
Co-clustering phenome–genome for phenotype
classification and disease gene discovery
TaeHyun Hwang1, Gowtham Atluri2, MaoQiang Xie3, Sanjoy Dey2, Changjin Hong4,

Vipin Kumar2 and Rui Kuang2,*

1Bioinformatics core at Masonic Cancer Center, 2Department of Computer Science and Engineering,
University of Minnesota Twin Cities, Minneapolis, MN 55455, USA, 3College of Software, Nankai University,
Tianjin, 300071, China and 4Computational Biomedicine Division, Department of Medicine, Boston University,
MA 02118, USA

Received March 23, 2012; Revised May 29, 2012; Accepted May 31, 2012

ABSTRACT

Understanding the categorization of human
diseases is critical for reliably identifying disease
causal genes. Recently, genome-wide studies of
abnormal chromosomal locations related to
diseases have mapped >2000 phenotype–gene rela-
tions, which provide valuable information for clas-
sifying diseases and identifying candidate genes as
drug targets. In this article, a regularized non-
negative matrix tri-factorization (R-NMTF) algorithm
is introduced to co-cluster phenotypes and genes,
and simultaneously detect associations between
the detected phenotype clusters and gene
clusters. The R-NMTF algorithm factorizes the
phenotype–gene association matrix under the prior
knowledge from phenotype similarity network and
protein–protein interaction network, supervised by
the label information from known disease classes
and biological pathways. In the experiments on
disease phenotype–gene associations in OMIM and
KEGG disease pathways, R-NMTF significantly
improved the classification of disease phenotypes
and disease pathway genes compared with support
vector machines and Label Propagation in cross-
validation on the annotated phenotypes and genes.
The newly predicted phenotypes in each disease
class are highly consistent with human phenotype
ontology annotations. The roles of the new member
genes in the disease pathways are examined and
validated in the protein–protein interaction subnet-
works. Extensive literature review also confirmed
many new members of the disease classes and
pathways as well as the predicted associations
between disease phenotype classes and pathways.

INTRODUCTION

Phenotypes, the observable characteristics (traits) of an
organism, are believed to be determined by genetic mater-
ials (DNAs) under environmental influences (1,2). The key
to achieving desired phenotypes such as favorable disease
treatment outcomes lies in the understanding of the
relation between phenotypes and the biological roles of
genes (3–5). In the past two decades, promising
bio-technologies such as microarray-based profiling (6–9)
and second generation sequencing (10,11) were developed
to hunt for potential phenotype–gene associations.
Currently, in the most comprehensive disease, pheno-
type–gene relation database, Online Mendelian
Inheritance in Man (OMIM) (2), nearly 2000 confirmed
relations between around 6000 phenotypes and over
12 000 genes are documented. This knowledge base
provides a new phenome (the collection of all phenotypes)
perspective to study human diseases and their molecu-
lar mechanisms. Although most previous studies focused
on predicting new disease phenotype–gene relations
with OMIM data (12–19), we propose to cluster
phenotypes and find gene modules associated with the
phenotype clusters by integrating OMIM phenotype–
gene relations with disease phenotype similarity net-
work and the human gene interaction network as well
as exiting disease categorization and molecular
pathways. To effectively use all the sources of informa-
tion, we design regularized non–negative matrix
tri-factorization (R-NMTF) algorithms to tri-factorize
the binary matrix of phenotype–gene relations into pheno-
type clusters, gene clusters and an association matrix rep-
resenting the associations between phenotype clusters and
the gene clusters (Figure 1). Since the matrix of known
phenotype–gene relations is very sparse, constraints con-
structed from the prior knowledge and the phenotype/
gene labels are introduced to regularize the NMTF
models.
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Current classification of human disease is mainly based
on observational correlation between pathological
analysis and clinical syndromes (20), and more recently,
by text mining of clinical records and synopsis (21). An
accurate classification of human diseases based on its
phenotypic and molecular basis will help to establish syn-
dromic patterns for selecting phenotypes to consider in
diagnosis. Existing phenotype clustering approaches
cluster phenotypes based on only text descriptions and
synopsis (22–24) or shared disease genes (25), which do
not fully reflect both phenotypic and genetic basis of the
disease phenotypes. R-NMTF integrates various sources
of phenotypic and genomic data as well as prior know-
ledge to perform supervised co-clustering of phenotypes
and genes simultaneously. R-NMTF is the first of its
kind that effectively discovers disease classes based on
the molecular underpinnings of the phenotypes and the
molecular interactions in a network. This approach imple-
ments the philosophy of network-based medicine (26),
which is believed to be the promising approach for
generating the next generation of disease categorization
(20). The R-NMTF-based co-clustering also naturally
induces the associations between the phenotype clusters
and gene clusters, which provides a global pathway
activity view of human disease classes for understanding
the unique as well as common underlying molecular mech-
anisms of diseases.

MATERIALS AND METHODS

In this section, we first describe the notations for the data
of disease phenotypes, genes and their associations.
We then review NMTF and introduce the framework of

R-NMTF for co-clustering phenotypes and genes. We also
outline the multiplicative update algorithm for solving the
R-NMTF model.

Notations

The notations and definitions used in the article are
specified in Table 1. We denote the OMIM phenotype–
gene associations by a m by n binary matrix X with 1 for
known associations and 0 otherwise. The objective is to
derive phenotype clusters (F) and find their association (S)
with gene clusters (G) based on X (Figure 1). F and G are
non-negative matrices representing the soft memberships
of each gene/phenotype against the k1 phenotype clusters
or the k2 gene clusters. To perform more reliable pheno-
type clustering in a supervised setting, we use the partial
phenotype annotations by (25) represented by a binary
matrix F0 with 1 for the known class memberships.
Similarly, KEGG pathways (27) are also included in a
binary matrix G0 to guide gene clustering. Note that,
since training samples are not required for each disease
category to classify the phenotypes in the model, we use
the word ‘co-clustering’ instead of ‘classification’ or
‘semi-supervised learning’ for the learning problem
although in the experiments, we only focused on recover-
ing the 21 disease categories with at least one OMIM
disease phenotype. Finally, a phenotype similarity
network M (21) and the gene interaction network N
were also introduced to capture modular relations
among phenotypes and genes. M and N contain edges
weighted by the degree of similarity between phenotypes
or the confidence of interaction between genes,
respectively.

C F S GT

Figure 1. NMTF of disease phenotype–gene associations. The phenotype–gene association matrix X is factorized into products of three matrices,
phenotype cluster membership F, gene cluster membership G and phenotype cluster–gene cluster association S for supervised co-clustering of
phenotypes and genes. Label information for the disease classes and the pathways are available for a small number of phenotypes and genes.
Prior knowledge is also introduced from phenotype similarity network and gene network. For better visualization, different colors are used to
distinguish the phenotypes and the genes in different clusters.
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Non-negative matrix tri-factorization

Non-negative matrix factorization (NMF) was proposed
by (28,29) as an alternative to principle component
analysis and vector quantization for parts-based decom-
position of a data matrix. NMF has been applied to solve
various bioinformatics problems such as identifying gene
clusters (30–32), bi-clustering (33) and identifying cancer
tumor categories (34) in gene expression data analysis, and
finding modules in protein–protein interaction (PPI)
network (35).

By imposing the orthogonality on the two factorized
matrices, (36) proposed a framework to perform NMTF
as X.FSGT under the constraints FTF= 1 and GTG= 1.
This framework has the advantage of simultaneously clus-
tering the columns and rows, and finding a condense rep-
resentation of the data matrix by the row clusters and the
column clusters, which can also be considered as associ-
ations between row clusters and column clusters. For
co-clustering phenotypes and genes, the NMTF
approach provides novel insights into the phenotype–
gene associations beyond clustering and decomposition.

Regularization by phenotype and gene labels

To cluster phenotypes and genes based on their associ-
ations, we adopt supervised NMTF proposed for finding
associations between document clusters and word clusters
in text categorization (37,38). We use manually labeled
phenotype clusters as the phenotype label F0 and gene
clusters from existing pathway database as the gene label
G0, and simultaneously cluster phenotypes and genes with
tri-factorization as illustrated in Figure 1. The following
optimization framework can be solved to achieve the goal:

minF;S;GkX� FSGTk2F

þ �kF� F0k2F þ �kG� G0k2F

subject to
Xk1
j¼1

Fi;j ¼ 1;
Xk2
j¼1

Gi;j ¼ 1:

ð1Þ

In equation (1), the first term is the NMTF of X, and the
second and the third terms are the fitting penalties to keep
the new cluster assignment consistent with the known

phenotype and gene cluster labels. These two terms are
introduced as a supervised way of minimizing the
squared loss between the predicted phenotype cluster as-
signment F and the initial phenotype cluster assignment
F0, and between the predicted gene cluster assignment G
and the initial gene cluster assignment G0. Specifically, the
phenotype clusters are taken from the 21 disease classes
manually curated by (25), in which 872 disease phenotypes
are assigned to 21 classes. The gene clusters are derived
from the genes in KEGG pathways (27). The information
of the labeled phenotypes and genes provides the useful
guidance to learning more accurate co-clustering.
A limitation of the approach in equation (1) is the low

coverage and the sparsity of the disease gene association
matrix used to cluster phenotypes and genes. The known
disease–gene association only cover a small fraction of
phenotypes and genes (one-third of the phenotypes and
5% of the genes), with very few associations between
them (less than one association per phenotype/gene).
Moreover, the phenotype cluster annotations and
KEGG pathways also only provide a low coverage of
around 15% phenotypes and one-fourth of the genes.
The statistics simply suggest that with this model only a
very small fraction of phenotypes and genes could be clus-
tered properly.

Regularization by graph Laplacians

To address the above problem, we design R-NMTF to
incorporate the prior knowledge in the phenotype similar-
ity network and the PPI network (Figure 1) to cluster
phenotypes and genes with matrix tri-factorization.
Given the phenotype similar network M and the PPI
network N, the following optimization problem is
formulated for the purpose:

minF;S;GkX� FSGTk2F

þ �kF� F0k2F þ �kG� G0k2F

þ �trðFTðDM �MÞFÞ

þ �trðGTðDN �NÞGÞ

subject to
Xk1
j¼1

Fi;j ¼ 1;
Xk2
j¼1

Gi;j ¼ 1;

ð2Þ

where DM is the diagonal matrix with the row summation
of matrix M on the diagonal and DN is similarly defined
from N. In this equation, the first three terms are identical
to those in equation (1). The fourth and fifth terms intro-
duce the phenotype similarity network and the PPI
network as prior knowledge to guide the clustering of
the phenotypes and the genes. These two terms are
called smoothness terms, which encourage the connected
nodes (phenotypes/genes) in a graph to be assigned to the
same cluster. Specifically, the term tr(FT(DM�M)F)
requires that the phenotype clusters identified by NMTF
are also densely connected in the phenotype network, and
similarly for tr(GT (DN�N)G). DM�M and DN�N are
known as the Laplacian matrices of the graphs, which are
positive semi-definite (39).

Table 1. Notations

Notation Definition

m Number of disease phenotypes
n Number of genes
k1 Number of phenotype clusters (e.g. classes)
k2 Number of gene clusters (e.g. pathways)
X Disease phenotype–gene association matrix (m� n)
F Phenotype cluster membership (m� k1)
S Phenotype cluster–gene cluster association Matrix (k1� k2)
G Gene cluster membership (n� k2)
F0 Annotated phenotype cluster membership (m� k1)
G0 Annotated gene cluster membership (n� k2)
M Disease phenotype similarity network (m�m)
N Gene interaction network (n� n)
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Algorithm 1

Regularized Non-negative Matrix Tri-factorization
INPUT: X, F0, G0, LM, LN, parameters a, b, g, and �,
maximum interation T
OUTPUT: F, G, S
while not converged and t�T do

(1) Update Fij Fij

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðXGSTþ�F0þ�MFÞij
ðFSGTGSTþ�Fþ�DMFÞij

r
.

(2) Normalize Fi:  
Fi:Pk1

j¼1

Fij

(3) Update Gij Gij

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðXTFSþ�G0þ�NGÞij

ðGSTFTFSSþ�Gþ�DNGÞij

r
.

(4) Normalize Gi:  
Gi:Pk2

j¼1

Gij

.

(5) Compute Sij Sij

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðFTXGÞij
ðFTFSGTGÞij

r
.

end while

Multiplicative update algorithms

We extend the optimization algorithms for the original
NMTF to handle the four additional penalty terms in
equation (2). The alternative iterative scheme to solve
the problem with respect to one variable while fixing the
other variables are described.

Computation of F
If we fix variables S and G, solving equation (2) with
respect to F is equivalent to minimizing the following
function:

LðFÞ ¼ kX� FSGTk2F þ �kF� F0k2F þ �trðF
TLMFÞ

subject to
Pk1

j¼1 Fi;j ¼ 1, where LM is DM�M.
The differentiation of L with respect to F is

@LðFÞ

@F
¼ �2XGST þ 2FSGTGST þ 2�ðF� F0Þ þ 2�LMF:

The multiplicative update rule is

Fij Fij

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðXGST þ �F0 þ �MFÞij
ðFSGTGST þ �Fþ �DMFÞij

s
:

To satisfy the equality constrain, we normalize F as

Fi:  
Fi:Pk1

j¼1

Fij

:

Computation of G
If we fix variables S and F, solving equation (2) with
respect to G is equivalent to minimizing the function,

LðGÞ ¼ kX� FSGTk2F þ �kG� G0k2F þ �trðG
TLNGÞ

subject to
Pk2

j¼1 Gij ¼ 1, where LN is DN�N.

The differentiation of L with respect to G is

@LðGÞ

@G
¼ �2XTFSþ 2GSTFTFSS þ 2�ðG� G0Þ þ 2�LNG:

The multiplicative update rule is

Gij Gij

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðXTFSþ �G0 þ �NGÞij

ðGSTFTFSS þ �Gþ �DNGÞij

s
:

To satisfy the equality constrain, we normalize G as

Gi:  
Gi:Pk2

j¼1

Gij

:

Computation of S
After F and G are computed, solving equation (2) with
respect to S is equivalent to minimizing the following
function:

LðSÞ ¼ kX� FSGTk2F:

The differentiation of L with respect to S is

@LðSÞ

@S
¼ �2FTXGþ 2FTFSGTG:

The multiplicative update rule is

Sij ¼ Sij

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðFTXGÞij
ðFTFSGTGÞij

:

s

The complete R-NMTF algorithm is outlined in
Algorithm 1. Since the updating steps for F, S and G are
non-increasing, the objective function will decrease until a
lower bound is reached. Empirically, the algorithm con-
verges fast within 100 iterations in the experiments.

EXPERIMENTS

To evaluate the performance of supervised co-clustering of
phenotypes and genes, R-NMTF was applied to classify-
ing OMIM human disease phenotypes and KEGG disease
pathway genes with leave-one-out cross-validation.
R-NMTF was compared with several baseline methods,
including support vector machines (SVMs), Label
Propagation (LP) and a NMTF model without network
regularization defined in equation (1). R-NMTF was then
applied to classify unannotated OMIM disease pheno-
types and identify new member genes of KEGG disease
pathways. The predictions were verified and analyzed by
comparison with human phenotype ontology (HPO) and
literature survey.

Data preparation

We collected the disease phenotype–gene associations in
OMIM, which consist of the associations between 1284
disease phenotypes and 1777 disease genes. We also
collected 200 KEGG pathways, which contain 4128
genes in total, from molecular signature database (40).
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We obtained the human protein-protein interaction (PPI)
network from HPRD (41). The PPI network contains
76232 binary undirected interactions between 9667
genes. We obtained the phenotype similarity network
from (21). The phenotype similarity network is an
undirected graph with 5080 vertices representing OMIM
disease phenotypes, and edges weighted by a number in
[0,1]. The edge weights measure the similarity be-
tween phenotypes by their overlap in the text and the
clinical synopsis in OMIM records, calculated by text
mining (21).

In the leave-one-out cross-validation, after preprocess-
ing (removing the phenotypes classified as multiple and
unclassified, removing disease phenotypes not present in
both the disease phenotype–gene associations and the
phenotype similarity network and removing genes not
present in both the disease phenotype–gene associations
and the PPI network), we generated a dataset containing
590 disease phenotypes in 20 disease classes (25) and 7997
genes in 200 gene pathways. This dataset was used in
leave-one-out cross-validation on disease phenotype clas-
sification and disease pathway gene discovery.

To further evaluate R-NMTF with more phenotypes
and other independent phenotype annotations, we
generated another larger dataset containing 1325 disease
phenotypes with at least one known causal gene in
OMIM. Among the 1325 disease phenotypes, 501
disease phenotypes intersect with the labeled disease
phenotypes in the first dataset and the rest 824 disease
phenotypes are unlabeled. Our task in this experiment
is to perform a supervised clustering to assign the
824 unannotated disease phenotypes to the 20 disease
classes.

Baselines and parameter tuning

Four baselines were introduced for comparison with
R-NMTF, SVMs with linear kernel and radial basis
kernel, LP and the NMTF model defined in equation (1)
without the prior knowledge from the phenotype network
and the PPI network (named NMTF). The SVMs used a
binary vector representing the disease genes of each
phenotype as the features for classification (25). We also
tested SVMs with the similarity scores in the phenotype
similarities network as features for classification. Since the
results are close to random, we did not report them in the

experiments. We also compared R-NMTF with a
semi-supervised learning method, LP, which uses the
disease similarity network and the PPI network for
disease phenotype classification and disease gene discov-
ery, respectively (42). The hyper-parameters (a and b for
NMTF; a, b, g and � for R-NMTF and C and s for
SVMs) were chosen by a grid search in f10�3, 10�2,
10�1, 1, 10, 100}. The hyper-parameter a for LP was
chosen by a grid search in f0.1, 0.3, 0.5, 0.7, 0.9}. More
analysis of parameter tuning is described in the supple-
mentary Table S1 and S2.
In the leave-one-out cross-validation on the 590 labeled

phenotypes in disease phenotype classification, we held
out one phenotype as the test case to be classified by all
the compared methods. The performance is measured by
the rank of the true disease class among the 20 target
classes ranked by the corresponding classification scores
generated by a classification method. Similarly, in the
leave-one-out cross-validation for disease gene discovery
on the same data, we held out one gene in a KEGG
disease pathway as the test case to be classified by all
the compared methods. Since one gene could belong to
multiple disease pathways, the performance is measured
by the area under the curve of receiver operating charac-
teristic (AUC). Since leave-one-out cross-validation
usually gives less overfitting bias, we reported the results
with the best parameters for all the methods in the experi-
ments on both disease phenotype classification and disease
gene discovery.

Performance of disease phenotype classification in
leave-one-out cross-validation

The average ranking performance of the compared
methods are reported in Table 2 and Figure 2. On
average, R-NMTF were able to rank the target class at
around third out of the 20 classes, while the other methods
performed worse. To further assess the statistical signifi-
cance of the difference in the performance between
R-NMTF and the baselines, we also report the pairwise
comparison of each test case and performed a Wilconsin
test on the difference of the ranks in Table 2. The P-values
suggest that R-NMTF performed significantly better than
the baselines. Supplementary Figure S1 visualizes the
pairwise comparison between R-NMTF and the baselines
by scatter plot. Many more cases appeared in the top left
triangle indicating a better ranking by R-NMTF. LP per-
formed worse than R-NMTF but better than SVMs and
NMTF. The observation indicates that the global struc-
tural information in the phenotype similarity network
provides substantial information on phenotype classes.
To further understand the classification performance in
each disease class, we show in Table 3 the classification
performance for the phenotypes by disease classes.
R-NMTF outperformed all the baseline methods in 11
disease classes. In some of the small classes such as ‘ear,
nose, throat’, ‘nutritional’ and ‘respiratory’, less relations
among the training points are available for R-NMTF to
improve classification.

Table 2. Performance of phenotype classification in leave-one-out

cross-validation

Compared methods Avg. rank win/draw/loss (P-value)

R-NMTF versus NMTF 3.124 versus 5.590 300/154/136 (4.617e�13)
versus SVM-linear versus 6.103 308/154/128 (3.693e�12)
versus SVM-rbf versus 5.037 268/213/109 (1.497e�4)
versus LP versus 3.700 161/388/41 (9.145e�05)

This table reports the average rank of the target class out of the 20
classes, and the pairwise ‘win/draw/loss’ comparisons of each leave-one-
out case between R-NMTF and the baselines, SVMs with linear and
rbf kernels, NMTF and LP. The last column reports the statistical
significance of the ranking results using Wilcoxon rank sum test.
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Performance of disease gene discovery in leave-one-out
cross-validation

In the experiment of disease gene discovery, we collected
the member genes in the 200 pathways from KEGG. In
the preprocessed data, there are 590 member genes in 27
KEGG disease pathways such as Alzheimer, diabetes and
cancer-related pathways. In the leave-one-out cross-
validation, each of the 590 member gene was held out
and then classified into the 200 pathways as a multi-label

classification problem since some of the disease genes are
members of multiple pathways. The higher the target
pathways in the ranking of the 200 pathways, the better
the performance. We measured the performance by the
AUC. LP was applied on the PPI network to predict the
disease genes as the baseline. The other 589 member genes
was used as the initialization of label propagations to
classify the held-out gene. The average AUC across the
590 member genes by all the methods are reported in
Table 4 and Figure 3. The results clearly show that by
integration of phenotype similarity, phenotype class anno-
tation and phenotype–gene associations with PPI network
R-NMTF more accurately classified the disease genes
compared with LP, which only uses the PPI network for
disease gene discovery. R-NMTF performed better on
>500 cases with an average AUC 0.930 compared with
0.73 by LP.

Analysis of phenotype clusters with HPO

To bette characterize the discovered phenotype clusters
for the 824 unannotated disease phenotypes, we
compared the phenotype clusters with HPO (43). HPO
describes human phenomic abnormalities with a
controlled hierarchical vocabulary. Since the vocabulary
in the HPO was developed independently of the disease
classification by (25), it is an external resources for the
validation of the phenotype clusters discovered by
R-NMTF. Each OMIM phenotype was mapped to the
hierarchy of HPO to retrieve the matched HPO terms.
Then, a new HPO similarity is calculated for each pair
of phenotypes by Jaccard similarity coefficient

SimHPO ¼
jP1 \ P2j

jP1 [ P2j
;

where P1 and P2 are the set of the matched HPO terms of
the two phenotypes, respectively. We arranged the pheno-
types into the 20 disease classes (clusters) based on the
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Figure 2. Performance of phenotype classification in leave-one-out cross-validation. In this plot, the x-axis represents the cutoffs of the rank of the
target disease class out of the 20 classes. The y-axis represents the faction of phenotypes with their target disease class ranked within a certain cutoff.
For example, R-NMTF ranked the target class of >60% of the phenotypes within Rank 2, while the other methods only ranked around or <50%
within the same rank cutoff.

Table 3. Disease phenotype classification results by disease classes

Disease classes (No) Avg. rank

R-NMTF NMTF SVM-
linear

SVM-rbf LP

Bone (23) 3.3 8.5 4.7 7.6 4.7
Cancer (53) 1.6 5.0 4.2 2.0 1.9
Cardiovascular (28) 3.8 10.1 10.0 6.0 4.3
Connective tissue (16) 8.5 8.9 10.6 11.4 11.1
Dermatological (32) 2.0 4.4 3.0 4.0 2.5
Developmental (28) 5.7 2.5 9.6 9.2 6.5
Ear,Nose,Throat (3) 20.0 20.0 14.7 15.0 16.7
Endocrine (30) 4.2 5.4 13.4 5.4 4.9
Gastrointestinal (12) 9.7 7.8 7.8 9.7 11.7
Hematological (30) 3.5 9.5 2.3 6.9 3.8
Immunological (31) 2.6 10.0 8.1 5.2 2.8
Metabolic (84) 1.0 2.2 4.1 2.2 1.0

Muscular (18) 5.7 5.3 12.2 9.1 7. 3
Neurological (80) 1.4 6.2 5.8 2.7 1.4
Nutritional (2) 16.0 3.0 19.0 2.0 20
Ophthamological (35) 1.9 4.2 2.5 2.9 2.5
Psychiatric (9) 7.9 6.1 8.0 11.4 14.8
Renal (23) 4.1 3.5 4.4 6.8 4.9
Respiratory (7) 15.4 10.4 10.4 14.1 15.7
Skeletal (46) 1.5 3.3 4.8 5.2 1.8

This table reports the ranking performance by R-NMTF, SVM with
linear and rbf kernels, NMTF and LP in each disease class in the
leave-one-out cross-validation. The number of phenotypes in each
disease class is reported in the parentheses.
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R-NMTF clustering, and show their HPO similarity by a
heat map in Figure 4. There are clearly block structures
among the predicted 20 clusters. Most of the phenotypes
in the same cluster also share strong HPO similarity. The
consistency between the predicted disease clusters and
HPO similarities suggest that R-NMTF produced a
phenotype clustering supported by HPO annotations.
Another interesting observation is that there are also
strong HPO similarities between different clusters (i.e. dif-
ferent disease classes share HPO similarities). This may
imply that some of the disease classes may share
common molecular mechanisms such as skeletal diseases
and developmental diseases.

Analysis of new phenotypes in disease classes

Table 5 lists the newly predicted disease phenotypes in the
20 disease classes. Our survey identified supporting litera-
tures for many of the predictions. One interesting finding
is faconi anemia (FA) (OMIM:227650), a rare, inherited
blood disorder, predicted as a cancer-related disease.
Surprisingly, a recent study found that FA could share a
common pathogenesis with diseases related with chromo-
somal instability including cancers, and suggested a
possible use of cancer treatment for patients with FA
(48). R-NMTF also predicted Proteus syndrome
(OMIM:176920) as a cancer-related disease. PTEN, a
well-known tumor suppressor gene, is a known causative
gene for Proteus syndrome, which may indicate that
cancer risk accompanying Proteus syndrome could be
increased (49–52). Other interesting newly predicted

disease phenotypes are Amyotrophic lateral sclerosis
(ALS) (OMIM:105400), also known as Lou Gehrig’s
disease in neurological disease class, and Gambling,
pathologic (OMIM:606349) in psychiatric disease class.
ALS is a disease of the nerve cells in the brain and
causes unstable muscle movement and Gambling, patho-
logic is a disabling disorder to fail to resist impulses to
gamble, known for frequently co-occur with other psy-
chiatric disorders (85,86). R-NMTF also accurately pre-
dicted a few disease phenotypes including juvenile
myelomonocytic leukemia and breast cancer which were
previously missed in the annotation of the cancer disease
class (25). These findings suggest that R-NMTF could
correctly classify complex and rare disease phenotypes
into their relevant disease classes, which could be used
to guide clinical decisions.

Analysis of new member genes in disease pathways

KEGG provides a list of manually curated disease
pathways. However, the current knowledge of biological
pathways related with diseases is still incomplete and in-
accurate, and there are many missing member genes in the
disease-related pathways. Table 6 lists the newly predicted
member genes in the KEGG disease pathways. Our litera-
ture review also identified supporting evidences for many
of the predictions. Interesting examples include TMED10
and PRND, which are newly predicted member genes in
Alzheimer’s pathway and Prion disease pathway, respect-
ively. TMED10 inhibits production of amyloid beta
peptides, which is a critical feature of Alzheimers disease
and RPND (prion protein 2) is known for that mutations
in this gene may lead to neurological disorders. Other
examples include EXO1 and ADIPOR1 in colorectal
cancer pathway and FGFR3 and FGFR4 in melanoma
pathway. Single nucleotide polymorphisms in EXO1 in-
creases risk of colorectal cancer (106,107), and expression
of ADIPOR1 is known for involving cancer progression in
colorectal cancer (108,109). Mutations in FGFR3 and
FGFR4 were previously described in melanoma (121).
We also provide a network view of three examples of

disease pathways with addition of the newly predicted
member genes in Figure 5. These examples demonstrate
that, while KEGG disease pathways were manually
curated, there are still missing member genes in the
pathways. One example is WNT5A, a newly predicted
member gene in the colorectal cancer pathway in
Figure 5A. Recent study showed that WNT5A is a poten-
tial biomarker for colorectal cancer and could act as
tumor suppressor for colorectal cancer by antagonizing
the WNT signaling pathway (135). Another example is
FGFR3 gene, the newly predicted member gene in the
melanoma pathway, in Figure 5B. It has been shown
that mutation and overexpression in FGFR3 are
associated with survival of melanoma patients (136).
However, FGFR3 was not annotated in the melanoma
pathway although it is interacting with several members
in the pathway. The network views of all the 27 expanded
KEGG disease pathways with newly predicted member
genes are available at the article’s Supplementary Web.
These results support that R-NMTF correctly predicted

1 0.9 0.8 0.7 0.6
0

0.2

0.4

0.6

0.8

1

AUC score

%
 D

is
ea

se
 g

en
es

R NMTF
LP

Figure 3. Performance of disease gene discovery in leave-one-out
cross-validation. In the plot, the x-axis represents AUC cutoffs. The
y-axis represents the faction of disease genes with a AUC score above
the cutoffs. For example, R-NMTF achieved AUCs above 0.9 for
>80% of the genes, while LP only achieved the same level of AUC
for 20% of the genes.

Table 4. Performance of disease gene discovery in leave-one-out

cross-validation

Compared methods Avg. AUC win/draw/loss (P-value)

R-NMTF versus LP 0.930 versus 0.730 526/1/63 (5.4482e�113)

This table reports the average AUC for disease gene classification, and
the pairwise ‘win/draw/loss’ comparisons of each leave-one-out case
between R-NMTF and LP. The last column reports the statistical sig-
nificance of ranking results using Wilcoxon rank sum test.
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new member genes in several disease-related pathways,
and these novel disease genes could play important roles
in the disease pathways.

Analysis of predicted disease phenotype cluster–gene
cluster associations

We evaluated the predicted disease phenotype cluster–
gene cluster associations by a literature survey. We per-
formed two-way hierarchical clustering for the predicted
disease phenotype cluster–gene cluster associations.
Figure 6 shows the predicted associations between 20
disease phenotype clusters and 200 gene clusters
(pathways). Interesting examples are the manually
curated KEGG disease pathways. These disease-related

pathways include pathways related to cancers, neuro-
logical diseases and psychiatric diseases. R-NMTF accur-
ately predicted association between many of these
disease-related pathways to the related disease classes.
For example, many cancer-related pathways including
colorectal, pancreatic, bladder, non-small cell lung,
glioma and prostate cancer were correctly identified as
cancer pathways. We also identified a set of biological
pathways such as apoptosis, p53 signaling and ERBB sig-
naling, hedgehog signaling which are previously known to
contribute to tumorigenesis, as well as targets of many
anti-cancer drugs (137–141). Other interesting examples
are the pathways predicted to be associated to neuro-
logical and psychiatric disease classes. Prion disease is
one of the well-known rare progressive neurodegenerative

Figure 4. HPO phenotype similarities by clusters. The HPO similarity matrix of the phenotypes are display as a heap map. The phenotypes are
grouped into 20 clusters with the disease classes annotated below.
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disorders that affect both humans and animals. R-NMTF
accurately predicted the prion disease pathway as one of
the pathways associated with neurological disease class.
MAPK pathway is predicted to be associated with both
neurological and psychiatric disease classes. Recent study
reported that activation of MAPK pathway could play a
role in alzheimer and psychiatric disorders such as
increasing anxiety and depression and schizophrenia etc.
(142,143). R-NMTF also correctly predicted Huntington’s
disease pathway to be associated with neurological and
psychiatric diseases.

DISCUSSION

The number of documented disease phenotypes and
phenotype–gene associations increases quickly. Since
2007, the number of OMIM disease–gene associations is
nearly doubled. These determined associations provide
valuable resources not only for predicting novel associ-
ations but also for understanding disease phenotypes.
Our research work in the article explored this possibility
and reported promising results. Recently, phenotype
databases have been proposed and in the progress of
becoming comprehensive and systematic for many
species. R-NMTF will be a useful model for analyzing
the new ‘phenomes’. Moreover, R-NMTF also identifies

pathways associated with disease phenotype clusters.
Since many drugs are developed to target proteins that
act in disease-related pathways, precise identification of
members of disease pathways could accelerate the devel-
opment of more efficient targeted therapies, as well as
improve understanding of the molecular mechanisms
underlying complex human diseases. More recently,
cross-species phenotype–gene association analysis based
on ortholog genes and similar phenotypes has been per-
formed (144). An interesting future direction is to extend
R-NMTF to perform cross-species phenome–genome
co-clustering. It is also possible to apply other advanced
machine learning models to integrate the phenotype simi-
larity network and the PPI network with phenotype–gene
association data for co-clustering phenotypes and genes.
More refined modeling might lead to further improvement
in phenotype classification and disease–gene discovery.
Previously, regularized NMTF models were only

proposed for applications in image and document classifi-
cation. Gu and Zhou (145) introduced a dual regularized
co-clustering (DRCC), which extended NMTF by
incorporating the graph Laplacian as additional regulariza-
tions in the objective function. DRCC was applied to
classify images, documents and newsgroups. Zh vang et
al. (38) introduced a matrix tri-factorization-based classifi-
cation framework (MTrick) for transfer learning. MTrick
first learns an association matrix from source domain by
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performing non-negative tri-factorization and use incorp-
orates inferred association matrix S from source domain
into non-negative tri-factorization for target domain clas-
sification. R-NMTF introduces regularization terms for
label information from both phenotype and gene clusters,
and thus R-NMTF is a supervised co-clustering method
while DRCC is unsupervised. Compared with MTrick,
which only uses label information, R-NMTF incorporates
the prior knowledge in phenotype similarity network and
PPI networks to cluster phenotypes and genes with
tri-matrix factorization. To our best knowledge, no
previous NMF-based model has been applied to clustering
phenotypes or analyzing disease phenotype–gene associ-
ations. R-NMTF is an advanced model which integrates
phenome, genome and interactome information for both
problems.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Tables 1 and 2 and Supplementary
Figure 1.
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Michalová,K., Stark,B., Harrison,C., Teigler-Schlegel,A. and
Johansson,B. (2008) Cytogenetic features of acute lymphoblastic
and myeloid leukemias in pediatric patients with Down
syndrome: an iBFM-SG study. Blood, 111, 1575.

129. Valk,P., Verhaak,R., Beijen,M., Erpelinck,C., van Doorn-
Khosrovani,S., Boer,J., Beverloo,H., Moorhouse,M., van~der
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