markedly augments phosphoryla-
tion of nNOS in both MPG and penile tissue preparations.
Moreover, cAMP activation of PKA is responsible for that phos-
phorylation, because FSK—which leads to generation of cAMP
and PKA activation—markedly increases and PKA inhibitors de-
crease P-nNOS levels. FSK-mediated penile erection includes a
component mediated specifically by nNOS, as the effect is sim-
ilarly abolished by treatment with NOS inhibitors and in nNOSα−/−
animals. In vitro studies have shown increased NO production at
resting calcium levels with nNOS serine-1412 phosphorylation (40).
Previously we established two phases for penile erection. Psy-

chogenic- and reflex-mediated stimuli lead to depolarization of the
CNs, causing increased intracellular calcium that binds calmodulin
to activate nNOS (41). Because calcium entry is a brief and tightly
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Fig. 3. Phosphorylation of nNOS-S1412 is distinct from phospho-eNOS regulation in penile erection. (A) Representative immunoblot shows sustained P-nNOS
after electrical stimulation of rat MPG, quantified in B with mean ± SE. (C) P-nNOS is unchanged in rat penile lysates after intracavernosal injection of
papaverine, but P-ser1179-eNOS is increased as previously reported. (D) Perigangliar injection of PKA inhibitors (H89, PKAI) decreases electrically stimulated P-
nNOS in the MPG despite increasing Akt-S473 phosphorylation. PI3-kinase inhibitors (Wrt, LY) do not affect P-nNOS levels. (E) Mean ± SE for inhibitor
experiments. ES, electrical stimulation. *P < 0.05; **P < 0.01 for treatment groups compared with control.
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regulated event, this stimulation can only cause a brief increase in
neuronal NO-dependent blood flow. This increased blood flow,
however, activates endothelial PI3-kinase to stimulate Akt, phos-
phorylate and activate eNOS, and provide persistent NO pro-
duction and sustained penile erection (14, 42, 43). Our findings
here indicate that neuronal stimulation increases cAMP to ac-
tivate PKA, which phosphorylates nNOS at S1412, stimulating
nNOS catalytic activity (Fig. 6). This covalent phospho-modi-
fication can last substantially longer than the neuronal calcium
transient and so, in coordination with phospho-eNOS, phos-
pho-nNOSmay contribute to sustained erection.We conjecture that
activity dependent calcium-stimulated adenylyl cyclase could
mediate cAMP/PKA activation in the CN.
Ways in which alterations of nNOS and eNOS interact in

coordinated neurovascular erectile physiology are not clear.
Moreover, the influence of nNOS phosphorylation on its usual
regulation by calcium/calmodulin is uncertain, although there is
evidence that eNOS phosphorylation by Akt sensitizes it to the
effects of calcium (13, 44, 45) and eNOS also associates with
calmodulin. eNOS phosphorylation renders it more sensitive to
resting intracellular calcium concentrations, providing a feed-
forward augmentation of enzymatic activity. It is possible that
nNOS phosphorylation by PKA likewise increases its sensitivity to
resting calcium/calmodulin, thereby prolonging nNOS activation
(40). It is known that Akt can phosphorylate nNOS at S1412. Our
findings establish that PKA also directly phosphorylates and
activates nNOS-S1412 in a physiologically meaningful way similar
to endothelial PKA phosphorylation of eNOS-S1177 (37). Rameau

et al. (17, 21) used immunofluorescent staining techniques to show
that NMDA stimulation of cortical neuronal cultures enhances
phosphorylation of nNOS at S1412 in specific and localized
synaptic signaling. Conceivably, Akt and PKA phosphorylation
of nNOS interact in a regulated fashion. Further studies will de-
termine the coordinated regulation of stimulatory and inhibitory
phosphorylation sites for cAMP-dependent penile NO production.
FSK has heretofore been thought to stimulate penile erection by

activating PKA in smooth muscle of the penis (46–48), and that is
also the likely mechanism in our higher-dose FSK experiments.
Our findings suggest that FSK also acts by stimulating nNOS, en-
hancing the neurovascular coordination of sustained NO release
and suggesting novel therapeutic approaches to erectile dysfunc-
tion. Current therapeutic agents selectively inhibit forms of phos-
phodiesterase that act primarily upon cGMP in the erectile smooth
muscle. Our findings imply that drugs inhibiting the metabolism
of both cAMP and cGMP will act synergistically by respectively
enhancing NO generation and preventing cGMP degradation.

Materials and Methods
Reagents. FSK, dFSK, papaverine,Wrt, LY, H89, PKAI, L-NAMEwere from Sigma-
Aldrich; commercial anti–nNOS-S1412 antibody were from Abcam; nNOS N-
terminus antibody, anti-total Akt, anti-phospho-Akt-S473 were from Cell
Signaling Technology.

Animal Models. Male Sprague–Dawley rats (300–325 g; Charles River Breed-
ing Laboratories) or 8- to 10-wk-old C57BL6/J (wild-type; Jackson Laborato-
ries), and nNOSα−/−mice (S.H.S. laboratory, Johns Hopkins University, Baltimore,
MD) were anesthetized by intraperitoneal injection of ketamine (50 mg/kg)/
xylazine (5 mg/kg). MPG and CN were identified/isolated via midline
suprapubic incision for electrical stimulation of the CN. To monitor ICP in
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mice, the penis was denuded of skin and right corpus cavernosum was
pierced with 30-gauge needle attached to PE-50 tubing connected to a
pressure transducer (Harvard Apparatus) as previously described (49). Re-
sponse parameters were recorded using a data acquisition (DI-190; Dataq
Instruments) and calculated using MATLAB software (Mathworks). All ex-
periments were approved by the Johns Hopkins University Institutional
Animal Care and Use Committee (IACUC).

Electrically Induced Penile Erection Studies. In anesthetized animals, electrical
stimulation of penile erection was performed by placing a bipolar platinum
electrode hook around the CN, as previously described (5). The electrode was
attached to a Grass Instruments S48 stimulator. Stimulation parameters are
indicated in results for various experiments. Typical maximum stimulation in
rats was 16 Hz at 6 V with square-wave duration of 5 ms. Except for time-
course experiments, duration of electro-stimulation was 1 min. In dephosphory-
lation experiments, rat CN was electrically stimulated at maximal parameters
for 1 min, then both the MPG and penis were collected 15 s to 10 min after
termination of stimulation.

Preparation of Protein Extracts, Western Immunoblot, and Phospho-Labeling.
Samples were prepared as previously described (14). Briefly, frozen tissue was
minced then homogenized (penis) or sonicated (MPG) in 8 vol of ice-cold
buffer containing 50 mM Tris, pH 7.5, 2 mM EDTA, 2 mM EGTA, 150 mM NaCl,
1% Triton X-100, and 10% (vol/vol) glycerol, with phosphatase and protease
inhibitors [50 mM NaF /5 mM sodium pyrophosphate/30 mM β-glycer-
ophosphate (BGP)/1 mM sodium orthovanadate /2× Sigma-Aldrich phospha-
tase inhibitor mixture/2 μg/mL aprotinin/10 μg/mL leupeptin/1 mM Pefabloc].
After centrifuging at 16,000 × g for 30 min, soluble protein was de-
termined by BCA assay (ThermoScientific). Protein (1–3 mg) was added to 40
μL of packed 2′,5′-ADP-Sepharose for purification of penile NOS or 50–100 μg
of total protein was used directly for MPG blots. For purification, after 3–4 h
incubation, the beads were washed with PBS/400 mM NaCl/1% Triton X-100;
PBS/2% Triton X-100; and finally PBS alone. Bound protein was directly eluted
in 30 μL SDS loading buffer (62.5 mM Tris, pH 6.8/2% SDS/10% glycerol/2 mM
EDTA) at 100 °C for 3 min. Samples were separated on 4–20% gradient gels
(BioRad), then transferred to PVDF (Millipore), blocked with Superblok-PBS

(ThermoScientific), and probed for phospho-proteins overnight at 4 °C with
the indicated antibodies. Then, blots were stripped for 20 min at room tem-
perature (Restore; ThermoScientific) and reprobed for total protein. Results
were quantified by densitometry, and the ratio of phospho- to total or
unphospho-protein was determined in arbitrary units expressed relative to
the ratio for sham-treated animals prepared and blotted at the same time.
In phospho-labeling experiments, wild-type or S1412D nNOS from trans-
fected HEK293 cells was purified on 2′,5′-ADP-Sepharose, eluted with
NADPH, and incubated with PKA catalytic subunit in reaction buffer con-
taining [32P]ATP. The reaction was stopped with SDS loading buffer and run
on a gradient gel, as above, for Coomassie blue staining and autoradiog-
raphy. A fraction of the same reaction was prepared for Western blot with
P-nNOS antibodies, as described above.

Pharmacologically Induced Penile Erection Studies. In rats, papaverine hydro-
chloride, FSK, or dFSK at the indicated concentration, was injected intra-
cavernosally, as described previously (14, 50). Penes or MPG were collected
during maximal ICP, snap-frozen, and prepared for Western blotting. In mice,
FSK or dFSK was administered via a second 30-gauge needle inserted in the left
corpus cavernosum; ICP was monitored as described above. Some animals were
pretreated with L-NAME (100 mg/kg, i.p.) 30 min before FSK treatment. After
FSK dose–response injections, and at least 5 min after ICP returned to baseline,
the CN was electrically stimulated for 1 min at minimal parameters of 5 Hz/1 V
and then at 16 Hz/4 V with a 3-min rest between electro-stimulations. This
process was done to confirm L-NAME effect and nNOS−/− phenotype, and to
identify changes in electrically stimulated erection after FSK injection.

Pharmacologic Inhibition of nNOS Phosphorylation with Perigangliar Injection.
The CN and MPG were exposed and prepared as above. PI3-kinase inhibitors
(1 μM Wrt or 50 μM LY), PKA inhibitors (30 μM H89 or 60 μM PKAI), or vehicle
(0.1% dimethyl sulfoxide or ethanol) were injected directly beneath the MPG
using a 30-gaugeneedle attached to aHamilton syringe. After 10min, the CNwas
electrically stimulated at 16 Hz/6 V for 1 min. The MPG was then immediately
excised, rinsed in PBS, snap-frozen, and processed for phospho-protein analysis.

Immunohistochemistry. Whole MPGs with underlying prostate tissue were re-
moved from adult rats immediately after electrical stimulation of CN (16Hz, 6 V,
1min), and immediatelyfixed in ice-cold formalin (containing50mMBGP, 5mM
sodium orthovanadate, 5 mM sodium pyrophosphate, and 1× Sigma-Aldrich
phosphatase-inhibitormixture) for 15min, then1h at room temperature before
storing in 70% ethanol. Tissue was paraffin-embedded, cut in 10-μm transverse
sections, and mounted on glass slides. Sections were baked at 60 °C, depar-
affinized, and boiled in citrate buffer for 20 min, then permeabilized in 0.4%
Triton X-100 for 15 min, quenched in 2% H2O2 in PBS for 15 min, and blocked
with PBS containing 5% goat serum/10 mM BGP/5% BSA for 2 h. Indicated
antibodies were incubated overnight at 4 °C PBS containing 0.2% BSA/1%
normal goat serum/5 mM BGP:total nNOS (1:300), affinity-purified phospho-
nNOS-S1412 (1:150) or unphospho-nNOS-S1412 (1:5), or synaptophysin (1:5).
Staining was visualized using the Elite Vectastain kit (Vector Laboratories) and
counterstained with hematoxylin before dehydrating and cover-slipping. Con-
trols without primary antibody were run for each set of slides. Stimulated and
baseline sections were stained and developed simultaneously on the same slide.

Statistical Evaluation. Analysis was performed with MATLAB or KaleidaGraph
(Synergy Software) using one-way ANOVA followed by Holm–Sidak or
Newman–Keuls multiple comparison or t test when appropriate. Data are
expressed as mean ± SE. n are listed within figure legends. P values < 0.05
were considered significant.
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