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Abstract
The current obesity epidemic clearly has many causes, including the impact of our modern world
on both our diet and our lifestyle/physical activity. Although many interventions have been
recommended, the prevalence of obesity continues to rise and has forced a re-evaluation of the
potential interventions that could have an impact. In recent years it has been definitively shown
that microbiota in the gastrointestinal tract are altered in obese individuals. Recent data provide a
potential mechanistic understanding of the interactions between microbiota and obesity and allow
potential new interventions to the control of obesity to be proposed.
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Introduction
There is currently an epidemic of obesity occurring in the United States, with the most
recent study showing a prevalence of 32.2% among adult men and 35.5% among adult
women [1]. Significant factors in this epidemic are our diets, which are increasingly high in
carbohydrates and fats, and our lack of physical activity [2]. Although critical, these factors
clearly are not the whole story; in 2004, Bäckhed et al. [3] proposed an additional
mechanism that implicated gastrointestinal (GI) microbiota.

The resident population of microbiota is an essential part of the development and maturity of
the host intestinal track and immune system and has therefore come to be considered by
some a virtual organ known as the microbiome [4]. The gut microbiome is the totality of
microbes (bacteria, viruses, etc.), their genetic elements (genomes), and environmental
interactions within the GI track. This microbiome contains over 10 times more organisms
than the number of cells in a human body, but unlike other organs its composition is
somewhat unstable. The resident populations of bacteria can be altered within 24 hours of a
dietary change; therefore, obtaining a unified picture of the microbiome can be a challenging
proposition [5].

The involvement of the gut microbiota in the obesity epidemic was first suggested by the
fact that adult germ-free (GF) (ie, bacteria-free) C57BL/6 mice had a 60% increase in body
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fat content when they were conventionalized (ie, colonized) with cecal microbiota from a
healthy, normal C57BL/6 mouse [3]. The mechanism for this increase in body fat content
was hypothesized to include the fact that the microbiota would have the ability to regulate
energy harvest from food components and therefore alter energy storage in the host. Since
that original publication in 2004, there have now been 138 primary data publications and 60
reviews that are found by a PubMed search for obesity and microbiota. These publications
have led to the proposal of three unique mechanisms through which microbiota may impact
host obesity, and these are discussed in this review.

Experimental Approaches to the Study of the Microbiome
The study of the gut microbiome is unique among organ systems, as the microbiome can be
shed and replenished and there is the unique opportunity to study this “organ” over long
periods of time by obtaining fecal samples from a single individual. This type of analysis
has led to the concept of “enterotypes” of the gut microbiome and recent data from 22
individuals have indicated a limited number of host-microbial symbiotic states that might
respond differently to diets [6]. However, data from fecal samples have to be interpreted
with caution, as several groups have indicated that fecal microbiota communities differ from
mucosal-associated bacteria in the GI tract [7, 8]. As the techniques to study, measure, and
modify the microbiome are somewhat unique to the field and sometimes are not within the
usual repertoire of skills other biologists would utilize, we have detailed some experimental
approaches in this review.

Bacterial Culture and Identification
Bacterial culture and identification have been extensively used to identify pathogenic or
residential bacterial components of feces or tissue [9]. This method utilizes long-standing
phenotypic identification practices such as motility, shape, colony structure, and sugar/
metabolite utilization. However, many species remain undefined because there currently is
no known method to culture these groups outside of the intestinal tract, and for this reason
more advanced methods have been developed using nucleotide amplification.

Fluorescence In Situ Hybridization
Fluorescence in situ hybridization (microscopy-FISH) has historically been utilized to
identify bacteria present in tissue sections without nucleic acid purification. Briefly,
radioactive or fluorescent-tagged nucleic acid–based probes targeting 16S ribosomal RNA
are used to permeate preserved histologic samples and allow for visualization of specific
organisms [10]. This procedure has the advantage of precise localization of the bacteria, but
does not give quantitative results. A newer method that combines FISH with flow-cytometry
(FCM-FISH) no longer allows for tissue localization, but when combined with DNA stains
is a rapid, reliable, and quantitative method for the analysis of mixed bacterial samples in
feces [11].

Quantitative Real-Time Polymerase Chain Reaction
Quantitative real-time polymerase chain reaction (qRT-PCR) is a second method for
enumerating the numbers of bacteria present in feces (or tissue samples), but it relies on
nucleic acid extraction from the samples. qRT-PCR has very high sensitivity and
reproducibility and is very rapid to perform [12]. As with FISH, specific microorganisms are
detected based on sequence-specific probes, but only organisms with known sequences can
be quantified.
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Denaturing Gradient Gel Electrophoresis and 454 Pyrosequencing
There are two nucleic acid–based methods that can identify unknown and nonculturable
organisms. Denaturing gradient gel electrophoresis (DGGE) is a method of creating a
physical picture of bacterial diversity through a two-dimensional (2D) denaturing gel. DNA
is amplified and separated on the 2D gel, where the amplified products migrate according to
G:C content and are visualized as unique bands on the gel [13]. Bacteria can be identified
through a combination of purification of DNA from the gel and Sanger sequencing methods
[14]. Although Sanger sequencing methods can be used to identify numerous bacterial
sequences in GI samples, the new high-throughput pyrosequencing technology offers a more
rapid and cost-effective method for total microbiome analysis. 454 Pyrosequencing is a
method that differs from traditional sequencing in that it does not measure chain
termination, but instead relies on the detection of pyrophosphate release upon nucleotide
incorporation. This method has now been combined with a novel barcoding approach, which
allows simultaneous sequencing of multiple individual samples [15, 16].

Metatranscriptomic Approach and Nuclear Magnetic Resonance
The use of these rapid and extensive sequencing techniques has revealed the enormous
diversity of the GI microbiota and its rapidly changing nature [5, 17]. Therefore, recent
studies have combined these methods with bacterial gene expression analysis. This
metatranscriptomic approach has identified a “core microbiome” at the gene expression,
rather than at the organismal lineage, that is associated with obesity [17, 18]. A second
method to look at the function of this “core microbiome” is via metabolomics. Nuclear
magnetic resonance (NMR) can be used to measure very small molecules, such as individual
amino acids, carbohydrates, and lipids/fatty acids. By utilizing the unique magnetic
properties from each molecule, NMR measures the magnetic radiation from a sample and is
able to measure hundreds of molecules. This is optimal when attempting to measure small
molecules from either serum or even feces [19]. Using this type of technique, microbial
metabolites generated during colonic fermentation of food stuffs can be determined and their
subsequent impact on blood and tissue metabolites determined [20–22].

Germ-Free Models
The concept of altering commensal populations to enhance the health of humans has been
long studied, but has only recently been utilized for manipulation of the obese phenotype.
Through the use of mouse models, we are able to extract information about how each
individual group of bacteria contributes to the microbiome and to the host. GF models are
mice or rats that are completely bacteria free. These mice are optimal as negative controls
and also invaluable as a “clean source” when looking to mono-colonize an individual with
single bacteria to understand how they impact the host [23–25]. One of the landmark
experiments indicating the role of the microbiota in obesity utilized GF mice, which were
colonized with an “obese microbiota” or a “lean microbiota.” The “obese microbiota”
transfer resulted in mice with a greater increase in total body fat and clearly identified the
gut microbiota as a contributing factor in the obesity story [26]. Mice that are colonized with
a specific known bacteria are termed gnotobiotic (or “known life”) and can help us
understand the role of specific bacteria in inflammation and disease course [24].

Mechanisms Linking Microbiota and Obesity
The earliest observations indicated that mouse models of obesity (ie, the ob/ob mouse) had
an alteration in the overall proportions of two major divisions of bacteria. Normal humans
and mice have 60% to 80% Firmicutes (which are primarily nonculturable, butyrate-
producing Clostridium cluster XIVa) and 20% Bacteroidetes (Cytophaga-Flavobacterium-
Bacteroides) [27]. However, the obese mouse model (ob/ob) had a 50% reduction in
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Bacteroidetes and an increase in Firmicutes [27, 28]. A similar decrease in Bacteroidetes and
increase in Firmicutes is also seen when C57BL/6 mice are fed a high-fat (HF) diet [28, 29,
30•, 31, 32•]. The reciprocal result is seen in caloric reduction studies [30•]. To determine if
these alterations in microbiota contributed to HF diet-induced obesity and insulin resistance,
several groups have now fed a HF diet to GF mice. Two groups used GF C57BL/6 mice and
both determined that GF animals were protected against both obesity and insulin resistance
after HF diet, therefore implying that gut microbiota clearly influence the effects of diet on
the host [33, 34]. However, a third group utilized C3H mice and concluded that the absence
of intestinal microbiota did not protect mice from diet-induced obesity [35]. Although the
reasons for this difference in results are not known, one possibility is that some strains of
C3H mice are resistant to the gram-negative bacterial product, lipopolysaccharide (LPS). As
increased levels of and response to systemic LPS have been proposed as one of the potential
mechanisms of microbiota-influenced obesity (see below), if these mice cannot respond to
LPS, then this might explain the discrepancy.

Altered Energy Intake
The resident bacteria within the GI tract are responsible for a significant portion of our
energy intake, allowing us access to energy sources that may have otherwise been
indigestible. The Firmicutes that are increased in obese mice and humans have been shown
to be more adept at breaking down otherwise indigestible carbohydrates and converting
them into absorbable energy products [5, 17, 36, 37]. If the microbiota were to shift between
lean and obese individuals, it would seem likely that this change would affect the efficiency
of energy production/absorption in the GI tract and may either facilitate or inhibit
progression toward obesity. When analyzed via gene chips, it was observed that bacteria
from obese individuals have increased expression in gene sets specific to motility,
transcription, and saccharide metabolism [26].

Taking all of this into account, you can begin to piece together a picture of the path toward
obesity. Westernized diets push the commensal populations toward a Firmicutes-friendly
environment, ending with an overall increase in Clostridia populations. The increased
Clostridia populations, acting as more efficient carbohydrate metabolizers, extract greater
energy from the caloric intake, allowing for higher energy utilization. That extra energy, if
not spent, will ultimately be stored as fat deposits. To better understand the disposition
obese individuals have toward increased energy consumption, colonic/cecal health was
examined as well as GI metabolites. Upon examination, cecal contents of both mouse and
human studies revealed that obese individuals had significantly increased levels of short-
chain fatty acids (SCFAs) [36, 38]. SCFAs such as acetate, propionate, and butyrate were in
greater abundance in obese individuals. SCFAs are common byproducts of carbohydrate
metabolism [39]. It should not be surprising that most SCFAs (specifically butyrate)
producing bacteria belong to Clostridia cluster XIVa and IV [40]. Concentrations of SCFAs
were measured in lean and obese mice via NMR. Overall, SCFAs were increased in the
urine of obese mice compared with lean [41]. Although acetate has been primarily
researched as a factor in high cholesterol, butyrate is highly regarded as an integral
component to colonic health [42, 43].

Increased Fatty Acid Metabolism
One of the first publications that implicated the gut microbiota as an environmental factor
that regulated fat storage observed that GF C57BL/6 mice conventionalized with normal
microbiota had a suppressed expression of intestinal fasting-induced adipose factor/
angiopoietin-like protein 4 (Fiaf/Angptl4) [3]. Fiaf/Angptl4 is a target of the nuclear
receptor PPAR-α in the liver, but is also expressed in white adipose tissue, skeletal muscle,
and intestine [44]. One function of Fiaf/Angptl4 appears to be its ability to raise plasma
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triglycerides via its ability to inhibit lipoprotein lipase activity. Through the use of Fiaf
knockout mice it was established that the suppression of Fiaf/Angptl4 is essential for the
microbiota-induced deposition of triglycerides in adipocytes seen after conventionalization
of GF mice [3, 33]. It has also recently been shown that the Chinese supplement Rhizoma
coptidis can lower body adipose weight and that one potential mechanism for this finding is
an inhibition of gut bacterial growth and a subsequent increase in Fiaf/Angptl4 expression in
the intestine [45].

Microbiota-Associated Inflammation
For more than 15 years, it has been clear that adipose tissue in obese models has an elevated
expression of proinflammatory cytokines such as tumor necrosis factor-α (TNF-α). This has
been reported for multiple rodent models of obesity, including the diabetes (db/db), obese
(ob/ob), and tubby (tub/tub) mice and the Zucker (fa/fa) rat, as well as obese female patients
[46, 47]. This TNF-α is primarily made by adipose tissue macrophages and it mediates
insulin resistance through its ability to decrease the tyrosine kinase activity of the insulin
receptor [48, 49]. Diets known to induce obesity and insulin resistance, such as the HF diet,
can increase expression of TNF-α [50]. However, the induction of obesity and insulin
resistance are ameliorated if mice are deficient in either TNF-α or the TNF-αR [51, 52].

But why does a HF diet and/or obesity lead to a chronic inflammatory state? Initially, the
hypothesis was that increased nutritional fatty acids could lead to activation of the toll-like
receptors (specifically TLR4) and subsequent inflammation [53]. However, as discussed
above, a HF diet shifts the intestinal microbiome very quickly to a decrease in Bacteroidetes
and an increase in both Firmicutes and Proteobacteria [5, 29]. One proposal is that this
alteration in intestinal microbiota could lead to increased activation of TLR4, and therefore
be partially responsible for the chronic inflammatory state seen in obese individuals.

To address this question, Cani et al. [54] initially asked if a HF diet would increase plasma
concentrations of LPS, a TLR4 ligand made by gram-negative bacteria. This low level of
LPS in the plasma has been termed “metabolic endotoxemia.” The data indicated that a HF
diet in C57BL/6 mice did increase levels of plasma LPS and that direct infusion of LPS
mimicked the physiologic effects of a HF diet [54]. Moreover, the effects of the HF diet
were ameliorated in mice lacking a component of the TLR4 receptor complex—CD14. This
same group went on to implicate intestinal bacteria in the increased plasma concentrations of
LPS through the use of oral broad-spectrum antibiotics, which significantly decreased the
levels of intestinal microbiota and the levels of plasma LPS [55]. Additionally, the
administration of a prebiotic (oligofructose) resulted in an increase in gram-positive
intestinal bacteria (including Bificobacteria) and a decrease in plasma LPS [56].

These observations allow the consideration that plasma LPS might be a biomarker of the
status of obesity-prone individuals or the impact of therapeutic probiotics on obesity-
associated intestinal microbiota. Several recent studies indicate that the answer may be yes.
The first study investigated serum LPS activity in more than 7000 subjects with a 10-year
follow-up. This study concluded that both previously diagnosed diabetic patients, as well as
patients with newly diagnosed diabetes (incident diabetes) had higher LPS levels than
nondiabetes individuals [57]. In addition, therapeutics such as oral probiotics (Lactobacillus
casei), when given to mice with diet-induced obesity, can improve not only insulin
resistance, but can also reduce plasma levels of LPS-binding protein (a marker of
endotoxemia) [58].

This involvement of TLR activation was confirmed in a Sprague-Dawley rat model fed a HF
diet, which can exhibit either an obesity-prone or an obesity-resistant phenotype. All the
obesity-prone rats, but none of the obesity-resistant rats, had increased TLR4 activation [37].
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Additional support comes from an experiment utilizing gnotobiotic and conventional Swiss
Webster mice, which demonstrated that conventionally raised mice on the HF diet had
increased hepatic levels of the inflammatory marker serum amyloid A, but that this effect of
the HF diet was ameliorated in MyD88-deficient mice (MyD88 is a component of the TLR
signaling pathway) [59]. Although TLR4 has been the receptor most implicated in this
mechanism, it has also been recently shown that mice lacking TLR5 have metabolic
syndrome [60]. This is at least in part due to an altered intestinal microbiota, as transfer of
the microbiota from a TLR5-deficient mouse to a wild-type gnotobiotic mouse conferred
metabolic syndrome to the recipients [60]. Intriguingly, a recent study on insects has also
demonstrated a metabolic syndrome that is induced by a protozoan intestinal infection [61].

The mechanism for this increased plasma LPS from intestinal microbiota is probably
increased intestinal permeability. C57BL/6 mice fed a HF diet have increased permeability
to small molecules, such as FITC-dextran and also have decreased or altered expression of
the tight junctional proteins occludin and zonulin-1 [55]. Similar findings were seen in HF
diet–raised obesity-prone Sprague-Dawley rats, but not in obesity-resistant rats [37]. The
impact of intestinal microbiota on permeability has recently been shown to involve
glucagon-like peptide-2 (GLP-2) [62]. If ob/ob mice are given a GLP-2 agonist, then
intestinal permeability is lowered, and tight-junction integrity and the systemic
inflammatory phenotype is improved. As GLP-2 has receptors not only in the intestine but
also in the brain, it is an intriguing possibility that there is a gut-brain axis that might
potentially link intestinal microbiota to feeding behaviors [63]. Intracerebroventricular
infusion of GLP-2 can inhibit food intake and, consequently, alterations in intestinal
microbiota may have long-term effects on the gut-brain axis and body weight homeostasis
[64].

Establishment of the Microbiome
It appears clear that the microbiota can impact energy metabolism and be associated with
obesity and metabolic endotoxemia. If so, then the questions arise of: How do we acquire
our microbiota? What is known to influence the microbiota present? Can we modify our
microbiota in a predetermined fashion? Many studies have shown that the initial bacterial
colonization of the intestine is at birth, primarily from the mother and/or other caregivers
[65, 66]. However, newer work has now focused on the impact of microbiota on weight gain
during pregnancy and on whether this impacts the subsequent weight of the child later in
life.

The majority of this work has been published by a group from Finland, who have primarily
utilized the techniques of FCM-FISH and qRT-PCR to show that if a mother was
overweight before pregnancy, then she had significant increases in the numbers of fecal
Bacteroides-Prevotella group (FCM-FISH) and Staphylococcus aureus (qRT-PCR) from the
first to the third trimester [67]. The impact of this alteration in maternal microbiota on the
microbiota of 1- and 6-month-old infant stool samples indicated that the infant fecal
microbial composition was influenced by the maternal weight gain during pregnancy and by
maternal body mass index (BMI) during early pregnancy [68]. Six-month-old infants from
mothers with a BMI greater than 25 kg/m2 had more fecal Clostridium histolyticum (FCM-
FISH) and Clostridium leptum (qRT-PCR), but less Bifidobacterium genus (qPCR).
However, in contrast to the findings in the mothers, the levels of Bacteroides-Prevotella
decreased in 6-month old infants from mothers with high BMI or who had excessive weight
gain. In support of this decrease in Bacteroides-Prevotella in offspring of overweight
mothers, the offspring of rats fed a HF diet also had fewer Bacteroides-Prevotella in the
jejunum [69]. Additionally, rats that were exposed to pre-weaning overnutrition also had
lower numbers of Bacteroides-Prevotella [70].
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To determine if this altered microbiotal composition actually has any correlation with
weight in children, this same group of children was followed until age 7 years [71]. None of
the bacterial groups found to be significant in overweight mothers or their offspring were
correlated with increased weight gain in childhood; however, increased levels of S. aureus
during infancy did correlate with a child being overweight at age 7 years. A second study
also investigated whether factors known to alter intestinal microbiota have an effect on body
weight at age 7 years [72]. Factors investigated included delivery mode, maternal pre-
pregnancy BMI, and early exposure to antibiotics (< 6 months of age). Children from
mothers with a high pre-pregnancy BMI were more likely to have overweight children at
age 7 years; however, this study did not correlate these findings with the intestinal
microbiota composition.

Although these studies appear to indicate that our microbiota is established very early in life,
there are also studies that indicate that microbiota can be manipulated by various weight loss
techniques. In adolescents subjected to an obesity treatment program including both calorie
restriction and increased physical activity, there was an increase in the Bacteroides-
Prevotella group and a decrease in Clostridium spp [73, 74]. In adults who have undergone
Roux-en-Y gastric bypass the Bacteroides-Prevotella and Escherichia coli species increased
3 months after surgery, whereas lactic acid bacteria (including Lactobacillus/Leuconostoc/
Pedicoccus group and Bifidobacterium genus) decreased [5, 76].

If weight loss is associated with altered microbiota and if the obesity phenotype can be
transferred by fecal microbiota, then it could be proposed that a bacteria might exist that
could induce a lean phenotype. This concept has been most extensively tested through the
administration of probiotics. Probiotics are live microorganisms that are thought to be
beneficial to the host. The most common types are lactic acid bacteria and bifidobacteria and
are often found in yogurt or dietary supplements. Studies using Lactobacillus rhamnosus
GG, Lactobacillus plantarum strain 14, Lactobacillus paracasei ssp paracasei F19, and
Bifidobacterium breve B-3 all demonstrated that probiotic intervention appears to have a
beneficial effect on obesity [77–80]. The probiotics appear to work by reducing mean
adipocyte size, inhibiting lipoprotein lipase, and improving insulin sensitivity [77–79].

Conclusions
Obese individuals and models all show a propensity for a dysbiosis that includes an
increased ratio of Firmicutes:Bacteroidetes. This alteration in the proportion of bacteria in
the lumen of the GI track affects not only the ability of the microbiome to generate energy
sources from indigestible carbohydrates, but also the deposition of triglycerides in
adipocytes. This altered bacteria also appears to have an increased exposure to the host
immune system due to a leaky intestinal barrier and induces a constant state of chronic
inflammation. This impact of the microbiota on obesity has led to multiple preliminary
studies on the use of “good” probiotic bacteria to alter the obese phenotype. These studies
have all shown that probiotic intervention has a beneficial effect and may lead to novel
interventions for overweight or obese human patients.
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