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Abstract

Dopamine plays an important role in several brain functions and is involved in the pathogenesis of 

several psychiatric and neurological disorders. Neuroimaging techniques such as positron emission 

tomography allow us to quantify dopaminergic activity in the living human brain. Combining 

these with brain stimulation techniques offers us the unique opportunity to tackle questions 

regarding region-specific neurochemical activity. Such studies may aid clinicians and scientists to 

disentangle neural circuitries within the human brain and thereby help them to understand the 

underlying mechanisms of a given function in relation to brain diseases. Furthermore, it may also 

aid the development of alternative treatment approaches for various neurological and psychiatric 

conditions.
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Dopamine (DA) is involved in many cerebral functions, for example, learning, reward, 

motor control, emotion, and executive functions. Given its pervasiveness, the dopaminergic 

system has been extensively targeted for the treatment of various psychiatric and 

neurological diseases, many of which are known to be associated with DA abnormalities, for 

example, Parkinson disease (PD), Huntington disease, depression, schizophrenia, and 

behavioral/chemical addiction. Nevertheless, how regional dopaminergic changes contribute 

to the various symptoms involved in these diseases is not yet clear.

Animal studies have revealed that there are three major dopaminergic pathways: 

nigrostriatal, mesolimbic, and mesocortical. Nigrostriatal DA plays a crucial role in cortico-
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striato-pallido-thalamo-cortical circuitry (Alexander and others 1986). It is thought that DA 

in this pathway facilitates the selection of an optimal response from competing motor/

cognitive programs by balancing activity within and between a direct and an indirect 

pathway; that is, DA acts to excite the relevant motor/cognitive program while inhibiting 

irrelevant ones (Mink 1996, 2003). The mesolimbic and mesocortical dopaminergic 

pathways originate in the ventral tegmental area (VTA) of the midbrain and project to the 

limbic system (via the nucleus accumbens) and the frontal cortex, respectively. As such, the 

former is proposed to be important for reward-related learning and emotion (Haber and 

Knutson 2010) whereas the latter is involved in various executive cognitive functions 

(Floresco and Magyar 2006). Neuroimaging studies corroborate this functional network in 

the human (Egerton and others 2009) but are limited by the fact that they cannot determine if 

an area is an essential mediator of a particular brain function or one that is merely activated 

in tandem with other essential components (Walsh and Cowey 2000).

That said, the refined combination of interference techniques (e.g., transcranial magnetic 

stimulation [TMS]) with brain imaging (e.g., positron emission tomography [PET] and 

single-photon emission computation tomography [SPECT]) allows for this limitation to be 

overcome and allows for the investigation of the functional implications of neurochemical 

interactions within the human brain in vivo.

Traditionally, the striatal nodes of the nigrostriatal and mesolimbic pathways have been most 

extensively studied using the gold-standard dopaminergic receptor ligands [11C]raclopride 

for PET and [123I]IBZM for SPECT. The recent development of high-affinity DA receptor 

ligands such as [11C]FLB 457, [18F]fallypride, and [123I]epidepride has broadened the focus 

of neuroscientists to include extrastriatal regions within the mesolimbic and mesocortical 

dopaminergic pathways. This review attempts to summarize the animal experiments that 

provided the rationale for “perturbing and measuring” dopaminergic changes in the human 

brain. We will then give particular consideration to the most recent reports that have 

employed TMS methodology combined with displaceable PET agents in the human. We will 

also summarize the possible implications of this work and speculate on the future of brain 

stimulation/PET-ligand studies.

Measuring Dopamine Release in Experimental Animals

Microdialysis experiments conducted in experimental animals have documented that the 

prefrontal cortex (PFC) regulates DA release in the striatum (Del Arco and Mora 2008; 

Grace and others 2007). In particular, electrical stimulation applied for 20 min at 50 μA and 

100 μA over the bilateral PFC increased striatal DA concentration by 38% and 69%, 

respectively (Taber and Fibiger 1995). Similarly, repetitive TMS (rTMS; 1000 pulses, 20 Hz, 

50 pulses/train, 20 trains, 2.5-min intertrain interval) increased extracellular DA in the dorsal 

striatum (~70%; peak at 90 min after the end of rTMS) and nucleus accumbens (NAc; 

~30%; peak at 120 min after the end of rTMS) in anesthetized rats (Keck and others 2002).

There are two main pathways through which the PFC can modulate dopaminergic levels: a 

corticonigral pathway (Karreman and Moghaddam 1996; Keefe and others 1993; Murase 

and others 1993) and a corticostriatal pathway (Keefe and others 1992). These two pathways 
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present with significant differences. In the corticostriatal pathway, dopaminergic terminals 

are influenced by glutamate. In fact, glutamate receptor antagonists abolish PFC-regulated 

increase of striatal DA (Karreman and Moghaddam 1996; Taber and others 1995). Zangen 

and Hyodo (2002) reported increased glutamate (~55%) levels in addition to DA (~20%) in 

the NAc after frontal cortex stimulation (2 Hz, 200 pulses, 98% of maximum intensity). 

Therefore, PFC regulation over striatal DA release described in these electrical and TMS 

studies is likely performed via corticostriatal glutamatergic afferents to adjacent 

dopaminergic nerve terminals (Sesack and Pickel 1992) regulating tonic release of DA (West 

and others 2003). In conscious rats, DA release after PFC stimulation was considerably more 

sustained (>150 min) compared with anesthetized rats even after short rTMS (300 pulses; 

Keck and others 2002), suggesting that other mechanisms may play an important role in the 

awake state.

The PFC also regulates DA release via the corticonigral pathway (Karreman and 

Moghaddam 1996; Keefe and others 1993; Murase and others 1993), which is not influenced 

by glutamate but can be affected by tetrodotoxin, which blocks cell body firing and 

abolishes diffuse stress-induced DA release (Keefe and others 1993).

Models of DA regulation suggest that DA released in the synapse (phasic release) is not 

completely cleared by DA transporter (DAT) and may travel up to 7 to 8 μm outside the 

synapse, thereby influencing neighboring extra-synaptic receptors, especially high-affinity 

D2 receptors (Rice and Cragg 2008). This is even more true in conditions such as PD, in 

which DA released from the degenerating terminals, because of the loss of reuptake sites, 

tends to diffuse out of the synapse into the extracellular space acting on neighboring 

receptors of adjacent and nearby denervated sites (see review by Zigmond and others 1990). 

Thus, although there is clear evidence that phasic and tonic DA release interact and 

influence each other (Grace 1991), it is very likely that rTMS of the PFC may influence the 

striatal DA level via modulation of both modes of DA activity.

Animal studies have revealed that TMS can also induce dopaminergic changes outside the 

striatum in cortical regions (Ben-Shachar and others 1997; Keck and others 2000, 2002) via 

several mechanisms, including cortical afferents to the VTA (Carr and Sesack 2000), direct 

modulation of DA activity in the targeted tissue (Shaul and others 2003), and/or reciprocal 

cortico-cortical influence (Koch and others 2007; Koski and Paus 2000; Paus and others 

2001). Administering rTMS (50 pulses, 20 Hz) over the rat brain increased DA 

concentration in the hippocampus (~18%) whereas it decreased DA levels in the frontal 

cortex (~26%) immediately after rTMS (i.e., acute effect of rTMS; Ben-Shachar and others 

1997). Subsequent studies, although confirming the effect of rTMS (1000 pulses, 20 Hz, 50 

pulses/train, 20 trains, 2.5-min intertrain interval) over the PFC, showing increased 

extracellular DA in the hippocampus (~150%; peak at 30 min after the end of rTMS) in 

anesthetized rats (Keck and others 2002), failed to show significant differences in frontal DA 

concentration during real and sham rTMS (Kanno and others 2004). Of particular interest 

was the observation that bursts of electrical stimulation of mesocortical axons increased 

frontal DA concentration to a greater extent compared with tonic stimulation (Bean and Roth 

1991) and that rTMS-induced DA release was differently regulated in conscious animals 

compared with the anesthetized animals (Erhardt and others 2004; Keck and others 2002). 
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Another important consideration was the stimulation intensity. It is commonly believed that 

higher stimulation intensities will produce a stronger effect. However, it has been shown that 

high-intensity (~149% motor threshold [MT]) stimulation, as well as low-intensity 

stimulation (~36% MT), did not modulate DA concentration. On the contrary, rTMS (500 

pulses, 25 Hz, 25 pulses/train, 20 trains, 1-min intertrain interval) delivered at 110% MT 

increased dorsal striatal DA level (~30%) up to 100 min after the end of rTMS (Kanno and 

others 2004). Thus, based on these reports, it is important to keep in mind that stimulation 

modalities and level of vigilance may play an important role in rTMS-induced DA 

transmission in the human brain.

Table 1 provides a summary of the main features of those studies investigating the 

dopaminergic effect of TMS in animals.

TMS and Striatal DA Imaging in Human

A recent consensus paper (Siebner, Bergmann, and others 2009) has categorized the timing 

of TMS relative to the acquisition of neuroimaging data based on the question to be tackled 

using the combined perturb-and-measure approach. In principle, TMS can be delivered 

while neuroimaging data are acquired (online approach). Alternatively, TMS may be applied 

offline before or after neuroimaging. This offline TMS-neuroimaging approach is 

technically easier and can be used to make causal interferences about the dopaminergic 

contribution of brain areas and related neural networks.

The long-lasting neurochemical and neurophysiological effects of brain stimulation observed 

in experimental animals combined with this offline approach have opened ample 

opportunities for basic neuroscience research and clinical application in humans. However, 

because of obvious evolutionary differences, significant controversies arise when one 

extrapolates findings from the animal to the human brain. To fully understand and exploit 

the usefulness of TMS in clinical settings, it is necessary to study TMS-induced 

neurochemical changes directly in the human brain. Obviously, direct measurements of DA 

levels are not feasible in human; however, PET/SPECT imaging allows one to indirectly 

quantify synaptic dopaminergic changes using different radioligands (Farde and others 1992; 

Seeman and others 1989).

In displacement studies, for example, by comparing control versus active conditions, one can 

estimate modulations in synaptic DA concentration through changes in binding potential 

(BP), that is, intervention-induced DA release (Laruelle 2000; Fig. 1). In these displacement 

studies, [11C]raclopride and [123I]IBZM are the most commonly used radiotracers to 

quantify DA transmission in the striatum using PET and SPECT, respectively. For example, 

it has been demonstrated that various interventions including drugs (Dewey and others 1993; 

Laruelle and others 1997), behavioral tasks (Koepp and others 1998; Monchi, Ko, and others 

2006), and rTMS (Strafella and others 2001, 2003, 2005) are able to induce significant and 

reproducible changes in [11C]raclopride binding, which is inversely proportional to synaptic 

DA transmission (Laruelle 2000).
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There are three major methods to estimate the ligand BP (Slifstein and Laruelle 2001): 1) 

equilibrium method, 2) graphical method, and 3) kinetic method. The sustained equilibrium 

method with bolus + infusion has been proposed as the most effective and accurate way to 

estimate BP changes (Slifstein and Laruelle 2001). However, the constant infusion of 

decaying ligand inevitably increases the amount of injected nonradioactive tracers, which 

will have a confounding effect on the accurate measure of BP for the short half-life tracers 

such as [11C]raclopride. In addition, intervention-induced increases of DA release may 

promote internalization of D2 receptors that lasts for more than 4 hours and may limit the 

efficacy of the counterbalancing of the active versus control condition (Laruelle 2000; 

Skinbjerg and others 2010). The graphical and kinetic methods with bolus injection of 

radioactive tracers can employ the dual scan paradigm. The graphical method does not make 

prior assumptions regarding compartmental models and thus is less exposed to kinetic 

modeling errors (Logan 2000). However, BP values can be significantly biased in the 

presence of statistical noise (Slifstein and Laruelle 2001), especially in voxel-based analysis. 

Various efforts have been made to overcome the noise-driven biases (Logan 2003; Logan 

and others 2011). As for the kinetic method, the simplified reference tissue model (SRTM) 

has been proposed to produce a reliable estimate of BP (Gunn and others 1997). In addition, 

combined with the residual t-test proposed by Aston and others (2000), this method provides 

some advantages by increasing sensitivity while reducing false-positive results. Therefore, 

the SRTM combined with the residual t-test may be the most suitable method to reliably and 

efficiently measure TMS-induced DA release. For a detailed review of the methodology of 

radioligand PET, see Slifstein and Laruelle (2001).

Targeting the motor or visual cortex with TMS is relatively easy, as these areas induce 

detectable motor-evoked potentials and phosphenes, respectively. However, the targeting of 

the other cortical areas (e.g., the dorsolateral prefrontal cortex [DLPFC]) requires a more 

complicated approach. Although one of the simpler ways to determine the location of the 

target is to use the international electroencephalography electrode position (Pascual-Leone 

and others 1991), a more sophisticated and precise technique is to use the frameless 

stereotaxy system (Paus and others 1997). With this method, one can identify a target area 

given in standardized stereotaxic space (Talairach and Tournoux 1988) in each individual 

based on his or her high-resolution structural MRI (Collins and others 1994).

Using frameless stereotaxy for guiding the TMS coil (Paus and others 1997) and SRTM for 

[11C]raclopride BP estimation (Aston and others 2000; Gunn and others 1997), Strafella and 

others (2001, 2003) examined the functional organization and interaction of the 

corticostriatal pathway and found evidence of frontal-striatal control of DA release in the 

human brain. They demonstrated in young healthy subjects that rTMS (450 pulses, 10 Hz, 3 

blocks, 15 trains/block, 10 pulses/train, 10-s intertrain interval, 10-min interblock interval) 

over the left DLPFC decreases [11C]raclopride BP in the ipsilateral caudate nucleus (7.36%) 

compared with the changes in BP after occipital cortex stimulation (control condition; 

Strafella and others 2001; Fig. 2a; Table 2). Later, the same group studied the effect of rTMS 

over the primary motor area (M1), which resulted in a decrease in [11C]raclopride BP in the 

ipsilateral putamen (9.49%) (9.49%; Strafella and others, 2003; Fig. 2b; Table 2). The 

explanation for those findings was that rTMS-induced activation of corticostriatal fibers led 

to focal DA release in the projection site of the stimulated area of cortex (Fig. 3a). The 
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anatomical location of the cluster of DA release found following stimulation of those 

cortical areas corresponded exactly to the corticostriatal distribution reported in previous 

anatomical and physiological studies in monkeys (Jones and others 1977; Kemp and Powell 

1970; Kunzle 1975; Takada and others 1998; Tokuno and others 1999; Whitworth and others 

1991; Yeterian and Pandya 1991).

More recently, Pogarell and others (2006) showed that rTMS of the prefrontal regions (3000 

pulses, 10 Hz, 100 pulses/train, 30 trains, 30-s intertrain interval, 100% RMT) in patients 

with depression induced changes in striatal [123I]IBZM BP (9.6%) that were surprisingly 

comparable with amphetamine-induced changes (8%; Pogarell and others 2007; Fig. 4a). 

However, it was unclear why there was bilateral [123I]IBZM BP reduction after unilateral 

stimulation (Pogarell and others 2006, 2007) whereas only ipsilateral BP changes were 

observed in previous [11C] raclopride PET studies performed in young healthy subjects 

(Strafella and others 2001, 2003). It is possible that the disease and the different stimulation 

paradigm may have played a significant role. In fact, one could predict that the rTMS effect 

may differ between patients and healthy subjects given obvious differences in the 

neurochemical, anatomical, and functional state between these two groups (Rigucci and 

others 2010). This is also emphasized by the different rTMS effects on mood and behavior 

between patients and healthy volunteers, for example, left DLPFC high-frequency 

stimulation ameliorated depressive symptoms in patients with major depression (Martin and 

others 2003; Pascual-Leone, Rubio, and others 1996), whereas it induced sadness in healthy 

volunteers (George and others 1996; Pascual-Leone, Catala, and others 1996) or produced 

no significant results (Michael and others 2003; Mosimann and others 2000). Likewise, low-

frequency stimulation on the right DLPFC improved mood ratings in patients with 

depression (Fitzgerald and others 2003; Klein and others 1999), but no significant changes 

were observed in healthy volunteers (Grisaru and others 2001; Jenkins and others 2002).

In anesthetized monkeys, rTMS (2000 pulses, 5 Hz, 100 pulses/train, 20-s intertrain interval) 

over M1 reduced [11C]raclopride binding in the left and right striatum (Ohnishi and others 

2004), consistent with the bilateral striatal DA modulation observed in patients (Pogarell and 

others 2006, 2007). Another intriguing observation of this primate study was the increased 

[11C]raclopride binding in the ipsilateral putamen. The authors argued that 5Hz-rTMS may 

have inactivated M1-putamen circuitry and decreased extracellular DA levels in anesthetized 

monkeys (Ohnishi and others 2004). These various observations from human (Strafella and 

others 2003) and primate studies (Ohnishi and others 2004) and between healthy subjects 

and patient groups (Pogarell and others 2006, 2007) strongly emphasize how underlying 

neurochemical changes and the functional state of neuronal circuits (e.g., disease or level of 

consciousness) along with different stimulation parameters may influence rTMS effects on 

striatal DA release.

TMS and Extrastriatal DA Imaging in Human

Extrastriatal DA plays an important role in human cognition/behavior and different 

neurological and psychiatric diseases (Abi-Dargham and others 2002; Brozoski and others 

1979; Kaasinen and others 2000; Sawaguchi and Goldman-Rakic 1991). Recent advances in 

neuroimaging techniques have made it possible to study extrastriatal DA D2/3 receptors in 
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the human by quantifying the binding, with high-affinity radiotracers such as [11C] FLB 457 

(Chou and others 2000), [18F or 11C]fallypride (Riccardi and others 2006; Slifstein and 

others, 2004), and [123I]epidepride (Fujita and others 2000). To date, these ligands have been 

used to assess pharmacologic challenges (Aalto, Ihalainen, and others 2005; Aalto and 

others 2009; Cropley and others 2008; Hagelberg and others 2004; Montgomery and others 

2007; Riccardi and others 2006; Slifstein and others 2010; Steeves and others 2010) and 

cognitive/behavioral (Aalto, Bruck, and others 2005; Christian and others 2006; Ko and 

others 2009) contributions to extrastriatal synaptic DA neurotransmission. Among these 

radiotracers, Narendran and others (2009) recently demonstrated the superior sensitivity and 

robustness of [11C]FLB 457 over [11C]fallypride in detecting changes in BP (induced by 

amphetamine) in different cortical areas. This was suspected to be due to the higher signal-

to-noise ratio provided by [11C]FLB 457. However, a limitation of the [11C]FLB 457 

radiotracer is that, because of its kinetic properties, it does not allow measurements of DA in 

the striatum. In contrast, fallypride as an 18F-labelled tracer has the advantage of imaging 

both striatal and extrastriatal DA (although scan duration can last up to 3 h, posing a 

problem of feasibility in patients), as well as being more widely available enabled by the 

longer half-life.

Recently, Cho and Strafella (2009) showed decreased cortical [11C]FLB 457 binding after 

DLPFC high-frequency stimulation (Figs. 3a and 5; Table 2). They stimulated both left and 

right DLPFC in young healthy subjects with 10 Hz rTMS (750 pulses/day, 10 pulses/train, 

15 trains/block, 5 blocks, 10-s intertrain interval, 10-min interblock interval) on different 

days. The most interesting finding was that only left DLPFC stimulation decreased 

[11C]FLB 457 binding in the ipsilateral subgenual anterior cingulate cortex (ACC; BA 

25/12, 37.7%), pregenual ACC (BA 32, 45.3%), and medial orbitofrontal cortex (OFC; BA 

11, 23.6%). In contrast, right DLPFC stimulation did not induce any significant 

dopaminergic change. This hemispheric discrepancy may originate from the intrinsically 

asymmetric properties of the frontal lobes.

Regional blood flow changes in the subgenual cingulate and OFC after rTMS applied over 

the left DLPFC has been previously reported to be associated with the efficacy of rTMS 

treatment in depression (Teneback and others 1999). DLPFC control over ACC/OFC DA 

may occur via a prefrontal projection to the VTA (Karreman and Moghaddam 1996; Murase 

and others 1993), which sends afferent dopaminergic projections to the ACC/OFC (Williams 

and Goldman-Rakic 1998). Alternatively, there may be cortico-cortical connections between 

these areas, as revealed by restored DLPFC activity in patients with treatment-resistant 

depression after deep brain stimulation (DBS) of the subgenual ACC (Mayberg and others 

2005).

TMS and DA in Cognition

TMS has been widely used to create a virtual lesion to dissect the functional role of a given 

cortical area (Siebner, Hartwigsen, and others 2009; Walsh and Cowey 2000). Although it is 

well known that the effect of rTMS spreads well beyond the targeted areas, the potential 

implication of the dopaminergic influence over cognition and behavior is now receiving a 

great deal of interest (Leh and others 2010; Owen 2004; Zgaljardic and others 2003).
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fMRI (Monchi, Petrides, and others 2006; Monchi and others 2007) and PET (Monchi, Ko, 

and others 2006) studies have confirmed that the prefrontostriatal network plays a significant 

role in executive functions, as suggested as well by the cognitive anatomical loop proposed 

by Alexander and others (1986). Executive function is recently being tapped using the 

Montreal card sorting task (MCST), a variant of the Wisconsin card sorting task (Milner 

1963), which assesses patients’ ability to set shift (to switch between different rules to guide 

behavior). Previous neuroimaging studies have shown that executive processes tested with 

card-sorting tasks requiring planning and set shifting (e.g., MCST) may engage the DLPFC 

while inducing DA release in the striatum (Monchi, Ko, and others, 2006). However, 

functional imaging studies can only provide neuronal correlates of cognitive performance 

and cannot establish a causal relationship between observed brain activity and task 

performance. To investigate the contribution of the DLPFC during set shifting and its effect 

on the striatal dopaminergic system, we applied continuous theta burst stimulation (cTBS) to 

the left and right DLPFC. Our aim was to transiently disrupt its function and to measure 

MCST performance and striatal DA release during [11C]raclopride PET (Ko, Monchi, Ptito, 

Bloomfield, and others 2008).

Healthy subjects performed the MCST during a 60-min [11C]raclopride PET scan after 

cTBS. The cTBS protocol was designed so that it produced a long-term depression-like 

effect, mainly working through GAB-Aergic inhibition (Stagg and others 2009), known for 

its profound behavioral after effect following acute treatment (Huang and others 2005; 

Nyffeler and others 2006; Vallesi and others 2007).

Three sessions of 20-s cTBS (900 pulses per day, 80% active MT) were applied to the left 

and right DLPFC and vertex (control site) on different days followed by a [11C] raclopride 

PET scan while subjects performed the MCST. Interestingly, only left DLPFC stimulation 

increased the number of errors on the task and increased [11C]raclopride BP in the bilateral 

caudate nucleus and ipsilateral putamen (Ko, Monchi, Ptito, Bloomfield, and others 2008; 

Figs. 3b and 6; Table 2). This hemispheric asymmetry was in line with results of previous 

neuroimaging studies suggesting that the left DLPFC is more engaged during set-shifting 

processes. The right DLPFC, on the other hand, is mainly involved in the monitoring of 

working memory and less emphasized in the performance of this task (Ko, Monchi, Ptito, 

Petrides, and others 2008; Konishi and others 2002; Lie and others 2006; Monchi and others 

2001, 2007). Similarly, the lateralized control of set shifting is supported by human lesion 

studies (Aron and others 2004; Richer and others 1993; Rogers and others 1998; Stuss and 

Alexander 2007).

Because cTBS is considered to inhibit the cortical excitability of the targeted area (Huang 

and others 2005, 2007; Hubl and others 2008), we hypothesized that by inhibiting the left 

DLPFC and disrupting its function, we indirectly inhibited striatal DA neurotransmission 

during performance of executive tasks, which resulted in an increase of [11C] raclopride BP 

as compared with a control condition (i.e., vertex stimulation). Here, interestingly, changes 

in [11C] raclopride BP after cTBS were not topographically selective (i.e., there was a 

bilateral effect over the caudate nucleus and an ipsilateral effect in the putamen), unlike the 

more specific changes in DA release after 10-Hz rTMS (Strafella and others 2001, 2003). 

This is not surprising given the significant differences in stimulation parameters (10-Hz 
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rTMS vs. cTBS) and functional state (rest vs. task performance). In fact, although ipsilateral 

DA modulation (Strafella and others 2001, 2003) suggests that prefontostriatal projection 

neurons were stimulated by 10-Hz rTMS (while the subject was at rest), bilateral DA 

modulation during an executive task (Ko, Monchi, Ptito, Bloomfield, and others 2008) 

following cTBS-induced inhibition of DLPFC suggests a local disruption of the underlying 

targeted area is processing relevant information of the task at hand.

TMS and Dopamine in Neurologic and Psychiatric Diseases

The ability to modulate brain activity and subsequent neurotransmitter release using TMS 

has obvious clinical implications (Dlabac-de Lange and others 2010; Elahi and others 2009; 

Floel and Cohen 2010; Guse and others 2010; Padberg and George 2009). In patients with 

major depression, Pogarell and others (2006) previously showed a reduction of [123I]IBZM 

BP (9.6%) in the striatum after left prefrontal stimulation (3000 pulses, 10 Hz, 100 pulses/

train, 30 trains, 30-s intertrain interval, 100% RMT; Table 2; Fig. 4a). Four patients were 

investigated with the same protocol after 3 weeks of rTMS treatment sessions (1500 pulses/

daily), but there was no significant interaction between acute rTMS-induced [123I]IBZM BP 

reduction and time (3 weeks), whereas all patients’ symptoms were improved at the end of 3 

weeks of treatment (5%–82% using the Hamilton rating scale for depression; Table 2). 

Although the small sample size limits any definite conclusion, this pilot study opens the 

possibility of involvement of other neurochemical mechanisms including extrastriatal DA 

(Cho and Strafella 2009) or serotonin (Sibon and others 2007) in the therapeutic effects of 

rTMS in depression.

Kuroda and others (2006) failed to demonstrate in patients with depression any significant 

changes in [11C]raclopride BP after 10 daily sessions of rTMS (1000 pulses/day, 10 Hz, 50 

pulses/train, 20 trains, 25-s intertrain interval, 100% RMT; Table 2). Unlike the previous 

studies, however, the patients were scanned 1 day after the treatment. Interestingly, 

electroconvulsive therapy (ECT; 6–7 sessions over 2–3 weeks), which has often been related 

to rTMS in term of its clinical effect (Fitzgerald 2004; Knapp and others 2008), decreased 

[11C]FLB 457 BP in the ACC (25.2%) even after 1 day from the last ECT session in patients 

with depression (Saijo and others 2010). In nonhuman primates, Landau and others (2011) 

demonstrated that presynaptic dopaminergic mechanisms (i.e., DAT and vesicular 

monoamine transporter measured by [11C]d-threomethylphenidate and [11C]+/− 

dihydrotetrabenazine, respectively) were also modulated by human clinical protocols of ECT 

(6 sessions) for up to 8 to 10 days. Although it must be emphasized that ECT may benefit 

depressed patients via different neurochemical mechanisms than rTMS (Lisanby and 

Belmaker 2000), these studies appear to indirectly suggest that the long-term clinical 

benefits of rTMS in depression may not necessarily be associated only with postsynaptic DA 

transmission but also with extrastriatal DA and/or pre-synaptic modulation.

In PD, there have been a few studies that indirectly indicate increased DA function after 

therapeutic rTMS (Table 2). For example, serum DA level was increased after six daily 

sessions of 25-Hz rTMS (3000 pulses/day, 100% RMT; Khedr and others 2007), whereas 

0.2-Hz rTMS (60 pulses/day, once a week for 2 mo) decreased the level of homovanillic acid 

in cerebrospinal fluid in PD patients, a possible expression of reduced breakdown of DA 
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(Shimamoto and others 2001). The Unified Parkinson’s Disease Rating Scale (UPDRS) 

scores were improved in both studies (Khedr and others 2007; Shimamoto and others 2001).

Using [11C]raclopride PET, Kim and others (2008) investigated the therapeutic effect of 

rTMS in PD patients (Table 2). Two daily sessions of rTMS (150 pulses/day, 5 Hz, 5 pulses/

train, 15 trains, 2 blocks, 10-s intertrain interval, 10-min interblock interval, 90% RMT, 

post-TMS scanning started 5 min after TMS) induced a significant decrease of BP in the 

contralateral caudate nucleus (12.1%, but not ipsilateral to the stimulated hemisphere), with 

significant clinical benefits as measured by the motor section of the UPDRS (UPDRS III). 

The main limitation of this study was represented by the fact that a counterbalanced control 

condition was not included; thus (as suggested by the authors), a TMS-induced placebo 

effect in this case may account for the outcomes.

In fact, the placebo effect and expectation of a clinical benefit have been shown to be 

associated with release of DA in the striatum (de la Fuente-Fernandez and others 2001). 

Along this line, in one of the previous TMS studies (Strafella and others 2006), it was 

demonstrated that in patients with PD, the expectation of therapeutic benefit from rTMS, 

which actually was delivered only as sham rTMS (placebo-rTMS), induced diffuse changes 

in striatal [11C] raclopride BP as measured with PET. Placebo-rTMS induced a significant 

bilateral reduction in [11C] raclopride BP in the dorsal and ventral striatum as compared 

with the baseline condition. The changes in [11C] raclopride binding were more consistent in 

the hemisphere associated with the more affected side, supporting the hypothesis that the 

more severe the symptoms, the greater the drive for symptom relief and therefore the 

placebo response. Although those results confirmed earlier evidence that expectation induces 

dopaminergic placebo effects (de la Fuente-Fernandez and others 2001), they also suggest 

the importance of placebo-controlled studies for future clinical trials involving brain 

stimulation techniques.

In parkinsonian rats, acute rTMS (2000 pulses, 25 Hz, 200 pulses/train, 10 trains, 10- to 15-

min intertrain intervals) increased tyrosine hydroxylase expressions and nigral neuronal 

survivals and ameliorated the parkinsonian symptoms to the normal level (Funamizu and 

others 2005). More recently, chronic low-frequency rTMS treatment (4 wk, 500 pulses/day, 

0.5 Hz) alleviated dopaminergic cell loss and prevented striatal DA reduction in 6-OHDA 

lesioned rats (Yang and others 2010). As remarkable as these studies can be, the potential for 

neuroprotective effects of rTMS needs to be fully investigated.

In stroke (Floel and Cohen 2010), schizophrenia (Dlabac-de Lange and others 2010), and 

addiction (Daskalakis and others 2008), it has been proposed that the potential rTMS 

benefits may be mediated via dopaminergic modulation, but the therapeutic efficacy 

remained to be tested with in vivo dopaminergic imaging.

In addition to the therapeutic benefits, studies with acute rTMS combined with PET or 

SPECT may also help to elucidate the underlying neurochemical mechanisms of disease 

progression. For example, Strafella and others (2005) sought to investigate early PD patients 

with evidence of unilateral symptoms. They measured changes in the putamen in 

extracellular DA concentration following rTMS (450 pulses, 10 Hz, 3 blocks, 15 trains/
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block, 10 pulses/train, 10-s intertrain interval, 10-min interblock interval, 90% RMT) of the 

left and right primary motor cortex (Table 2). The main objective was to identify potential 

differences in corticostriatal DA release between the hemisphere clearly associated with 

contralateral motor symptoms and the presymptomatic stage of the other hemisphere in 

which, conceivably, functional compensatory mechanisms from surviving dopaminergic 

terminals were still preventing the appearance of PD symptoms. They demonstrated a larger 

cluster size of DA release when rTMS was applied over the primary motor cortex of the 

affected hemisphere (compared with the asymptomatic side; Fig. 4b). The authors suggested 

that these findings may represent the expression of the loss of functional segregation of 

cortical information to the striatum, in vivo, and may provide indirect evidence of abnormal 

corticostriatal transmission in early PD. There are a number of alternative explanations for 

those observations. Indeed, because of the partial loss of reuptake sites (Zigmond and others 

1990), released DA diffuses out to more distant regions of the receptor population in the 

DA-denervated striatum. In addition, several electrophysiological studies have also shown 

that in conditions involving DA denervation, there exists a hyperactivity of corticostriatal 

glutamatergic transmission (Calabresi and others 1993, 2000; Lindefors and Ungerstedt 

1990), with increased numbers of striatal neurons responding to cortical stimulation (Florio 

and others 1993). Therefore, because of such corticostriatal hyperactivity, rTMS could be 

responsible for an abnormal release of glutamate, which, by diffusing into the extrasynaptic 

space (Onn and others 2000), may activate larger areas of dopaminergic terminals in the 

symptomatic hemisphere.

Having said that, although the delivery of acute rTMS (i.e., one study session) has certainly 

provided interesting observations, cortical stimulation may be required to be chronically 

applied (e.g., with 2–3 weeks of repetitive sessions) to have clinically relevant outcomes. At 

the moment, preliminary research on the effect of chronic rTMS treatment has failed to 

reveal significant changes in [123I]IBZM/[11C]raclopride BP or correlation with its clinical 

benefits (Kim and others 2008; Kuroda and others 2006; Pogarell and others 2006, 2007). 

Nevertheless, various reviews and meta-analyses have emphasized the potential benefits of 

rTMS in diverse diseases with dopaminergic impairment (Dlabac-de Lange and others 2010; 

Elahi and others 2009; Floel and Cohen 2010; Guse and others 2010; Padberg and George 

2009), and recent ECT studies suggest that long-term changes in the dopaminergic system 

may be observed at presynaptic sites (Landau and others 2011) and extrastriatal regions as 

well (Saijo and others 2010). Therefore, further controlled investigations with larger cohorts 

and different radiotracers are warranted.

Future Directions

Neuroreceptor imaging using PET/SPECT is highly recognized for its capability to 

investigate the neurobiology of diseases due to its unique ability to quantify in vivo 

neurochemical abnormalities with high spatial resolution.

There is a continuing effort to develop new radioligands that tackle different neurochemical 

systems and bind to specific receptor subtypes. Such progress continues to increase 

knowledge of how different neurotransmitters contribute to brain function. For example, 

Sibon and others (2007) previously demonstrated that acute rTMS may affect serotonin 
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synthesis capacity using [11C]-alpha-methyl-tryptophan. Also, the application of newly 

developed agonist-radioligands such as [11C]PHNO may contribute to increasing 

understanding of the involvement of high-affinity versus low-affinity states of DA receptors 

(Willeit and others 2006; Fig. 7). Indeed, D2/3 receptor antagonist-radioligands such as 

[11C]raclopride, by binding to both high- and low-affinity state DA receptors, may 

underestimate intervention-induced DA displacement. An agonist-radioligand such as 

[11C]PHNO, however, by binding mainly to DA receptors in the high-affinity state, may 

more accurately estimate physiologically relevant changes in D2/3 receptor availability (Leff 

1995; Willeit and others 2006). In addition, the higher affinity toward D3-receptors of 

[11C]PHNO may unveil important underlying mechanisms of the dopaminergic effects of 

rTMS. D1-like receptors are also known to play an important role in high-level cognition, 

especially in the prefrontal area (Goldman-Rakic and others 2000; Sawaguchi and Goldman-

Rakic 1991). Therefore, the development in the future of reliable D1 radiotracers will 

expand knowledge of the neurochemical control of cognition and behavior in both health 

and disease. In addition, the possibility of differentiating presynaptic versus postsynaptic 

receptor binding will provide new opportunities to clarify the underlying mechanisms of the 

rTMS effect on the dopaminergic systems.

Traditionally, it has been widely accepted that low- and high-frequency rTMS has different 

and often opposite effects on neurophysiological parameters (Chen and others 1997; 

Pascual-Leone and others 1994) and local/remote cerebral blood flow (Knoch and others 

2006; Rounis and others 2005; Speer and others 2000). Given that the used rTMS 

parameters (frequency, intensity, intertrain interval, priming, etc.) are critical deciding 

factors for clinical efficacy (Padberg and George 2009), it will be important to compare 

neurochemical changes after different (but consistent) rTMS paradigms across different 

centers. Here, we have summarized the dopaminergic effect of different rTMS protocols in 

animals (Table 1) and humans (Table 2; Figs. 3 and 4). We would like to emphasize the 

importance of caution when comparing studies with different conditions. For example, a 

stimulation protocol that has been shown to have a certain effect in awake humans at rest 

may produce different outcomes in patients, or in subjects during action performance, or in 

anesthetized animals. Therefore, further validation with various rTMS protocols in different 

subject populations needs to be performed before one can extrapolate to cognition and 

behavior the terminology of excitatory and inhibitory stimulation broadly adopted from 

high- and low-frequency rTMS, respectively, in human motor cortex neurophysiology.

Transcranial direct current stimulation (tDCS) will also receive extensive attention as a 

potential neuromodulatory tool (Zaghi and others 2009). Although it has been demonstrated 

that the effects of tDCS may be influenced indirectly by dopaminergic medication (Nitsche 

and others 2006; Terney and others 2008), the direct effect of tDCS on human dopaminergic 

levels has not yet been investigated. Considering the advantages offered by this promising 

technique (Zaghi and others 2009), further research on tDCS effects using dopaminergic 

imaging technology is warranted.

Another potential method for perturbing the dopaminergic system is DBS. DBS has been 

widely accepted as an alternative treatment for PD patients who have developed drug-related 

side effects such as motor fluctuations (Lang and others 2006; Moro and Lang 2006) and 
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also for other neurological and psychiatric diseases such as dystonia (Hamani and Moro 

2007), depression (Mayberg and others 2005), Tourette syndrome (Sassi and others 2010), 

obsessive-compulsive disorder (Mian and others 2010), and epilepsy (Lockman and Fisher 

2009). Studies with healthy nonhuman primates reported changes in striatal and extrastriatal 

[18F]fallypride binding during DBS (Vandehey and others 2009). Human [11C]raclopride 

PET studies in PD patients (off medication), however, failed to observe any changes in 

striatal DA release following subthalamic nucleus DBS (Abosch and others 2003; Hilker and 

others 2003; Strafella and others 2003; Thobois and others 2003). As well, comparisons of 

preoperative and postoperative D2/3 BP have reported inconsistent findings (Hesse and 

others 2008; Nakajima and others 2003). Therefore, further research with different ligands 

(e.g., [11C]FLB 457) and larger cohorts of patients is necessary for a better understanding of 

the neurochemical changes induced by DBS.

Conclusion

DA plays an important role in learning, reward, motor control, emotion, and executive 

function in both health and disease. Thanks to the development of neuroimaging techniques 

such as PET and SPECT, it is now possible to quantify dopaminergic activity in the living 

human brain. The combination of these technologies with TMS has great potential in that it 

is capable of tackling questions regarding region-specific/function-specific neurochemical 

activity. Such studies may aid clinicians and scientists to dissect neural circuitries and 

thereby help them to understand the underlying mechanisms of a given function in relation 

to brain diseases. Furthermore, it may also aid the development of clinical applications for 

various neurological/psychiatric conditions.
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Figure 1. 
Illustration of the relationship between [11C]raclopride binding potential (BP) and synaptic 

dopamine (DA) concentration. (a) Assuming a baseline level of DA concentration, (b) DA 

released in the synapse during active conditions is associated with decreases in 

[11C]raclopride BP.
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Figure 2. 
[11C]raclopride positron emission tomography studies combined with repetitive transcranial 

magnetic stimulation. (a) Left dorsolateral prefrontal cortex (DLPFC) stimulation resulted in 

significant decrease of [11C]raclopride binding potential (BP) in the ipsilateral caudate 

nucleus compared with occipital stimulation (control). (b) Left M1 stimulation resulted in a 

significant decrease of [11C]raclopride BP in the ipsilateral putamen compared with occipital 

stimulation (control). Adapted from Strafella and others (2001, 2003).
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Figure 3. 
Schematic diagrams of the dopaminergic effect of repetitive transcranial magnetic 

stimulation (rTMS). (a) In healthy subjects at rest, 10-Hz rTMS over the left dorsolateral 

prefrontal cortex (DLPFC) increased dopamine (DA) release in the ipsilateral caudate 

nucleus (Strafella and others 2001), anterior cingulate cortex (ACC), and medial 

orbitofrontal cortex (OFC; Cho and Strafella 2009), whereas M1 stimulation increased DA 

release in the ipsilateral putamen (Strafella and others 2003). The yellow stars represent the 

10-Hz rTMS. The brown circles and arrows represent the stimulated site (i.e., DLPFC and 

M1) and increased DA release. (b) During task performance, continuous theta burst 

stimulation (cTBS) applied over the left DLPFC impaired task performance and disrupted 

striatal DA release in the bilateral striatum (Ko, Monchi, Ptito, Bloomfield, and others 

2008). In contrast, right DLPFC stimulation during the same task had no significant effect. 

The green box and arrows represent the effect of performing the Montreal card sorting task 

(MCST), which is shown to increase DA release in the striatum (Monchi, Ko, and others 

2006). The red star represents cTBS. The blue circles and arrows represent the stimulated 

site (i.e., DLPFC) and decreased DA release.
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Figure 4. 
Schematic diagrams of the dopaminergic effect of repetitive transcranial magnetic 

stimulation (rTMS) in patients. (a) In patients with depression (off medication), 10-Hz rTMS 

over the left dorsolateral prefrontal cortex (DLPFC) increased dopamine (DA) release in the 

bilateral striatum (Pogarell and others 2006). The yellow stars represent 10-Hz rTMS. The 

brown circles and arrows represent the stimulated site (i.e., DLPFC) and increased DA 

release. Here, Pogarell and others (2006) did not differentiate between the caudate nucleus 

and putamen in the single-photon emission computation tomography image analysis. (b) In 

patients with Parkinson disease (off medication, unilateral motor symptoms), 10-Hz rTMS 

over M1 in the symptomatic hemisphere induced a smaller amount of DA release in the 

ipsilateral putamen than in the asymptomatic hemisphere (Strafella and others 2005). 

However, the size of the significant cluster of change in [11C]raclopride binding in the 

symptomatic hemisphere was greater than in the asymptomatic hemisphere, which is 

represented by the larger brown circle.
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Figure 5. 
[11C]FLB 457 binding potential decreased in the ipsilateral subgenual anterior cingulate 

cortex (ACC), pregenual ACC, and medial orbitofrontal cortex after left dorsolateral 

prefrontal cortex stimulation versus control stimulation. Adapted from Cho and Strafella 

(2009).
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Figure 6. 
[11C]raclopride PET study with continuous theta burst stimulation (cTBS) on the Montreal 

card sorting task (MCST). (a) Subjects performed the MCST during [11C]raclopride PET 

scan after cTBS applied to the left or right dorsolateral prefrontal cortex (DLPFC) or vertex 

(control site) on different days. (b) Left DLPFC stimulation increased error making, but right 

DLPFC stimulation did not. Error rate was calculated as the percentage changes compared 

with control stimulation (vertex). (c) Right DLPFC stimulation did not induce any 

significant changes in [11C]raclopride binding potential (BP). (d) Left DLPFC stimulation 

reduced [11C]raclopride BP significantly in the bilateral caudate nucleus and the left 

putamen. Adapted from Ko, Monchi, Ptito, Bloomfield, and others (2008).
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Figure 7. 
Illustration of different binding sites of dopamine antagonist and agonist radioligands in the 

synapse. (a) [11C]raclopride is a dopamine receptor antagonist that binds to dopamine 

receptors in both the high- and low-affinity states. (b) [11C]PHNO is a dopamine agonist that 

predominantly binds to dopamine receptors in the high-affinity state.
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