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Abstract

Neuroinflammation plays a critical role in the progression of many neurodegenerative diseases and 

neuropsychiatric illnesses. It is evident that microglia in particular are central to mediating the 

effects of neuroinflammation. Activated microglia release a number of cytokines and chemokines, 

which in turn activate many signal transduction pathways. For instance, interleukin-1 beta and 

tumor necrosis factor alpha regulate transcription of a number of genes within the brain including 

proinflammatory products of the arachidonic acid (AA) cascade. Co-activation of pro-

inflammatory markers and associated cytotoxic products during neuroinflammation process are 

detrimental to neurons by altering the synaptic proteins. In this review, we discuss both 

neuroinflammation as well as excitotoxicity insults reduce synaptic markers such as synaptophysin 

and drebrin in rat brain. Further we discuss here, neurodegenerative and neuropsychiatric illness 

are associated with increased neuroinflammatory and excitotoxicity markers as well as upregulated 

brain arachidonic acid markers and the loss of synaptic markers. The decrease in synaptic markers 

might contribute to reported cognitive defects in neurodegenerative and neuropsychiatric illnesses.

Introduction

It is becoming increasingly clear that neuroinflammation plays a crucial role in the 

development and progression of many neurodegenerative and psychiatric illnesses including 

Alzheimer’s, Parkinson’s, Huntington’s disease, bipolar disorder, schizophrenia and 

depression (Bales et al, 2000; Dobos et al, 2010; Doorduin et al, 2009; Hunot and Hirsch, 

2003; Rao et al, 2010; Silvestroni et al, 2009). Neuroinflammation is a complex combination 

of the responses of all cell types present within the central nervous system (CNS), including 

neurons, macroglia, microglia and infiltrating leukocytes. Infection, trauma, and toxins are 

capable of producing an immediate short lived induction of innate immune response within 

the CNS (Crutcher et al, 2006; Popovich and Longbrake, 2008). Acute neuroinflammation 

triggers activation of resident microglia and the release of inflammatory mediators such as 

cytokines and chemokines (Tansey et al, 2007). Acute insult is typically short-lived and 

unlikely to be harmful to long term neuronal survival. It is believed that an acute 

neuroinflammatory response is generally beneficial to the CNS, since it tends to minimize 

further injury and contributes to repair of damaged tissue. On the other hand chronic 
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inflammation produces long lasting and self perpetuating neuroinflammatory mediators that 

remain after the initial neuroinflammatory insult.

Neuroinflammation: induction of proinflammatory cytokines and 

arachidonic acid cascade enzymes

During neuroinflammation, proinflammatory cytokines such as interleukin-1 beta (IL-1β), 

tumor necrosis factor alpha (TNFα), IL-6 and chemokines including interferon gamma, 

macrophage inflammatory protein and inducible protein (IP)-10 are released by activated 

microglia that promote neuroinflammatory state. IL-1β and TNFα regulate expression of 

many genes, including gene transcription for arachidonic acid (AA) cascade enzymes in 

various cell types via nuclear kappa B (NF-κB) or AP-2 (Acarin et al, 2002; Bauer et al, 
1997; Hoeck et al, 1993; Jupp et al, 2003; Spriggs et al, 1990). In the brain, AA and its 

metabolites influence signal transduction, gene transcription, neuronal activity, apoptosis, 

and other processes (Kam and See, 2000; Leslie and Watkins, 1985; O’Banion, 1999). AA 

released from membrane phospholipids by Ca2+-dependent cytosolic phospholipase A2 

(cPLA2-IVA), secretory (sPLA2 IIA), or Ca2+- independent (iPLA2 VIA), which differ in 

their calcium requirement, phosphorylation, and substrate specificities (Akiba et al, 1999; 

Murakami et al, 1999; Murakami and Kudo, 2002; Murakami et al, 1998; Yang et al, 1999). 

The released AA can be metabolized to prostaglandin (PG)H2 by cyclooxygenase (COX)-1 

or COX-2, converted to cytoprotective epoxyeicosatrienoic acids by cytochrome p450 

epoxygenase or to cytotoxic leukotrienes by 5, −12 or −15 lipoxygenase (LOX) (Funk, 

2001). PGH2 is converted to PGE2 by membrane prostaglandin E synthase (mPGES) or 

cytosolic PGES (cPGES), or by thromboxane synthase (TXS) to TXA2. COX-1 and cPGES 

are expressed constitutively in the brain, whereas COX-2 and mPGES are inducible 

(Pepicelli et al, 2002; Seibert et al, 1995) (Figure-1).

Cross-talk between neuroinflammation and excitotoxicity

Neuroinflammatory markers and AA cascade markers are elevated by excitotoxicity. For 

instance, activated microglia release nitric oxide which blocks reuptake of glutamate at the 

presynaptic site, which results in excessive glutamate at the synaptic cleft and activation of 

NMDA receptors. It is well known that excessive glutamate levels causes excitotoxicity. 

Activation of NMDA receptors activates AA turnover via upregulation of cPLA2 activity, 

protein and mRNA levels in an AP-2 dependent manner (Rao et al, 2007b). In addition, 

chronic NMDA administration to rats upregulates levels of proinflammatory IL-1β, TNFα, 

glial fibrillary acidic protein (GFAP) and inducible nitric oxide synthase (iNOS) in rat brains 

(Chang et al, 2008b). Altogether finding suggests that there is cross-talk between 

neuroinflammation and excitotoxicity that involves release of AA products in the brain. 

Upregulation of neuroinflammatory and AA cascade markers in chronic NMDA 

administrated rat has been shown to cause neuronal loss (Kim et al, 2009a). This suggests 

that both neuroinflammation and associated elevated AA cascade are detrimental to neuronal 

survival. In those conditions synaptic markers (synaptophysin and drebrin) are also prone to 

damage.
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Synaptic proteins

Drebrin is an actin-binding protein neuron-specific isoform (Kojima et al, 1988), abundantly 

found within dendritic spines that are located at postsynaptic excitatory synapses (Aoki et al, 
2005). Drebrin expression was found to be maximal during embryogenesis and decreases 

thereafter (Shirao, 1995). The over expression of drebrin provokes the elongation of spines 

in mature neurons (Hayashi and Shirao, 1999) and the change of dendritic filopodia into 

aberrantly enlarged megapodia in immature neurons (Mizui et al, 2005). Conversely, the 

suppression of drebrin expression reduces spine density and results in the formation of thin 

immature spines (Takahashi et al, 2006). These findings support the idea that the drebrin–

actin complex plays a crucial role in the regulation of dendritic spine morphology.

Synaptophysin is a 38-kd glycoprotein localized in synaptic vesicle membranes. The main 

functions of synaptophysin include docking, fusion, and endocytosis, otherwise known as 

membrane trafficking (Evans and Cousin, 2005).

Neuroinflammation: synaptic protein loss

Neurodegenerative disease

Hatanpaa and others reported decreased cortical drebrin in Alzheimer’s as well as normal 

aging (Hatanpaa et al, 1999). Studies also report that drebrin is decreased in postmortem 

hippocampal (Harigaya et al, 1996) and temporal (Counts et al, 2006) regions obtained from 

severe and mildly cognitively impaired patients. In Alzheimer disease (AD), 

neuroinflammation plays a role in altering the neuronal synaptic proteins. In recent year’s 

decreased drebrin have been shown to correlate with cognitive impairment in patients with 

Alzheimer disease (AD) (Counts et al, 2006; Kobayashi et al, 2004; Kojima and Shirao, 

2007; Zhao et al, 2006). The decreased drebrin in AD might be due to upregulated 

neuroinflammatory and AA cascade markers, since an excess of neuroinflammatory markers 

such as TNFα, IL-1β and AA have been shown to damage neurons by increasing pro-

apoptotic marker and caspase 3 activities (Fang et al, 2008; Gibson et al, 2004; Zhu et al). It 
is possible that elevated AA alone or in combination with neuroinflammation might be 

involved in reducing the synaptic proteins. Upregulated neuroinflammation, AA cascades 

and reduced drebrin can occur in bipolar disorder (Kim et al, 2009b; Rao et al), HIV-1 

transgenic rat (Basselin et al), schizophrenia (Rao et al upublished data) and in n-3 

polyunsaturated fatty acid deprived animals (Rao et al, 2007a).

Synaptophysin has been shown to be reduce during aging (Haley et al) as well as in 

neurodegenerative disease including AD (Hamos et al, 1989).

Neuropsychiatric illness

Postmortem brains from bipolar disorder (BD) and schizophrenic patients showed 

upregulated neuroinflammatory markers and AA cascade markers as well as decreased 

synaptic markers (drebrin and synaptophysin) (Glantz and Lewis, 1997a, b; Kim et al, 
2009b; Rao et al). Cognitive impairment has been reported in BD and SZ patients (Wingo et 
al, 2009; Wobrock et al, 2009).
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Animal models of neuroinflammation

Similar to clinical studies, in animal models of neuroinflammation such as a non-infectious 

rat model of HIV-1 and rats treated with a high dose of lipopolysaccharide (LPS) (200 ng/hr) 

infusion for six days both exhibited upregulated neuroinflammatory markers TNFα, and 

cd11b (figure-1 and 2). In both models there are upregulated AA cascade markers (Rao et al 

2009; Kellom et al unpublished data). However, low dose infusion of LPS (0.5ng/hr) for six 

days increased TNF alpha protein level without a significant change in cPLA2 transcription 

or drebrin protein in rat brain. This suggests that TNFα alone cannot decrease drebrin levels 

in rat brain. In combination, these findings suggest neuroinflammation associated with AA 

signaling could downregulate drebrin levels in rat brain.

Excitotoxicity

In a model of excitotoxicity, an intense stimulation of NMDA results in drebrin loss in 

cultured hippocampal neurons (Halpain et al, 1998). Chronic NMDA administration to rats 

upregulates brain AA turnover with increased cPLA2 activity and cPLA2 transcription in rat 

brain. Chronic NMDA exposure in rats result in upregulated protein and mRNA levels of 

neuroinflammatory markers such as IL-1β, TNF α, GFAP and iNOS in rat frontal cortex 

(Chang et al, 2008a). These studies imply that excitotoxicity and neuroinflammation 

signaling pathways cross-talk with each other and involve AA signaling. Further, chronic 

NMDA administration to rats, results in upregulation of pro-apoptotic factors Bad and Bax 

which causes neuronal loss (Kim et al, 2009a). The combination of neuroinflammation and 

AA signaling could influence the synaptic loss.

N-3 polyunsaturated dietary deprivation model

Clinical and pre-clinical studies support the idea that neuroinflammation associated AA 

cascade signaling results in synaptic loss. A recent study of triple transgenic AD mice has 

shows that n-3 polyunsaturated fatty acid(PUFA) dietary deprivation in mice reduces brain 

drebrin levels (Julien et al, 2008). Dietary n-3 deprivation in rats shows upregulated brain 

AA signaling with increased activity and transcription of both cPLA2 and sPLA2 (Rao et al, 
2007a). This finding suggests either neuroinflammation or AA cascade increase could 

influence the reduction of the synaptic proteins in brain. The role of neuroinflammation or 

AA influence on synaptic proteins loss is not clear. It is apparent that drebrin is regulated by 

the transcriptional factor NXF and is modulated by DHA via phosphotidyl inositol kinase 

(Calon et al, 2004; Ooe et al, 2004). It perhaps AA may be act on this kinase and 

transcription factor of drebrin which could result in the reduction of drebrin transcription. A 

recent study demonstrate that cPLA2 inhibitor protects against prion and amyloid beta 1-42 

induced synaptic loss in cultured rat cortical and hippocampal neurons (Bate et al). Further 

detailed molecular studies are needed to understand the role of proinflammatory AA and its 

metabolites effects on the drebrin and synaptophysin transcription factors.

Drugs

The classical antidepressant fluoxetine, upon chronic administration to rats, upregulates 

hippocampal drebrin level compared with the chronically stressed group (Yang et al, 2003). 

Unlike antidepressants, antipsychotic drugs, olanzapine and haloperidol did not significantly 
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change the hippocampal drebrin level in monkeys (Hill et al, 2006). Thus suggests drebrin is 

modulated by various factors including neuroinflammatory markers. The influence of AA on 

drebrin transcription is not clear. Further studies are warranted to understand the role of 

neuroinflammation and AA on drebrin regulation.

Conclusions

Neuroinflammatory and arachidonic acid markers are associated with synaptic protein loss 

of drebrin and synaptophysin. These changes could contribute to cognitive impairments in 

neurodegenerative and neuropsychiatric illnesses.
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Abbreviations

AA arachidonic acid

AD Alzheimer disease

BD bipolar disorder

cPGES cytosolic prostaglandin E synthase

cPLA2 calcium-dependent phospholipase A2

COX cyclooxygenase

GFAP glial fibrillary acidic protein

gp120 glycoprotein 120

HIV human immunodeficiency virus

HAD HIV-associated dementia

IL-1β interleukin-1β

iPLA2 calcium-independent phospholipase A2

mPGES membrane prostaglandin E synthase

LOX lipoxygenase

NF-κB nuclear factor-kappa B

PG prostaglandin

sPLA2 secretory phospholipase A2

TNFα tumor necrosis factor α
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Tg transgenic

TX thromboxane

TXS thromboxane synthase
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Figure 1. 
Schematic representation of arachidonic acid cascade
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Figure 2. 
Representation of cross-talk between neuroinflammation and excitotoxicity involving 

arachidonic acid cascade.
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