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Multiple species of bacteria are able to sequester the host zymogen plasminogen to the cell surface. Once localised to the bacterial
surface, plasminogen can act as a cofactor in adhesion, or, following activation to plasmin, provide a source of potent proteolytic
activity. Numerous bacterial plasminogen receptors have been identified, and the mechanisms by which they interact with
plasminogen are diverse. Here we provide an overview of bacterial plasminogen receptors and discuss the diverse role bacterial
plasminogen acquisition plays in the relationship between bacteria and the host.

1. Introduction

Recruitment of plasminogen to the bacterial cell surface is
emerging as a central theme in host/pathogen interactions.
The glycoprotein plasminogen is found in plasma and
extracellular fluids at concentrations of approximately 2 yM.
Upon activation, plasminogen is converted to the serine
protease plasmin [1]. Plasmin is able to degrade fibrin clots,
connective tissue, extracellular matrix (ECM), and adhesion
proteins. Plasmin itself contributes to a number of amplifica-
tion loops which leads to increased plasminogen activation.
Plasmin-mediated proteolysis of cell membrane proteins
exposes cryptic plasminogen-binding sites within receptors,
subsequently enhancing the recruitment of plasminogen to
cell surfaces [2]. Similarly, cleavage of the inactive form of
the urokinase plasminogen activator pro-uPA by cell bound
plasmin generates the active two-chain uPA. This feedback
activation results in a significant increase in plasmin acti-
vation within biological systems [3]. Additionally, activation
of prometalloproteases by plasmin results in degradation of
the collagen structural components of the ECM, leading to
widespread tissue destruction. Recruitment of plasminogen
to the surface of bacteria by specific plasminogen receptors
was first reported over 20 years ago [4]. Since then, the
importance of this interaction in bacterial virulence has

become the focus of a large body of research. It is now clear
that recruitment of plasminogen to bacterial cell surfaces
is a feature common to both pathogenic and commensal
bacteria. This paper provides an overview of known bacterial
plasminogen receptors and examines the diverse roles they
play in the host-bacteria interaction.

2. Plasminogen

Plasminogen is the inactive zymogen form of the enzyme
plasmin [5, 6]. Posttranslational processing results in several
different forms of plasminogen (Figure 1). The circulating
mature form of plasminogen is known as Glu-plasminogen
as a consequence of the glutamic acid residue at the N-
terminus. Glu-plasminogen consists of the preactivation
peptide followed by five characteristic kringle domains and
then the serine protease active site in the C-terminal region
[6] (Figure 1). The amino acid residues His®*?, Asp®® and
Ser’*!, make up the catalytic triad of the serine protease
domain. This domain catalyses the hydrolysis of peptide
bonds, resulting in peptides with C-terminal arginine and
lysine residues [6]. The kringle domains of plasmin(ogen)
mediate interactions with multiple ligands, including fib-
rin(ogen) and mammalian cellular plasmin(ogen) receptors
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FIGURE 1: Structural domains of human plasmin(ogen) forms. Human plasminogen is synthesised as an 810 amino acid protein. The
19 amino acid residue signal sequence is removed resulting in the circulating mature form (791 amino acids, ~90,000kDa) known as
Glu-plasminogen (Glu-plg) as it contains an N-terminal glutamic acid. Glu-plg contains a hairpin-loop structure called the PAN domain
encompassing the preactivation peptide (PAP), followed by 5 homologous kringle domains (K1-K5) containing three intradomain disulfide
bridges, followed by a peptidase S1 domain (SPD). The preactivation peptide is generated by plasmin cleavage giving rise to Lys-plg (713
amino acids, ~80,000 kDa). The conversion of Glu-plg or Lys-plg to their respective plasmin forms occurs by hydrolysis of the Arg-Val
peptide bond shown by either uPA or tPA, yielding chain A and the smaller chain B, which remain covalently associated by interchain
disulfide bonds. Kringles 1, 2, 4, and 5 contain lysine-binding sites (LBS) with affinity for free lysine and lysine-like compounds such as
w-aminocarboxylic ligands in the following order of binding affinity K1 > K4 > K5 > K2 [8]. Kringle 3 shows no detectable binding to Lys or
Lys-like compounds [9], related to a sequence variation in its LBS. Glu-plg thus binds to various lysine-containing proteins via Kringles 1,
2, 4, and 5. Streptokinase (SK) and staphylokinase (not shown) bind in a 1:1 complex with the SPD to generate an activator complex. Not
shown: Mini plasminogen (K5 plus the SPD) can also be generated by stromelysin-19 cleavage of the Pro466-Val467 bond of Plg. Sequence

data are derived from UniProt (swiss-prot entry P00747). Plasminogen (EC = 3.4.21.7) (http://www.uniprot.org/uniprot/P00747).

[7]. In particular Kringles 1, 2, 4, and 5 (K1-K5) contain
lysine-binding sites (LBS) comprised of a hydrophobic cleft
formed by aromatic residues that most commonly bind C-
terminal lysine residues and internal lysine residues of recep-
tors. As described in Figure 1, the kringles show differing
affinities for free lysine and lysine-like compounds such as
w-aminocarboxylic ligands, in the following order of binding
affinity K1 > K4 > K5 > K2 [8]. Kringle 3 shows no detectable
binding to Lys or Lys-like compounds [9]. Intramolecular
binding between lysine residues and the LBS of these Kringles
maintains Glu-plasminogen in a closed conformation which
is less susceptible to activation [6, 10]. Competitive binding
interactions with fibrin(ogen) or plasminogen receptors
allows Glu-plasminogen to adopt an open conformation,
exposing the activation loop (Arg®!-Val®®?) to cleavage by
specific mammalian plasminogen activators thus forming
Glu-plasmin [6, 7] (Figure 1). Alternatively, cleavage of
the Lys”’-Lys’® peptide bond may also occur leaving the
plasminogen molecule with a Lys residue at the-N terminus

(Lys-plasminogen) [6] (Figure 1). Lys-plasminogen has a
more open, U-shaped conformation than Glu-plasminogen
making it more readily activated to Lys-plasmin by the
plasminogen activators [11, 12]. The resulting two-chain
Glu- or Lys-plasmin molecule consists of the plasmin heavy
chain A in the N-terminal region and the plasmin light
chain B in the C-terminal region held together by interchain
disulfide bonds (Figure 1).

Two differentially glycosylated variants of human Glu-
plasminogen exist. Both variant 1 and 2 contain O-linked
glycosylation site, whereas variant 1 contains an additional
N-linked glycosylation site (located at Asn?%® within Kringle
3) [13-15]. These glycosylation patterns appear to affect
both the stability and affinity of the protein to interact with
lysine moieties as well as its subsequent activation rate [16].
Differences in glycosylation were recently shown to affect
the positioning of Kringle 3 (a non-LBS containing Kringle)
in the X-ray crystal structure of plasminogen, which has
consequences for efficient Glu-plasminogen activation [10].
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3. Plasminogen-Binding Bacteria

Commandeering the host plasminogen activation system is
a common mechanism employed by a variety of bacteria
[17-20]. The ability to acquire cell surface plasminogen
is not host species restricted or limited to specific sites
of infection. Rather, the ability to recruit plasminogen is
emerging as a central theme in the interaction between
host and bacteria. Early studies by Ullberg et al. showed
that 5 out of 11 species of gram-negative bacteria tested
and 9 out of 17 species of gram-positive bacteria tested
displayed a specific and high affinity interaction with Glu-
plasminogen [21, 22], although plasminogen acquisition
by different strains within each species varied significantly.
Many studies have since focused on the ability of highly
pathogenic bacteria to interact with plasminogen, including
Streptococcus pyogenes, S. pneumoniae, Staphylococcus aureus,
Helicobacter pylori, Mycobacterium tuberculosis, Neisseria
meningitides, and N. gonorrhoeae, [23-25]. There is also a
growing body of evidence to indicate that animal pathogens
sequester plasminogen. Examples of this include Mycoplasma
hyopneumoniae and M. gallisepticum which bind porcine and
chicken plasminogen, respectively, [26, 27] and the canine
pathogen S. suis [28].

Interactions with plasminogen are not solely the domain
of pathogenic bacteria, with a number of commensal species
also reported to bind plasminogen with both high affinity
and specificity, including several species of oral streptococci
[29], bifidobacteria [30], and lactobacillus [31]. The role of
bacterial-plasminogen recruitment in pathogenesis will be
discussed in more detail later; however, given the above
findings it appears that plasminogen recruitment by bacteria
may have a multifaceted role in the interaction with the host.
This may underlie the diversity of plasminogen receptors
expressed by bacteria and the different mechanisms of
interaction which have been described to date.

4. Bacterial Plasminogen Receptors

Recruitment of plasminogen to the bacterial cell surface is
mediated directly by either specialised cell surface receptors
or cytoplasmic and glycolytic pathway proteins localised to
the bacterial cell surface or indirectly via interactions with
host plasma proteins such as fibrinogen. Table 1 gives an
overview of the most well-characterised bacterial plasmino-
gen receptors.

4.1. Specialised Cell Surface Receptors. Cell surface expressed
receptors can be defined as those proteins which have a
recognisable N-terminal signal sequence and membrane
anchor motif. Several cell surface expressed plasminogen
receptors have been well characterised, and it is interesting to
note that many of these appear to have internal plasminogen-
binding sites. Among the best characterised of these is
the group A streptococcal plasminogen binding M protein.
This coiled-coil alpha helical protein extends from the
streptococcal cell surface and binds Glu-plasminogen with
an affinity of K; 1-2nM [32, 33]. A combination of bacterial
mutants, synthetic peptides and amino-acid substitution in

recombinant proteins has been utilised to demonstrate that
plasminogen binding to group A streptococcal M proteins
is dependent on the presence of an internal plasminogen-
binding repeat domain, consisting of positively charged
arginine and histidine residues [34-36]. X-ray crystallog-
raphy studies of the interaction between a 30-amino acid
peptide comprising the plasminogen binding domain of
streptococcal M protein (VEK-30) and a modified version
of K2 of plasminogen indicate that Arg!” and His'® of VEK-
30 form a pseudolysine structure that interacts with the
LBS of this kringle [36]. This work supports earlier studies
which showed that group A streptococcal plasminogen-
binding M proteins interact with K2 of plasminogen, which
contains a low affinity lysine-binding site [37]. Despite the
fact that plasminogen binding by M proteins is readily
inhibited by the lysine analogue EACA [32], mutation of
the lysine residues within the bacterial interaction motif is
not sufficient to fully abrogate plasminogen binding [34].
This highlights the important point that EACA competition
alone is insufficient to demonstrate the role of lysine residues
in interactions with plasminogen and its many receptors.
Rather, the ability of lysine analogues to compete out
plasminogen binding can be interpreted as demonstrating a
role for the LBS within the kringle domains of plasminogen.
Plasminogen-binding M proteins are expressed by
approximately 15% of group A streptococcal isolates, and
similar proteins have been identified in a variety of
group C and G streptococcal strains [38, 39]. Recently, a
plasminogen-binding M protein expressed by the group G
streptococci S. canis was reported to bind to miniplasmino-
gen, a plasminogen variant consisting of only K5 and the
serine protease domain [28]. Similarly, the M-like protein of
group C streptococcus GCS3 likely interacts with K4 or K5 of
plasminogen [40]. K4 and K5 show a high affinity for lysine-
based ligands when compared with K2 [8], so, whilst specific
plasminogen-binding sites within the M proteins of group
C streptococcus and S. canis are yet to be defined, it is likely
that they display markedly different properties to the internal
motif described for the group A streptococcal plasminogen-
binding M proteins. It is possible that these receptors mediate
plasminogen binding at different sites or stages of infection;
however, this hypothesis has yet to be fully explored. Based
on the crystal structure of plasminogen, it has been suggested
that the interaction of K5 with lysine residues is key to the
structural change of plasminogen from its closed to open
form [41]. It is tempting to hypothesise that bacteria which
do not express their own plasminogen activators, such as S.
canis may have evolved plasminogen interaction mechanisms
that allow more efficient activation by host activators.
Internal plasminogen-binding sites have also been pro-
posed for several bacterial lipoproteins identified as plas-
minogen receptors. B. burgdorferi binds plasminogen via an
array of lipoproteins, including ErpP, ErpC, Erp, and OspA
[46], while B. recurrentis and B. hermsii mediate plasminogen
binding by the lipoproteins HcPA and BhCRASP1 [87,
88]. Similarly, several as yet uncharacterised lipoproteins
of Francisella tularensis have been found to interact with
plasminogen in human plasma via ligand blot analysis
[89]. Whilst specific plasminogen binding sites within all
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these proteins have not been fully defined, the role of C-
terminal lysines appears limited for those that have been
characterised. Truncated Erp proteins lacking three native
C-terminal lysine residues show only a partial reduction in
plasminogen binding, supporting a role for both C-terminal
lysine residues and an unidentified internal binding site in
the interaction with plasminogen [46]. Similarly, mutation
of residues Lys?®, Lys?®’, and Lys®! within the choline-
binding protein E (CBPE) of S. pneumoniae results in a 70%
reduction in plasminogen when compared to the wild-type
protein [43]. A number of other receptors with less well-
defined plasminogen-binding sites are listed in Table 1.

4.2. Cytoplasmic and Glycolytic Pathway Proteins. In addition
to specialised cell surface expressed plasminogen receptors,
a number of proteins, usually considered to be restricted
to the cytoplasm, have been found on the bacterial cell
surface and are involved in interactions with plasminogen.
Examples include the glycolytic pathway enzymes a-enolase
and glyceraldehyde-3-phosphate dehydrogenase (GAPDH),
DNaK, and elongation factor Tu (efTu) [30, 71, 79]. The
mechanisms underlying the cell surface localisation of these
proteins are not defined; however, their cell surface location
has been confirmed in multiple species of bacteria [73,
82, 83, 85]. Unlike traditional cell wall anchored proteins,
the contribution of glycolytic pathway enzymes to whole
cell binding can typically only be shown indirectly, using
blocking antibodies or competing concentrations of soluble
recombinant proteins. This stems from the fact that these
proteins are often metabolically essential for bacterial sur-
vival which prevents the construction of isogenic knockout
mutant strains.

Interactions between the glycolytic pathway enzyme
enolase and plasminogen have been characterised for several
species of bacteria (Table 1). The most extensively studied
of the bacterial enolases include those expressed by S.
pneumoniae and S. pyogenes. Both have been shown to have a
higher affinity for Lys-plasminogen than the circulating Glu-
plasminogen or plasmin [90, 91].

Reports on the mechanism of plasminogen binding by
bacterial enolases have been conflicting. Prneumococcal eno-
lase contains an internal nonapeptide motif (FYDKERKVY),
with the C-terminal lysine residues playing only a minor
role in the interaction with plasminogen [65]. Like S.
pneumoniae, several other bacterial enolases also appear to
mediate plasminogen binding via internal lysine residues,
including the enolase from Bifidobacterium lactis, for which
internal residues Lys*! and Lys?>, as well as the negatively
charged Glu?? are responsible for plasminogen binding
[30]. However a recent study of the plasminogen-binding of
oral Streptococcal enolase variants showed that plasminogen
binding activity is conserved despite the loss of lysine
residues within the internal nonapeptide, with the authors
suggesting that the role of the first lysine in the internal
nonapeptide in plasminogen binding may not be as critical
as first thought [29]. For the S. pyogenes enolase (SEN),
internal lysines Lys?>? and Lys*>® contribute significantly to
plasminogen binding. However, the high affinity of SEN
for plasminogen is also mediated in part by two lysine
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residues at the C-terminus (Lys*** and Lys**®) which are
thought to stabilise the conformation of SEN’s plasminogen
binding site [68]. Site-directed mutagenesis of either the
C-terminal or internal lysine motifs abrogate binding of
plasminogen by SEN [69]. In contrast, the enolase of S.
mutans does not have a functional internal plasminogen-
binding site and may mediate plasminogen binding by C-
terminal lysine residues only [74]. In all reported cases,
bacterial plasminogen binding by enolase is inhibited by the
lysine analogue EACA, indicating a role for the lysine binding
sites within plasminogen in this interaction. However, it has
yet to be established which LBS within plasminogen mediate
interactions with enolase. It is possible that the different
motifs responsible for plasminogen binding within diverse
enolases interact with distinct LBS within plasminogen. One
could hypothesise that C-terminal lysines interact with K1
of plasminogen, whilst internal lysines bind to K5, akin to
the model proposed by Law et al. 2012 for the interaction
of plasminogen and fibrin(ogen). Plasminogen binding is
not conserved in all enolases, as evidenced by the finding
that enolase from Bacteroides fragilis does not interact with
plasminogen [92].

Similar to enolase, glyceraldehyde 3 phosphate dehy-
drogenase is a glycolytic pathway enzyme which has been
shown to be located on the bacterial cell surface and to
interact with plasminogen. GAPDH of S. pyogenes and S.
pneumoniae binds preferentially to Lys-plasminogen and
plasmin, and this interaction is mediated by the C-terminal
lysine residue in GAPDH [93]. Interestingly, it has been
shown that GAPDH of group B streptococcus interacts with
both Glu-and Lys-plasminogen but not plasmin [94].

4.3. Indirect Plasminogen Binding. A number of bacterial
pathogens possess the ability to interact with additional
plasma proteins including IgG, a,-macroglobulin, albumin,
numerous complement factors, and fibrinogen [95]. These
interactions are involved in pathogenic processes such as cell
adherence and colonisation, evasion of the immune system
and dissemination [95-97]. For S. pyogenes, the interaction
of bacterial cell surface receptors with fibrinogen has been
shown to play a role in the acquisition of cell surface plasmin
activity.

Fibrinogen is a large, 340kDa protein made up of two
identical subunits connected by numerous disulphide link-
ages. Each subunit consists of three nonidentical polypeptide
chains denoted Aa, BS, and y [98]. These polypeptide
chains are folded into a number of structural domains.
The central E domain consists of the N-termini of all six
polypeptide chains, the two D domains (one in each subunit)
consist of C-terminal regions of B and y chains and a
portion of the Aa chain, while the remaining portions of
the two Aa chains form 2 a«C domains [99]. Cleavage of
fibrinogen by thrombin is the last step in the coagulation
pathway and leads to the formation of fibrin. After thrombin
cleavage, previously unexposed (cryptic) sites are revealed
in fibrin molecules which initiate fibrin polymerisation and
clot formation [100]. Polymerisation results in the exposure
of additional cryptic-binding sites for a range of cell types,
growth factors, and proteins including those involved in
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fibrinolysis, such as tissue plasminogen activator, plasmino-
gen, plasminogen activator inhibitor, and «,-antiplasmin
[101-103]. This diverse range of ligand interactions allows
fibrin to participate in a variety of processes involved in
tissue regeneration and also facilitates the tight regulation of
haemostasis.

S. pyogenes secretes streptokinase, a plasminogen acti-
vating protein. Streptokinase binds to plasminogen SPD
(Figure 1) and induces conformational changes in the latent
active site of plasminogen producing an enzymatically
active complex which, in addition to plasmin activity, also
displays plasminogen activation activity [104]. While the
main physiological role of plasmin is the degradation of
fibrin, plasmin can also cleave a variety of other substrates
including fibrinogen. Cleavage of soluble fibrinogen exposes
cryptic sites within the molecule which allow it to interact
with ligands that were previously nonreactive with the intact
protein. Plasminogen-binding sites have been identified in D
domain fibrinogen fragments [105] and the binding of plas-
minogen to this fragment enhances streptokinase-mediated
plasminogen activation [106]. Additionally, fragment D is
sufficient for interaction with fibrinogen receptors on the
GAS cell surface [107, 108]. Therefore, at the site of infection,
Plg-SK activator complexes can cleave fibrinogen, producing
D domain fragments. These D domain fragments are then
able to interact with both plasmin(ogen) (present in the
activator complex and/or as free plasmin) and bacterial
cell surface fibrinogen receptors thereby mediating the
acquisition of unregulated plasmin activity onto the bacterial
cell surface. This mechanism of plasmin acquisition appears
to be important for those GAS strains that do not possess
high-affinity plasminogen-binding proteins but do express
fibrinogen-binding proteins such as PrtF1 and PrtF2 variants
[109], M protein variants [110] and the lipoprotein Spy_0591
[111]. It is currently not known if a similar mechanism of
plasmin acquisition involving fibrinogen fragments and bac-
terial fibrinogen receptors is functioning in other bacterial
species.

4.4. Physiological Significance of Plasminogen Acquisition by
Bacteria. The broad proteolytic activity of plasmin neces-
sitates tight in vivo regulation. Within the host, this is
achieved by specific mechanisms that control the generation
of plasmin from plasminogen and by mechanisms that
restrict plasmin activity to specific locations as required.
The major circulating inhibitor of plasmin is a,-antiplasmin.
Lysine residues within a,-antiplasmin stabilise binding to
the kringles of plasmin(ogen), resulting in rapid inhibition
of plasmin in solution. However, once bound to surfaces
such as fibrin, or cell surface receptors, plasmin is partially
protected from inactivation by a,-antiplasmin [112-114].
Bacteria circumvent host regulatory mechanisms as cell
surface bound plasminogen are more readily activated to
plasmin, and, as in the host, this plasmin activity is not
readily inhibited by host inhibitors [18, 19, 115]. Protection
of plasmin from inhibition by binding to cell surface
receptors appears to be central to the pathogenesis of several
bacterial species and is utilised in a variety of pathogenic
processes (summarised in Figure 2) [66, 73, 80, 116, 117].

Several bacterial species associated with highly invasive
infections express receptors for plasminogen and plasmin,
including S. pyogenes, S. pneumoniae, S. aureus, P. aeruginosa,
Y. pestis, and S. enteritidis. Local thrombosis and microvas-
cular occlusion during the early inflammatory response to
bacterial infection can capture bacteria and prevent bac-
terial dissemination into deeper tissues. Surface-associated
plasmin activity can facilitate fibrinolysis, preventing clot
formation or promote the release of bacteria from a formed
clot (Figure 2) [17, 107]. Furthermore, plasmin degradation
of fibrinogen can initiate the release of products that affect
blood vessel permeability and the accumulation of inflam-
matory cells [1, 118]. A major pathogenic consequence of
bacterial plasminogen recruitment thus appears to be severe
tissue destruction and overstimulation of the inflammatory
response.

The direct degradation of ECM and basement membrane
proteins and the activation of matrix metalloproteases by
plasmin may enable bacteria to break down host tissue barri-
ers (Figure 2). This is evidenced by the repeated demonstra-
tion that plasmin-coated bacteria are capable of penetrating
ECM or basement membranes in vitro [119—121]. Plasmino-
gen immobilised to the surface of E. coli, H. pylori, and
N. meningitidis shows enhanced tPA-mediated plasminogen
activation; whilst tPA- and uPA-activated plasmin at the
surface of S. typhimurium, B. burgdorferi, S. pneumoniae, S.
agalactiae, and M. fermentans facilitates the degradation of
various ECM components, migration through endothelial
and epithelial cell layers, or invasion of epithelial cells [18,
75, 122, 123]. The role of plasminogen acquisition in highly
invasive infections is supported by a number of studies using
animal models of infection, as well as several epidemiological
studies. The ability to accumulate cell surface plasmin has
been shown to be a prerequisite for systemic S. pyogenes
infection in a humanised plasminogen mouse model [124—
126]. Moreover, B. burgdorferi with active plasmin bound
to their surface causes a more severe form of bacteraemia
than their counterparts without active plasmin in a mouse
model of spirochetemia [116]. Additionally, the abrogation
of enolase-mediated plasminogen binding by S. prneumoniae
significantly reduces the virulence of this pathogen in
mice [65]. There are also epidemiological data to support
the role of plasmin acquisition in bacterial pathogenesis.
E. coli strains isolated from patients with colonic disease
have been shown to bind significantly more plasminogen
than E. coli isolates from healthy patients [127]. Similarly
a study of S. pyogenes isolates from Northern Australia
showed that isolates associated with invasive disease acquired
significantly more cell surface plasminogen than noninvasive
isolates [38]. However, oral streptococci display specific, high
affinity plasminogen binding irrespective of their association
with either benign dental plaque or severe inflammatory
disease [128], and many commensal bacteria have been
shown to recruit plasminogen to the bacterial cell surface
(Table 1). This suggests that sequestration of plasminogen
by bacteria may be important for bacterial survival in the
host environment, with reports indicating a role for this
interaction in both immune evasion and host colonisation
(68, 129-131].
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Plasmin plays an integral role in the recruitment of
host immune cells to sites of bacterial infection and is
able to degrade essential components of the innate immune
response such as the complement factors C3b, C4b, and
C5 (Figure2) [132-134]. Plasmin at the bacterial cell
surface therefore provides organisms with the capacity
to degrade immunoglobulins and complement proteins,
thereby inhibiting the host immune response. Specifically,
plasminogen activation by the bacterial activators staphylok-
inase (of S. aureus) and PgtE (of S. typhimurium) results in
degradation of C3b, thereby preventing complement-driven
phagocytosis. PgtE-generated plasmin has also been shown
to degrade complement factors C4b and C5 [129, 133].
Similarly, uPA activated plasminogen at the surface of L.
interogans and B. anthracis prevents deposition of IgG and
C3b on the bacterial surface [135] and leads to a subsequent
decrease in macrophage phagocytosis [71]. Furthermore,
the ability of certain bacteria to activate plasminogen has
been shown to alter the response of inflammatory cells to

infection. The expression of the plasminogen activator Pla
by Yersinia pestis appears to decrease the level of neutrophil
infiltration in a mouse model of infection [136]. Clearly,
there is a role for bacterial plasminogen acquisition in
protecting bacteria from the host immune response. Whilst
this has obvious significance for the initiation of systemic
bacterial disease, it also has implications in host colonisation
by commensal and pathogenic organisms alike.

A further role for plasminogen recruitment in bacterial
colonisation has been demonstrated by several studies of
plasminogen recruitment by streptococci. Plasminogen has
been shown in vitro to act as a linker molecule between
enolase at the surface of pharyngeal cells, and SEN at the
surface of S. pyogenes, thus facilitating the adhesion process
(Figure 2) [137]. When this bridging plasminogen molecule
is activated by tPA to plasmin, it can digest intercellular
junctions and disrupt cell monolayers in ECM models
[137]. Similarly, the streptococcal M protein GSC3 has
been shown to mediate plasminogen-dependant adherence
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of streptococci to pharyngeal cells [40], implying a role
for plasminogen binding in colonisation of the throat and
oral cavity by bacteria. A role for plasminogen binding in
colonisation has been further demonstrated for S. pyogenes
interaction with keratinocytes. Plasminogen on the bacterial
cell surface promoted the internalisation of streptococci
by keratinocytes through the interaction with alf1- and
a5B1-integrins (Figure 2) [130]. In all the cases reported
so far, the role of bacterially bound plasminogen in adher-
ence/internalisation appears to function independently of
the serine protease activity of plasmin.

5. Conclusions

The expression of receptors which enable localisation of
plasminogen to the cell surface is a phenotype common
to a multitude of bacteria. Since the initial identification
of bacterial plasminogen receptors over 20 years ago, a
myriad of receptor types have been identified, associated
with both pathogenic and commensal bacterial species. The
vast array of mechanisms via which different receptors
interact with Glu-plasminogen, Lys-plasminogen, plasmin,
and mini-plasmin suggests that these receptors may have
evolved to mediate interactions with this abundant human
protein under diverse physiological conditions. Indeed,
recent studies show bacterial plasmin(ogen) acquisition is
central to the onset of invasive pathogenesis via fibrin
and ECM degradation; immune evasion via degradation
of various immune effectors; and colonisation of the host
(Figure 2). Much remains to be learned about how diverse
plasminogen receptors interact with plasminogen. For many
receptors, there is limited information on specificities of
interaction with different forms of plasminogen and plasmin
and on the location of binding within the plasminogen
molecule. Recent structural studies suggest that the mech-
anism through which receptors interact with plasminogen
can have different effects on the structure and activation of
this protein which may ultimately influence the pathogenic
process for many bacterial species [10]. Plasminogen recep-
tors clearly play a central role in the relationship between
bacteria and the host, and further elucidation of the
nuances of how microbes interact with plasminogen will
contribute significantly to our understanding of both the
plasminogen molecule and bacterial pathogenesis in the
future.
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