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Abstract
Acoustic radiation force impulse (ARFI) imaging is being utilized to investigate mechanical
properties of cardiac tissue. The underlying physiological motion, however, presents a major
challenge. This paper aims to investigate the effectiveness of various physiological motion filters
using in vivo canine data with a simulated ARFI push pulse. Ideally, the motion filter will exactly
model the physiological motion and, when subtracted from the total displacement, leave only the
simulated ARFI displacement profile.

We investigated three temporal quadratic motion filters: (1) interpolation, (2) extrapolation and (3)
a weighted technique. Additionally, the various motion filters were compared when using 1-D
versus 2-D autocorrelation methods to estimate motion. It was found that 2D-autocorrelation
always produced better physiological motion estimates regardless of the type of filter used. The
extrapolation filter gives the most accurate estimate of the physiological motion at times
immediately after the ARFI push (0.1 ms) while a close-time interpolation filter using
displacement estimates at times before full tissue recovery gives the most accurate estimates at
later times after the ARFI push (0.7 ms). While improvements to the motion filter during atrial
systole and the onset of ventricular systole are needed, the weighted, close-time interpolation and
extrapolation motion filters all offer promising results for estimating cardiac physiological motion
more accurately, while allowing faster ARFI frame rates than previous motion filters. This study
demonstrates the ability to eliminate physiological motion in a clinically-feasible manner, opening
the door for more extensive clinical experimentation.
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I. INTRODUCTION
40% to 50% of patients with heart failure have diastolic dysfunction.1 Studies report an
association between increased left ventricle myocardial stiffness and diastolic heart
failure.2,3 Thus, cardiac stiffness and mechanical properties have vast potential as diagnostic
tools. One method of obtaining myocardial stiffness measurements is through the pressure-
volume relation.4,5 This method is limited, however, as it cannot provide measurements of
specific regions of the heart nor provide measurements in real-time. Three more promising
techniques that are compatible with current commercial scanners are shear wave dispersion
ultrasound vibrometry (SDUV), which uses the speed of propagating shear waves at several
frequencies to determine tissue mechanical properties;6,8 shear wave elasticity imaging
(SWEI);9 and acoustic radiation force impulse (ARFI) imaging.10
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ARFI imaging, the focus of this paper, is a noninvasive method to assess the mechanical
properties of tissue.11 ARFI imaging uses a high-intensity acoustic wave transmitted through
tissue to create a body force expressed as:

(1)

where c is the speed of sound in tissue [m/s], α is the tissue absorption coefficient [Np/m]
and I is the intensity [W/cm2]. This force causes small displacements inversely proportional
to tissue stiffness.11 Recent modifications to ARFI imaging, such as parallel beam tracking,
have decreased acquisition times and transducer heating, making clinical applications of
cardiac ARFI feasible.12 Arguably, the greatest remaining challenge for cardiac ARFI and
SWEI applications is accommodating physiological motion.13

While the physiological motion of the heart has been shown to contain diagnostically-
relevant information either through qualitative inspection, cardiac elastography or strain-rate
imaging,11,14–16 for other applications, particularly ARFI, physiological motion is a
dominant noise source that deteriorates image quality and must be filtered. According to
several studies, human cardiac tissue can achieve maximum acceleration and velocity
magnitudes of 190 cm/s2 and 17.5 cm/s, respectively.17,18 This physiological motion causes
decorrelation of consecutively-acquired echo signals, which subsequently results in
increased bias and jitter of displacement estimates.19 Additionally, the unfiltered
physiological motion will overwhelm ARFI-induced displacements.

Several methods have been explored for filtering cardiac motion.10,19,20 All cardiac motion
filters utilized in previous work, as well as those investigated here, use a common
underlying approach. The motion filter relies on the knowledge that the ARFI displacement
estimates include both physiological and ARFI-induced motion for some amount of time
after the application of radiation force. But before radiation force is applied and after the
tissue recovers from radiation force induced displacement, the estimates represent only
physiological motion. Additionally, since the physiological motion is continuous and on a
different time scale relative to the interrogated tissue’s dynamic response to the ARFI-
induced displacement (~500 ms versus ~5 ms), the physiological motion that occurs during
the dynamic ARFI response can be predicted using the physiological motion that occurs
outside the temporal influence of the ARFI’s response. The predicted physiological motion
can then be subtracted from the total estimated motion. The remaining motion is assumed to
be the solely due to the ARFI-induced displacement. (Practically, motion filters generally
operate on assumptions about the relevant temporal extent of an ARFI’s dynamic response
based on a priori information about the investigated tissue’s stiffuess.)

For example, although the heart is very dynamic and the velocity of the tissue is not
constant, it has been hypothesized that the motion is approximately linear over several
milliseconds. Thus, the first attempt at physiological motion filtering predicted the
physiological motion using a temporal first-order polynomial model.13,21 This filter fit a line
through two points: the ARFI reference time point, which is just prior to the ARFI push
pulse, and a single displacement estimate after full tissue recovery, which is selected based
on the previously-mentioned assumption. The predicted physiological motion was
subtracted from the total motion, ideally leaving only displacements due to radiation force.
This approach has several problems: (1) two points are often too few to accurately model the
cardiac motion and (2) even in such a short time frame, the velocity of cardiac tissue is
dynamic and thus cannot be well modeled with a first-order polynomial.

Further improvements of cardiac physiological motion filtering have utilized more
postrecovery displacement estimates, introduced displacement estimates of the physiological
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motion before the ARFI reference pulse and modeled the physiological motion as a second-
rather than a first-order polynomial. By adding three additional postrecovery tracking A-
lines and modeling the physiological motion quadratically, Hsu et al were able to realize
significant improvements over the original motion filter realization.10 Hsu et al’s study
interrogated open-chested canines with the transducer fixed to the epicardial surface of the
heart. Hsu et al assumed full tissue recovery 2.97 ms after the ARFI pushing pulse. The
improved motion-filter implementation worked effectively during diastole but not during
systole. During ventricular systole (when the cardiac tissue is stiffest), the displacement
from the ARFI push is at its minimum and, at the same time, the motion filter has its worst
performance. To provide perspective, in Hsu et al’s study, the motion filter had a maximum
error of 1.5 μm during systole, yet the average ARFI-induced displacement during systole
was just 3.96 ± 1.16 μm. On the other hand, during diastole, the motion filter’s error was
approximately 0.2 μm with an average ARFI-induced displacement of 19.75 ± 2.97 μm.10

Currently, the most accurate motion- filtering technique is a temporal quadratic interpolation
method which uses several postrecovery tracking A-lines, a single prereference tracking A-
line and a second-order polynomial model.19 This motion filter was demonstrated by
Bradway et al and the filter’s residual error range in a transthoracic imaging scenario was
shown to be ± 1 μm. Another recent work by Hsu et al suggests that it may be beneficial to
include more than one prereference tracking A-line but the results were not rigorously
quantified.20

While the most recent motion filters work well, there are still several challenges. First, it is
very difficult to determine precisely when radiation-force-induced shear waves have entirely
cleared the region of interest and residual displacements may influence the ‘post-recovery’
tracking time points used in the interpolation.22 Second, interpolation requires data over a
relatively long time and is thus susceptible to out-of-plane motion and decorrelation. Third,
interpolation requires data to be collected until full tissue recovery, increasing acquisition
time for a single ARFI sequence and decreasing flexibility in constructing ARFI sequences.
This limitationis especially detrimental for an M-mode case where a single ARFI sequence
is obtained repetitively in the same tissue region and interleaving of sequences to keep up
frame rate is not possible.

This paper aims to evaluate the effectiveness of motion filters throughout the cardiac cycle
and determine the most effective technique for removing physiological motion for cardiac
ARFI and SWEI applications. Three motion-filtering techniques are investigated: quadratic
interpolation, quadratic extrapolation and a quadratic weighted model filter.

Lastly, most in vivo cardiac studies to date have used data acquired with the transducer fixed
directly against the epicardial surface of the heart.22,23 Epicardial data acquisition is
extremely invasive and not practical for clinical application of SWEI and ARFI imaging.
Instead, this study examines the effectiveness of the mentioned physiological motion filters
on transthoracic canine cardiac data acquired noninvasively.

II. METHODS
Data acquisition

Raw ultrasound data were acquired in an in-phase and quadrature (IQ) form using the
Siemens (Siemens Healthcare Sector, Ultrasound Business Unit, Mountain View, CA)
SONOLINE Antares imaging system with the handheld VF 10-5 transducer. The linear
array was used to acquire transthoracic in vivo cardiac data on two canine subjects. The
mass and heart rate of each canine subject can be seen in table 1. The study was approved by
the Institutional Animal Care and Use Committee at Duke University conforming to the
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Research Animal Use Guidelines of the American Heart Association. The data from the
canine subjects was acquired without any ARFI excitation pulse. Data were acquired using a
6.67 MHz center frequency and 4-to-1 parallel receive beamforming. For each trial, the
ARFI sequence consists of 20 prereference tracking A-lines, one reference A-line and 60
post-reference tracking A-lines, all evenly spaced in time. In other words, the time spans
from −2.0 to +6.0 ms with a pulse repetition interval of 0.1 ms. The reference A-line is at
time zero and was used to establish the initial tissue position. All subsequent (and prior)
tissue displacements are measured relative to the reference A-line. For the remainder of the
paper, the tracking A-lines are simply referred to as tracks. For more detail regarding the
acquisition sequence, the reader is referred to Hsu et al.20 All data was processed offline
using Matlab (The Mathworks, Inc., Natick, MA).

Figure 1 shows a B-mode image along with the location of the M-mode ARFI sequence.
Data were acquired up to a depth of 4 cm but only regions within the left ventricle free wall
were processed.

As mentioned previously, none of the acquired in vivo canine data include a pulse capable
of inducing measurable radiation force displacements. Instead, a simulated ARFI
displacement profile was added to each M-mode ARFI sequence immediately after the
reference A-line. (Thus, it simulates an ARFI excitation pulse applied at time t = 0+).
Previous work indicates that the on-axis displacement profile from an ARFI excitation in
cardiac tissue in experimental settings matches well qualitatively with simulations.10,19,24,25

For a more detailed description of the finite-element method model used to simulate the
dynamic response from an acoustic radiation force, the reader is referred to a paper by
Palmeri et al.24 Figure 2(c) and (d) show the simulated displacement profile. As a result,
both the ARFI displacement and the underlying physiological motion are known quantities.

Displacement using phase-shift estimation
Previous work indicates that for small displacements, there is little difference in
performance when tracking with radiofrequency (rf) data compared to IQ data as long as
appropriate algorithms are used.25,26 There are numerous algorithms used for phase shift
estimation, the most prominent being Kasai et al’s 1-D and Loupas et al’s 2-D
autocorrelarors. 27–29 While 1-D autocorrelation methods have a slight computational
advantage, 2-D autocorrelation algorithms have lower jitter and bias.26 Displacement
estimates derived from both 1-D and 2-D autocorrelation algorithms and the subsequent
motion filtering results were tested and compared in this study.

In all cases, the displacements were estimated against a single, static reference tracking
pulse (i.e. A–B, A–C, etc.). Because the phase shift (as opposed to the time delay as in
normalized crosscorrelation) is used to determine the displacement of the tissue in both
algorithms, phase wrapping does occur in at least some of the data. For Kasai’s algorithm, it
is relatively trivial to unwrap the displacement estimates; large displacement discontinuities
through time greater than half a wavelength were found in the data and shifted an entire
wavelength in the opposite direction. Phase unwrapping is significantly more challenging on
Loupas-derived displacement estimates. Therefore, for this work, Loupas’ algorithm was
implemented as by Cohn et al where the Loupas-based displacement estimate is allowed to
track the envelope producing the necessary information for phase unwrapping.30 After
applying the phase-shift algorithm and before adding the simulated ARFI sequence as
mentioned in the previous section, all displacements were filtered along the axial dimension
with a 1.5λ long low-pass filter kernel with a cut-off frequency of 1.90 cycles/mm.

Additionally, to help monitor signal decorrelation and account for the tracking of perceived
versus actual motion, a normalized correlation-coefficient value was used as an estimate of

Giannantonio et al. Page 4

Ultrason Imaging. Author manuscript; available in PMC 2012 October 23.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



tracking efficacy. The normalized crosscorrelation was calculated over a range of
displacements and the maximum value was selected, as in crosscorrelation tracking. If the
peak correlation coefficient was below 0.85, it was assumed that motion could not be
estimated with the quality necessary for ARFI imaging and those trials were thrown out.

Motion filters
Three types of physiological quadratic motion filters were investigated: (1) temporal
interpolation, (2) temporal extrapolation and (3) a temporal weighted technique. In all three
cases, a quadratic polynomial was used to model the motion:

(2)

The polynomial was fit using the least-squares method (where d is a vector containing
displacement estimates, A is the model matrix containing times and x is the coefficient
vector) for the interpolation and extrapolation filters. In all cases, the model matrix, A, was
constructed to force the displacement fit through zero displacement at the reference track
(i.e. no intercept was included in the model matrix). In other words:

(3)

For the weighted filter, the formula Wd = WAx was used, where W is the weights matrix.
Figure 2 gives an example of the filtering technique for the temporal quadratic-interpolation
motion filter.

1. Temporal quadratic-interpolation filter—Before investigating alternative filtering
techniques, the current temporal quadratic-interpolation motion filter was investigated.10,19

Cardiac tissue is stiff; Fahey et al demonstrated full tissue recovery just 2–3 ms after the
radiation force pulse,31 indicating relatively high-velocity shear-wave propagation on the
order of several meters per second (max shear wave velocity varies from 2.65–5 m/s).32,33

Therefore, 3 ms was assumed to be the earliest time where postreference tracking pulses
could be used to fit the physiological motion. The quadratic motion filter was quantified as a
function of the ratio of prereference tracks to postrecovery tracks and as a function of the
total number of tracks (ratio held constant). For example, when investigating the motion-
filter effectiveness as a function of the total number of tracks, the total motion was predicted
using the first prereference track at −0.1 ms before the simulated ARFI push and the first
postrecovery track at 3.0 ms after the push. The results of this filter were compared to other
quadratic filters also with a 1:1 prereference to postrecovery track ratio, such as one using
the first two prereference tracks (−0.2 ms, −0.1 ms) and the first two postrecovery tracks
(3.0 ms, 3.1 ms).

2. Temporal quadratic-extrapolation filter—Next, a temporal quadratic extrapolation
filter was investigated. The extrapolation filter employs the same technique as the
interpolation filter but only the tracks before the simulated ARFI push (the prereference
tracks) were used as inputs to the model. The extrapolation filter was characterized as a
function of the total number of prereference tracks included in the filter, ranging from 1 to
20.

3. Temporal quadratic-weighted filter—Many studies are concerned with the ARFI-
induced displacements in the tissue 0.4–1.0 ms after the ARFI push pulse.10,19,20,32 A new
weighted model was developed using post-reference tracks 0.4–1.0 ms after the simulated
ARFI push (before full tissue recovery) instead of using any postrecovery tracks. For this
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method, several prereference tracks weighted 1 were combined with tracks during ARFI
recovery weighted anywhere between 0 and 1 in order to fit the motion. The most
challenging aspect of the weighted filter is determining how to weight the postreference
tracks during ARFI recovery. The weights used were determined empirically from a
nonexhaustive parameter space.

Metrics used for comparison
Two of the most useful metrics to compare the effectiveness of the various filters are bias
and jitter. Bias is the mean of the displacement error between the filter’s estimate and the
actual physiological motion whereas jitter is the standard deviation of the displacement
error. Additionally, the mean absolute difference (MAD) and the standard deviation of the
absolute difference (STDad) were computed in order to facilitate comparison with
previously-published motion filtering results.10,20 The MAD is the mean of the absolute
displacement error between the filter’s estimate and the actual physiological motion.
Additionally, the signal to noise ratio (SNR) was computed, where the signal is the
simulated ARFI displacement profile squared and the noise is the summation of the bias
squared and jitter squared. Finally, the correlation coefficient (r) was used to assess how the
residual physiological motion after application of the different motion filters affects the
shape of the ARFI response. Equations for the metrics used are listed below, where x is the
motion filter estimate [μm], y is the actual physiological motion [μm], i is each axial depth
in the left ventricle free wall, t is each time point over the entire course of data collection
(~0.85 s) and s is the signal.

(4)

(5)

(6)

(7)

(8)

III. RESULTS
Two canine subjects were imaged for this study. Due to the large quantity of data and the
consistent patterns in terms of motion filter effectiveness and similarity of results between
the two subjects, only the data from one canine subject — the one with the most dynamic
heart, and by extension the worst results — is shown in figures 3–7. However, data from
both canine subjects is reported in figures 8 and 9, comparing the best of each type of
motion filter. A comparison of the heart dynamics of the two canine subjects is shown in
table 1.
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Both the standard deviation of the absolute difference (STDad) and the standard deviation of
the bias (jitter) were plotted separately instead of as error bars in most cases. Although this
is unconventional, it was done to maintain clarity and reduce clutter in all figures. The
standard deviations are larger than in other studies for several reasons: (1) The motion filters
were applied to all depths in the left ventricle free wall whereas previous studies only used
values at a single depth.10,20 As the axial distance from the transducer increases, the
performance of the motion filter generally degrades. (2) This study uses data acquired trans-
thoracically, as opposed to data acquired with direct transducer contact with the heart. (3)
The data employed here represents the most difficult to image of the two canines.

Interpolation filters
Figure 3 gives the MAD, STDad, bias, and jitter over time from 0 to 1.4 ms after the
simulated ARFI push for various interpolation filters, and their performance is compared to
previously-employed filters. The previously-employed filters used for comparison are a
quadratic interpolation filter using no prereference tracking pulses and four postrecovery
tracking pulses and a quadratic-interpolation filter using a single prereference track and four
postrecovery tracking pulses. These two filters were used in previous work by Hsu et al10

and Bradway et al,20 respectively. As the results show, for cardiac imaging, it is much more
effective to use interpolation filters with an equal number of prereference and postrecovery
tracking pulses. To verify this observation, figure 4 compares various interpolation filters as
a function of the ratio of postrecovery tracks to prereference tracks.

Extrapolation filters
Figure 5 investigates extrapolation filters as a function of the number of prereference tracks.
The results indicate that using just one prereference track is ineffective while using too
many prereference tracks is inefficient as well as less effective. The ideal extrapolation filter
uses about four prereference tracks.

Weighted filters
Figure 6 gives the MAD, STDad, bias and jitter of several of the weighted filters that yielded
the most accurate estimates of the physiological motion. All the filters in figure 6 use five
prereference tracks from −0.5 to −0.1 ms weighted 1 and seven postreference tracks from
0.4 to 1.0 ms with various weights (see figure 6 for precise weights). Since the filters in
figure 6 perform similarly regardless of the weights selected, it is unclear whether the
weighted motion filters were effective in estimating the physiological motion due to the
weights selected or simply because of the use of postreference tracks prior to full tissue
recovery from the simulated ARFI push pulse. Therefore, figure 7 plots a motion filter using
two prereference tracks (−0.2 ms, −0.1 ms) and two postreference tracks at varying times
from 0.5 to 3.0 ms after the simulated ARFI push pulse all weighted 1. For the remainder of
the paper, the filter in figure 7 will be referred to as the close-time interpolation (CTI)
motion filter.

Comparison of interpolation, extrapolation and weighted motion filters
The previous plots of the MAD, STDad, bias and jitter were used to determine the best
interpolation, extrapolation, and weighted filters when using Loupas’ phase-shift estimation
technique. (Obviously, there may be some slight differences as to what is the best filter
depending on constraints of a specific experiment). It was found the best interpolation filter
used two prereference tracks (−0.2 ms, −0.1 ms) and one postrecovery track (3.0 ms). The
best extrapolation filter used four prereference tracks (−0.4 to −0.1 ms). The best weighted
filter used five prereference tracks (−0.5 to −0.1 ms) weighted 1 and seven postreference
tracks from 0.4–1.0 ms after the simulated ARFI push weighted 0.001,0.005,0.01,0.05,0.1,
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0.5 and 1 respectively. And the best close-time interpolation filter used two prereference
tracks (−0.2 ms, −0.1 ms) and two postreference tracks (1.0 ms, 1.1 ms). Figures 8 and 9
compare the best filters and those used in previous works by Hsu et al and Bradway et al.
Results from both canine subjects imaged are shown in figures 8 and 9 and the results
between canine subjects are nearly identical. Figure 8 gives the MAD, STDad, bias and jitter
of the various motion filters while figure 9 plots the SNR of the various motion filters as a
function of time after the simulated ARFI push.

Additionally, table 2 gives the correlation coefficient comparing the simulated ARFI
dynamic response to the estimate of the ARFI displacements after the physiological motion
is removed using the most effective interpolation, extrapolation, weighted and close-time
interpolation filters (filters used in figures 8 and 9). To emphasize, the r values below show
correlations between the known ARFI response and the ARFI displacement estimate after
filtering with the residual physiological motion present. The responses are compared for
times 0.1–1.4 ms after the simulated ARFI push.

Loupas vs. Kasai phase-shift estimation
Since previous studies employing motion filters operated on displacements calculated using
1-D autocorrelation as developed by Kasai et al27 and the filters developed here (Figs. 3–9)
operate on displacement estimates from 2-D autocorrelation as developed by Loupas et
al,28,29 the performance of motion filters operating on displacement estimates calculated
with 1- versus 2-D autocorrelation estimators are compared in figures 10–12. The best
motion filters were selected for displacement estimates using 1-D autocorrelation using the
same metrics as those already described and shown in figures 3–9. Figures 10–12 contain
three filters: (1) the best filter based on 2-D autocorrelation derived displacement estimates,
(2) the identical filter (same model matrix) as the best filter using 2-D autocorrelation based
displacements but instead using 1-D autocorrelation derived displacements and (3) the filter
optimized for 1-D autocorrelation-derived displacements. One interesting trend is that the
models optimized for 1-D autocorrelation-derived displacement estimates do better with
more points added to the model relative to models optimized for 2-D autocorrelation-derived
displacements. For example, the best 1-D autocorrelation-based extrapolation filter in figure
11 uses four prereference tracks while the best 2-D autocorrelation based filter uses only
four prereference tracks. As the figures show, the best 2-D autocorrelation filters give better
results than the optimized 1-D autocorrelation filters, regardless of time after the ARFI push
or the metric used for comparison. It is also important to note that the best 1-D
autocorrelation-derived filters do perform better than an average model supplied with 2-D
autocorrelation- based displacement estimates.

Cardiac cycle
Figure 13 shows the performance of the best interpolation, extrapolation, and close-time
interpolation filters using 2-D autocorrelation-derived displacement estimates throughout the
cardiac cycle with a matched electrocardiogram (ECG).

IV. DISCUSSION
Cardiac tissue fully recovers approximately 3 ms after acoustic radiation force excitation
(for a typical push beam width on-axis).13,24,31 However, using either a weighted motion
filter or close-time interpolation motion filter enables tracks at times where the ARFI
displacements are still present in the cardiac tissue to be useful for motion filtering (< 3 ms).
It is advantageous to use tracks prior to full tissue recovery because the majority of cardiac
studies are most interested in the ARFI displacements 0.1–1.0 ms after excitation.10, 19, 20, 32

The best SNR occurs from 0.1–0.5 ms after excitation (Fig. 9) while the greatest contrast in
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ARFI-induced displacements during systole relative to diastole occurs from 0.5–1.0 ms after
excitation and is used to determine the myocardial stiffness ratio.10

The idea behind the weighted motion filter was to weight the displacement estimates at
times before full tissue recovery less than 1 so they do not have as much of an effect on the
fit and are primarily used to put bounds on the physiological motion. However, as figures 6–
8 demonstrate, a close-time interpolation motion filter using two tracks prior to full tissue
recovery (1.0 ms, 1.1 ms) actually fits the physiological motion slightly better than any
weighted motion filter. Thus, it is simply the use of tracks close to the 0.1–1.0 ms range and
not the various weighting of the tracks the improves the filter’s estimate of the physiological
motion relative to interpolation filters used in previous work.10, 19

The ARFI displacements still present in the tissue 1.0–1.1 ms after the simulated ARFI
excitation do not have much effect on the close-time interpolation filter’s estimate of the
physiological motion for a couple reasons. First, the ARFI displacements decrease
exponentially after reaching a peak displacement around 0.3 ms after the simulated ARFI
pulse (Fig. 2). By 1.0 ms, the ARFI displacements are just 10% of their peak value
(approximately 0.5 μm in magnitude). Second, using a quadratic fit further lessens the effect
of the ARFI displacement still present in the tracks because the ARFI displacement over
time is not well modeled by a quadratic, whereas the physiological motion over several
milliseconds can be modeled by a quadratic in most cases (Fig. 2).

The extrapolation, weighted and close-time interpolation motion filters also address one of
the major challenges with cardiac ARFI imaging: signal decorrelation. When there is a
significant amount of decorrelation (whether from strain, rotation, nonaxial motion, etc.), the
measured displacement will stop corresponding with true displacement. This phenomenon
has been observed and studied by others.34 To help monitor the decorrelation and account
for perceived versus actual motion, normalized cross-correlation values were used to ensure
the existence of reasonable levels of correlation. Additionally, Loupas’ phase-shift
estimation as implemented by Cohn et al is susceptible to envelope-tracking errors.30 Thus,
the tissue displacement between subsequent tracks was also monitored to ensure the tracking
of actual motion. If the peak correlation coefficient was below 0.85 or the maximum
displacement between two subsequent tracks was greater than 85 μm, it was assumed that
motion could not be estimated with the quality necessary for ARFI imaging and the results
from fitting those tracks were thrown out. Obviously, the farther apart in time the tracks
used to fit the physiological motion are, the more likely the trial will contain sufficiently-
decorrelated signals and thus meet the criteria for being eliminated. From this perspective,
motion filters that require tracking the displacements for the least amount of time are most
ideal. As table 3 shows, there are essentially no trials with a correlation coefficient below
0.85 or displacement between subsequent tracks greater than 85 μm when using an
extrapolation filter that requires tracking for just 0.5 ms but there is significant decorrelation
when using an interpolation filter that requires tracking over 3 ms.

Another important observation is that using more data does not necessarily yield better
results. For example, figure 3 reveals that an interpolation filter using two prereference
tracks (from −0.2 to −0.1 ms) and two postreference tracks (from 3.0 to 3.1 ms) gives a
better estimate of that actual physiological motion than an interpolation filter using four
prereference tracks (from −0.4 to −0.1 ms) and four postreference tracks (from 3.0 to 3.4
ms). A quadratic model is assumed. The fact that the physiological motion more closely
resembles a quadratic when fewer points are used implies that a quadratic model is an
imperfect representation of the physiological motion and it may be worth finding a better
model for the motion in the future. While this result is a limitation, the quadratic motion
filter is still an effective technique.
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The results of this study clearly demonstrate the extrapolation, weighted and close-time
interpolation motion filters are preferable to currently-used interpolation filters. Figure 13
shows that an extrapolation filter results in the most accurate estimate of the physiological
motion if one is concerned with the ARFI displacements almost immediately after the ARFI
push pulse (< 0.2 ms). However, a close-time interpolation filter gives the most accurate
estimate at later times after the ARFI push pulse (> 0.5 ms) and does the best job of
preserving the overall ARFI response curve, which is important for parametric ARFI
methods. From 0.2–0.5 ms after the push pulse, the optimal interpolation, extrapolation,
close-time interpolation and weighted techniques perform about the same (Fig. 8). As a
result, the extrapolation filter should be used up to 0.5 ms since it both allows the fastest
ARFI frame rate and is subject to the least amount of signal decorrelation (Table 3).
Regardless of the type of motion filter used, it is least accurate during a trial systole and the
onset of ventricular systole (Fig. 13). During these phases, motion is not as well modeled by
any of the models tested to date. It is possible that an adaptive method that applies different
models during different phases of the heart cycle may solve this problem.

There is one minor limitation of our method that should be discussed. In practice, an ARFI
push pulse creates shearing under the imaging point spear function (PSF) which thereby
causes the ultrasonic, correlation-based tracking methods to have a negative bias and
underestimate the actual tissue displacements.24, 25 This ARFI -induced decorrelation alters
tracking performance and is not accounted for in the finite-element method model used to
create the simulated ARFI displacement profile. However, the displacement underestimation
occurs at extremely early time steps almost immediately after the ARFI push pulse. None of
the motion filters in this paper use displacement estimates from 0+ to 0.3 ms after the
simulated ARFI push pulse and thus the motion filter performance is only minimally
affected.

While this study only investigates a specific case — transthoracic cardiac ARFI in a medium
noise environment — the physiological motion filters can potentially be applied to a broad
range of scenarios. For example, similar motion filters have already been applied to open-
chested cardiac ARFI (a low noise environment) and cardiac SWEI10,32 and the results from
these studies suggest that the general ranking of motion filters from least to most effective is
consistent. The motion filters also have potential in thermal-strain imaging and
photoacoustic-imaging scenarios35, 36 where cardiac motion is a dominant noise source that
must be eliminated.

V. CONCLUSION
This study demonstrates the ability to eliminate physiological motion in a clinically- feasible
manner, opening the door for more extensive clinical experimentation. While, the
extrapolation, weighted and close-time interpolation motion filters offer promising results
for estimating cardiac physiological motion both more accurately and at a faster ARFI frame
rate than previous motion filters, improvements to the motion filters during atrial systole and
the onset of ventricular systole need to be made. Future studies are planned using in vivo
data with non-zero ARFI excitations.
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FIG. 1.
B-mode image. The transducer is located at the top of the image. The y-axis corresponds to
axial depth and x-axis lateral distance. The middle part of the image between the two
horizontal white lines corresponds to the left ventricle free wall. The motion filters were
applied to all axial depths in the free wall. The solid black vertical line indicates the location
of the M-mode ARFI sequence.
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FIG. 2.
In the top plots (a, b), the black line is the total displacement curve, containing both the
physiological motion and displacement due to a simulated acoustic radiation force. The gray
dotted line is an estimate of the physiological motion using a temporal interpolation motion
filter. The black dots represent the points used for the motion filter. By subtracting the bulk
motion estimate from the total displacement curve, the displacement due to the acoustic
radiation force is isolated (c, d). (a) and (c) demonstrate a case in which the motion filter is
effective while (b) and (d) demonstrates a less effective case.
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FIG. 3.
Interpolation motion filter. Plots of the mean absolute difference (MAD), standard deviation
of the MAD (STD), bias and standard deviation of the bias (jitter) for an interpolation
motion filter as a function of time after ARFI push. As an example, 2:2 in the legend
indicates the filter used 2 prereference tracks immediately before the reference line and 2
postrecovery tracks immediately after full tissue recovery to fit the quadratic estimate of the
physiological motion. (1:4 is the filter used by Bradway et al9 and 0:4 is the filter used by
Hsu et al.10)
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FIG. 4.
Interpolation motion filter. Plots for an interpolation motion filter as a function of the ratio
of postrecovery tracks to prereference tracks at various times (either 0.1,0.3,0.5 or 0.7 ms)
after the ARFI push. The number of prereference tracks was held constant at 2, so, for
example, a ratio of 1.5 means the filter used three postrecovery tracks immediately after
tissue recovery and three prereference tracks immediately prior to the ARFI push.
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FIG. 5.
Extrapolation motion filter. Results above are the MAD, standard deviation of the MAD
(STD), bias and standard deviation of the bias (jitter) for extrapolative motion filters as a
function of the number of prereference tracks at 0.1 and 0.5 ms after the ARFI push.
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FIG. 6.
Weightted motion filter. All the filters above used five prereference tracks (from −0.5 to
−0.1 ms) weighted 1 and seven postreference tracks (from 0.4 to 1.0 ms after the ARFI push
weighted as stated on the legend). The seven postreference tracks on the filter with varying
weights were weighted 0.001, 0.005, 0.01, 0.05, 0.1, 0.5 and 1, respectively.
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FIG. 7.
Close time interpolation motion filter. All the filters above use two prereference tracks (−0.2
ms, −0.1 ms) weighted 1 and two postreference tracks weighted 1 at varying times from 0.5
to 3.0 ms after the simulated ARFI push (as indicated on the legend).
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FIG. 8.
Comparison of best motion filters. Results from both canine subjects are shown above. 0:4
and 1:4 are temporal interpolation filters applied in previous studies using zero prereference
tracks and four postrecovery tracks (3.0 to 3.3 ms) and one prereference track (−0.1 ms) and
four postrecovery tracks (3.0 to 3.3 ms) respectively. The interpolation filter uses two
prereference tracks (−0.2 ms, −0.1 ms) and one postrecovery track (3.0 ms). The
extrapolation uses four prereference tracks (−0.4 to −0.1 ms). The weighted filter uses five
prereference tracks (−0.5 to −0.1 ms) weighted 1 and seven tracks from 0.4 to 1.0 ms after
the simulated ARFI push weighted 0.001, 0.005, 0.01, 0.05, 0.1,0.5 and 1. The close time
interpolation filter use two prereference tracks (−0.2 ms, −0.1 ms) and two post-reference
tracks (1.0 ms, 1.1 ms).
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FIG. 9.
SNR of best motion filters. Results from both canine subjects are shown. The filters used are
the same as those in figure 8.
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FIG. 10.
Comparison of 1- and 2-D autocorrelation-based phase-shift estimators for the temporal
quadratic interpolation motion filter. The optimized 2-D autocorrelation and nonoptimized
1-D autocorrelation use two prereference tracks (−0.2 ms, −0.1 ms) and one postrecovery
track (3.0 ms). The optimized 1-D autocorrelation uses three prereference tracks (−0.3 to
−0.1 ms) and three postrecovery tracks (3.0 to 3.2 ms).
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FIG. 11.
Comparison of 1- and 2-D autocorrelation-based phase-shift estimators for the temporal
quadratic extrapolation motion filter. The optimized 2-D autocorrelation and nonoptimized
1-D autocorrelation use four prereference tracks (−0.4 to −0.1 ms). The optimized 1-D
autocorrelation uses 14 prereference tracks (−1.4 to −0.1 ms).
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FIG. 12.
Comparison of 1- and 2-D autocorrelation-based phase-shift estimators for the temporal
quadratic weighted motion filter. The optimized 2-D autocorrelation and optimized 1-D
autocorrelation both use five prereference tracks (−0.5 to −0.1 ms) weighted 1 and seven
postreference from 0.4 to 1.0 ms after the simulated ARFI push weighted 0.001, 0.005, 0.01,
0.05, 0.1, 0.5 and 1.
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FIG. 13.
(a) to (h) show the mean absolute difference between the actual ARFI displacement and the
estimate of the ARFI displacement after filtering at all depths in the left ventricle free wall
0.1 and 0.7 ms after the simulated ARFI push with a matched ECG (d, h). (i) to (p) show the
absolute difference between the actual ARFI displacement and the estimate of the ARFI
displacement after filtering at each depth in the left ventricle free wall 0.1 and 0.7 ms after
the simulated ARFI push. The gray lines labeled ‘1’ and ‘2’ on the ECG correspond to atrial
systole and the onset of ventricular systole. The interpolation, extrapolation, and close-time
interpolation filters used are the same as those shown in figure 8.
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Table 1

Comparison of canine subjects.

Canine subject Mass (kg) Average heart rate (beats/min) Maximum velocity of cardiac tissue (cm/s)

1 (subject analyzed) 19.5 140 14.3

2 18.0 115 9.27
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Table 2

Correlation coefficients comparing the simulated ARFI dynamic response to the dynamic response combined
with the residual physiological motion not removed by motion filtering from 0.1 to 1.4 ms after excitation.

Filter r

Interpolation 0.7945

Justright extrapolation 0.6768

Weighted 0.8884

Close-Time interpolation 0.9123
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Table 3

Percentage of trials deemed too poor for ARFI imaging (correlation coefficient below 0.85 or peak hop greater
than 85 μm).

Time-of-displacement estimates used (ms) Number of trials (out of 9,100) Percentage of trials (%)

−0.2 to 3.1 (best interpolation) 973 10.69

−0.4 to 0 (best extrapolation) 3 0.03

−0.5 to 1.0 (best weighted) 75 0.82

−0.2 to 1.1 (best close time interpolation) 98 1.08
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