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Abstract
The primary cilium protrudes like an antenna from the cell surface, sensing mechanical and
chemical cues provided in the cellular environment. In some tissue types, ciliary orientation to
lumens allows response to fluid flow; in others, such as bone, ciliary protrusion into the
extracellular matrix allows response to compression forces. The ciliary membrane contains
receptors for Hedgehog, Wnt, Notch, and other potent growth factors, and in some instances also
harbors integrin and cadherin family members, allowing receipt of a robust range of signals. A
growing list of ciliopathies, arising from deficient formation or function of cilia includes both
developmental defects and chronic, progressive disorders such as polycystic kidney disease
(PKD); changes in ciliary function have been proposed to support cancer progression. Recent
findings have revealed extensive signaling dialog between cilia and extracellular matrix (ECM),
with defects in cilia associated with fibrosis in multiple contexts. Further, a growing number of
proteins have been defined as possessing multiple roles in control of cilia and focal adhesion
interactions with the ECM, further coordinating functionality. We summarize and discuss these
recent findings.

1. Introduction
In vertebrates and other complex metazoans, tissue organization is achieved and supported
through a dialog between extracellular signals and a trans-membrane interpretive machinery
that coordinates appropriate assembly of intracellular cytoskeletal structures. Integrins
mediate communication with the basement membrane; cadherins and desmosomal proteins
mediate cell-cell communications. A growing number of studies now suggest that another
structure, the cilium (Figure 1), also contributes to environmental sensing based on roles in
receipt of mechanical and chemical cues. With rare exceptions (e.g., oncogenically
transformed cells or lymphocytes, which are non-ciliated; lung epithelial cells, which are
multiciliated [1]), most cells have a single protruding cilium. Although related structurally to
the motile flagella of lower eukaryotes, such as Chlamydomonas, most cilia are non-motile,
although again, rare exceptions of cells motile cilia exist, and some play important roles in
development [2]. Structurally, a cilium is composed of 9 microtubule-based doublets
organized in a circle around a hollow core, covered by a membrane, and extending 3–10 μm
from the cell surface. The basal body which anchors the cell-proximal end of the cilium
differentiates from the older (“mother”) centriole of the centrosome as cells enter G1 or G0
after cytokinesis, as cilia protrude from the cell [3]; cilia resorb, and the basal body is re-
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modified to function as part of a centrosome, in waves preceding S phase and G2/M. An
excellent series of recent reviews have detailed ciliary ultrastructure, connections to cell
cycle, and intracellular signaling defects associated with disease states [3–7].

In contrast to the broadly appreciated roles of cilia in receipt of flow or soluble cues, a
growing body of literature connects ciliary function to control of cell adhesion, although the
relationship has not been as broadly appreciated. While many cilia orient into lumens, others
typically orient towards the extracellular matrix (ECM) (e.g. [8–12]). Receptors for many
signaling proteins that influence cell adhesion, polarity, and interactions with the ECM
localize expressly to the ciliary membrane; studies of “ciliopathies”, a group of hereditary
diseases specifically associated with ciliary defects, clearly indicate aberrant cell-ECM
interactions. We here summarize recent relevant studies.

2. The cilia is a platform for signaling by receptors that influence adhesion
Although the cilium is a relatively small structure, the ciliary membrane is the obligate site
of action for receptors for some signaling systems that profoundly condition cell growth,
morphology, and adhesion, and a specialized site of action for additional signaling receptors
(Figure 2). To summarize some of the better-studied ciliary functions, the polycystins (PC1
and PC2 [13,14]) are encoded by the PKD1 and PKD2 genes, and are commonly mutated in
autosomal dominant polycystic kidney disease (ADPKD). PC1 and PC2 heterodimerize on
cilia oriented towards the lumen of renal tubules. In this system, the long extracellular
domain of PC1 acts as a mechanosensor for fluid force [15], activating the PC2 calcium
channel; loss of this signaling triggers cystic growth. The significant differences in ECM in
renal tissue and typical extra-renal phenotypes associated with ADPKD (which include
intracranial aneurysms and abdominal hernias) strongly suggest physiological roles for PC1
and PC2 in regulating normal cell adhesion and cell matrix deposition. Some studies have
identified a population of PC1 as a member of the focal adhesion complex, which interacts
with and regulates ECM proteins (summarized in [16]). In zebrafish, combined knockdown
of pkd1 and pkd2 induced substantial collagen overexpression, which was an essential
mediator of linked phenotypes of disrupted development [17].

The soluble ligand Hedgehog/Sonic Hedgehog (Hh/Shh) binds to its receptor Patched (Ptc)
on the cilium, activating a signaling cascade that leads to activation of the Gli transcription
factor family [18], which influences epithelial-mesenchymal transition (EMT) and matrix
invasion. Some receptor tyrosine kinases, including notably PDGFRα, localize to and
function at the cilia, where they act to guide directional cell migration and chemotaxis
[19,20]. In some cell types, cilia display integrin receptors and the NG2 chondroitin sulfate
proteoglycan (CSPG) [10,21], allowing response to ECM.

A pool of the developmental regulator Notch functions at cilia in epidermal differentiation.
Notch regulates the balance between proliferation and differentiation in the developing
epidermis, and loss of the primary cilium leads to disturbed Notch signaling, with
subsequently compromised differentiation of the skin, and impaired skin barrier function
[22]. Members of the nephrocystin protein group, targeted for mutation in the renal cystic
syndrome nephronophthisis (NPHP), also localize to the cilia and transition zone. Some of
these proteins (NPHP1, NPHP4) interact directly with and are regulated by focal adhesion-
associated proteins such as Pyk2/PTK2B and p130Cas/BCAR1, and components of the
planar cell polarity (PCP) machinery [23–27]; NPHP2, also known as inversin, enhances
non-canonical Wnt pathway signaling, suppressing the canonical Wnt pathway [28]. Wnt/
PCP receptors localize to the specific ciliary membrane; increasing cadherin adhesive
activity during gastrulation induces Wnt/PCP pathway activity, which is necessary for
normal assembly of fibronectin matrix [29]. Closer to the cell body, additional signaling
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proteins with functions in regulation of interactions with the extracellular matrix localize to
the ciliary basal body and adjacent transition zone. This includes another group of
nephrocystins (e.g. NPHP6/CEP290 [30,31] and NPHP7/GLIS2 [32–34], and also proteins
such as the HEF1/NEDD9 scaffolding protein [35], which induces ciliary resorption in
response to extracellular cues.

3. Cilia-mediated response to ECM
The bulk of research on the effect of mechanical cues interpreted through cilia has dealt with
organ systems in which cilia protrude into fluid-filled lumens or ventricles, or in tissue
culture experiments with cilia pointing into the medium, with these stimuli either specifying
directional migration during organogenesis, or polarized cell division, or programs of
differentiation (e.g. [36–40]). However, a growing number of studies emphasize mechanical
stimuli arising through ciliary interaction with the ECM. One particularly instructive system
has involved the study of chondrocytes and joint development (Figure 3; discussed at length
in [41]). As part of this process, columns of chondrocytes orient along the long axis of bone
extension in the growth plate, with cilia binding to oriented collagen fibers through ciliary
integrin receptors [10,42,43], with response to directional mechanical cues thought to
specify directional production of ECM and development of tissue anisotropy [11]. Under
normal growth, cilia-localized PC1 also mediates secondary cues such as elevated
extracellular ATP induced indirectly by cellular interactions with collagen during matrix
compression [44]. Tg737/IFT88 (ORPK) mice, which have short or absent cilia, have both
defects in skeletal patterning and stunted growth, associated with ECM deposition defects in
the growth plate [45,46]. Kif3A mutant mice also lack cilia, and similarly have reduced
proliferation and defective organization of chondrocytes, associated with accompanied by
disorganized actin cytoskeleton and inappropriate localization of FAK to the focal adhesions
[47]. Similar cartilage defects are seen in other “ciliopathies”, such as Bardet-Biedel
Syndrome [48]; some recent reports have noted that loss of cilia is associated with early
signs of osteoarthritis (e.g. [48,49]).

Besides chondrocytes, oriented cilia contact collagen fibers in tendons [12]; ciliary length,
which conditions both cell cycle and activity of cilia associated signaling proteins [3,4], is
highly responsive to tensile stress on tendons [50]. Intact cilia are necessary for the response
of osteocytes to mechanical cues, with ciliary signaling necessary for activation of adenylyl
cylase 6 (AC6) and transiently reduced cAMP [51–53]. One study has suggested that hair
follicle development depends on interactions between cilia-localized Shh in dermal papilla
with epithelially secreted laminin-511 in the basement membrane zone [54], although a
subsequent study found contrasting results [55]; this question requires more investigation. In
one fascinating recent study, both luminal epithelial cells and basal myoepithelial cells were
ciliated at terminal end buds early in murine mammary development, with cilia decreasing
on the epithelial cells as development progressed [56]. In these cases, cilia were oriented
into the ECM and stroma, and Tg737 mutant mice with defective cilia had impaired
branching morphogenesis [56], associated with enhanced canonical Wnt signaling and
reduced Hh signaling in affected epithelial cells.

4. ECM changes in ciliopathies
Cilia are commonly structurally defective and ciliary signaling is disrupted in “ciliopathies”
such as polycystic kidney disease (PKD), nephronophthisis (NPHP), Bardet-Biedl syndrome
(BBS), and others, with these diseases characterized by abnormal cell-environment
interactions. These defects commonly include extensive fibrosis within affected organs [57–
62]. Characteristics of the fibrosis observed in cystic kidney diseases includes early changes
in epithelial cell polarity and morphology, and evidence of altered interactions between
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epithelial cells and stromal fibroblasts, followed by accumulation of ECM (collagen,
specific laminins, and other proteins), and enhanced expression of matrix metalloproteases
(MMPs) and TGFβ [60,63–67]. Deficient cilia-based signaling from polycystins and/or
nephrocystins mutated in ciliopathies may contribute to altered integrin, ECM, and MMP
activity based on indirectly transduced signals (see also [68–70]). However, besides their
function at cilia, both polycystins and nephrocystins associate with proteins that regulate
focal adhesion and cell-cell junctions, and have been reported to localize to these structures
[23,25–27,71–77]: hence, it is possible that part of the fibrotic phenotype may arise from
actions at these locations. Supporting a specific role for cilia, fibrosis also occurs in mouse
models with experimentally induced defects specific to cilia [78–81].

Suggestively, deletion of the genes laminin-α5 [82] or xylosyltransferase 2 [83], required
for proteoglycan synthesis, resulted in appearance of many of the classic phenotypes of
polycystic kidney disease, and purified laminin V supported cyst growth [84], suggesting the
fibrosis per se is an important mediator of renal cystic pathology. These observations have
the potential to broaden the relevance of pathogenic ciliary-ECM interactions beyond the
classic ciliopathies. For example, fibrosis is a common feature of many aggressive cancers,
and actively promotes the disease process [85,86]. Cilia are commonly lost in oncogenically
transformed cells, with the loss contributing to deregulation of signaling homeostasis [6];
and intriguingly, some proteins that are emerging as key regulators of ciliary integrity also
function in cell-ECM interaction signaling, and are differentially regulated in cancer.

5. Control of ciliary dynamics by proteins with cell adhesion functions:
emerging mechanisms

Over the past 4 years, a number of studies have elucidated the signaling machinery that
controls ciliary protrusion and retraction during cell cycle, and has highlighted interactions
with proteins that regulate cell adhesion (reviewed in part in [3,6]). A growing number of
reports indicate that changes in ECM-interacting proteins and cell junctional proteins such
as galectin-7, celsr2 and celsr3 specifically affect the process of ciliogenesis [87–89]. This
ECM contribution is augmented by cytoskeletal signals emanating from within the cell. For
example, RhoA-dependent reorganization of the actin cytoskeleton to form a polarized,
apical web is essential for docking of the basal body and subsequent ciliogenesis [90]. In
elegant work using micropatterned substrates, Pitaval and coworkers have addressed the
long-known observation that high cell density is necessary for in vitro ciliogenesis, showing
that the cue provided by compact cellular geometry for cilia formation involves modulation
of the actin network to affect basal body positioning and cell polarization [91]. Providing
some mechanistic explanation for these observations, Adams et al have shown that
interactions between meckelin (MKS3, a ciliary protein mutated in the ciliopathy Meckel-
Gruber syndrome) and the actin-binding protein filamin A is necessary for basal body
positioning and ciliogenesis [92]. A high throughput screen for regulators of ciliogenesis has
identified other regulators of the actin cytoskeleton, such as the gelsolin family proteins
GSN and AVIL, and ARP3, a regulator of actin branching [93]. Action of the actin
regulatory protein Missing-in-mitosis (MIM) in inhibiting Src phosphorylation of the focal
adhesion protein cortactin is important for ciliogenesis, and for signaling of cilia-associated
proteins such as hedgehog [94].

A number of the proteins regulating cell adhesion and ciliogenesis have well-documented
connections to pathological conditions such as cancer. For example, NEDD9 is best known
as a CAS family protein that localizes prominently to focal adhesions, and mediates integrin
signaling and cell attachment to matrix; further, upregulation of NEDD9 commonly occurs
in and drives invasive and metastatic cancers, and causes EMT, secretion of MMPs, and
altered ECM [95–97]. Transiently induced expression of NEDD9/HEF1, and concomitant
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activation of the Aurora-A kinase (AURKA) at the basal body induces ciliary resorption
[35]. This activation process includes binding of Ca2+-liganded calmodulin to AURKA,
promoting the AURKA-NEDD9 interaction [98]; as AURKA has recently also been found
to bi-directionally signal with the PC2 calcium channel [99,100], these interactions may
similarly affect PC1/PC2-dependent cell adhesion processes. NEDD9 inducing ciliary
resorption can also contribute to its role in carcinogenesis by deregulating cell migration and
proliferation, as cilia have been shown to be required for oriented cell migration with cilia
pointing into the direction of cell migration [19], and as ciliary disassembly has been
proposed to stimulate cell cycle progression (reviewed in [3]). Conversely, the von Hippel-
Lindau protein (VHL) supports ciliary extension and maintenance, with supporting activity
provided by glycogen synthase kinase 3β (GSK3β) [101]. Loss of VHL is a driver
oncogenic lesion for the significant majority of clear cell renal cell carcinomas [102],
induces expression of NEDD9 and AURKA [103], and also induces fibrosis and
accumulation of cysts [104,105]. Besides its role at cilia, VHL also controls other cellular
signaling pathways through its function as a ubiquitin ligase that controls the abundance of
hypoxia inducible factors (HIFs) and their resulting transcriptional targets; as with NEDD9
and AURKA, the multiplicity of affected pathways makes it difficult to specifically ascribe
altered cell growth phenotypes to roles in regulating cilia or alternative processes. Finally,
the adenomatous polyposis coli (APC) tumor suppressor is mutated in many cancers, and
also in heredited syndromes characterized by cyst growth and fibrosis; in Gardner’s
syndrome, familial mutations in APC have recently been suggested to have features of
ciliopathies [106]. The relationship between cancer, cilia, and ECM requires more study.

6. Conclusion
In conclusion, evidence continues to amass in support of the idea that the cilia plays an
important role in cellular homeostasis, based on its ability to integrate chemical cues and
flow and compression forces. Disruptions in cilia deregulate cell growth and polarity, and
produce an extracellular environment, and frequent fibrosis (Figure 4). In turn, disruptions in
the extracellular environment alter the signals received by cilia, again influencing cell
growth properties. Given the rapidly increasing appreciation of ciliary localization and
function of signaling proteins that have long been known to have important regulatory roles
in cancer and other diseases, future studies should pay heed to the role of this organellar
antenna in ensuring proper receipt and dispersion of growth signals.
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Figure 1. Environmental sensing in ciliated cells.<
br>In some cell and tissue types, as in renal tubules, cilia protrude into lumens (left panel),
while in others, such as connective tissue, cilia extend towards the extracellular matrix
(ECM) (right panel). Multiple receptors for soluble growth factors or for mechanosensory
stimuli (e.g. fluid flow) localize to the ciliary membrane, controlling signaling cascades that
influence cell proliferation, polarity, and interaction with the ECM. Some canonical cell
adhesion receptors, including cadherins, and integrins, have been shown to be themselves
localized to the cilium in some cell types [8,10,107,108]. Some basal body-localized
proteins with ciliary functions also regulate the actin cytoskeleton [92,94,109].
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Figure 2. Signaling of the cilium influencing ECM interaction and planar cell polarity
The specialized ciliary membrane displays receptors for proteins that influence the ECM
interactions, epithelial-mesencymal transition (EMT), and planar cell polarity (PCP). The
polycystin PC1/PC2 heterodimer is a mechanosensor that responses to fluid flow by
changing activity of the PC2 Ca2+ channel, controlling intracellular Ca2+, and regulating
signaling important for the integrity of renal architecture [15]. During epidermal
development, the commitment of progenitor cells to differentiate relies on Notch signaling,
with a pool of Notch functioning at the cilium [22]. In quiescent fibroblasts, basal body-
localized PDGFRα mediates signals for directional cell migration and chemotaxis through
activation of Akt [19,20]. In chondrocytes, integrins (αβ) and NG2 chondroitin sulfate
proteoglycan (NG2) interact with ECM at the ciliary membrane [8,10,110] with integrins
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shown to potentiate fibronectin-induced Ca2+ response [21]. Hedgehog (Hh) signaling relies
on the primary cilium; the Hh receptor Patched (Ptc) is removed from the cilia membrane
following Hh binding, allowing Smoothened (Smo) to enter the ciliary membrane, which in
turn activates the Gli transcription factor family, promoting EMT and ECM invasion [111].
The Wnt receptor Frizzled (Fz) is present in the cilium, and accumulated in cystic epithelia
[112]; downstream of Wnt, cilia-based suppression of canonical β-catenin versus activation
of non-canonic PCP signaling are influenced by the nephrocystin NPHP2 [28]. Other
nephrocystins localized to the transition zone (NPHP1, NPHP4) can interact with adhesion-
associated proteins including BCAR1/p130Cas and PYK2 and PCP effectors [23–27].
Knockdown of the ciliary protein NPHP7 leads to severe renal fibrosis. NEDD9/HEF1 and
Aurora A (AURKA) are localized at the basal body initiating ciliary disassembly [35], but
also influence focal adhesion signaling and secretion of MMPs via interactions with SRC
and FAK [95–97].
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Figure 3. Ciliary signaling in cartilage and bone cells
Articular chondrocytes sense mechanical forces including shear stress, rotation, pressure,
and tension in part through interactions of the ECM with ciliary integrins and NG2
chondroitin sulfate proteoglycan [10,43,113] with responses supporting development of
tissue anisotropy. In load-bearing areas of the bone, cilia of nonproliferative superficial cells
at the articular surface projecting away from the surface, whereas columns of proliferating
cells (e.g. like growth plate chondrocytes) can be oriented towards or away from the
articular surface [11,43,45]. A compression-induced Ca2+ signaling response mediated by
ATP release relies on cilia integrity [44]. Hydrostatic loading of growth plate chondrocytes
increases Indian hedgehog (IHH) signaling, governing chondrocyte proliferation and
differentiation in the growth plate dependent on intact cilia [114]. Cilia are required for
osteogenic and bone resorptive responses to fluid flow, but in contrast to other tissues, these
responses do not require Ca2+ [52]. In osteocytes, fluid flow leads to a decrease of cAMP
dependent on ciliary AC6, which induces COX-2 gene expression [51]. Paracrine signaling
by mechanically stimulated osteocytes relies on cilia [53].
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Figure 4. Interconnection of cystogenesis and carcinogenesis
Ciliary dysfunction, abnormal proliferation, disrupted planar cell polarity (PCP) and fibrosis
interplay in the pathogenesis of PKD and cancer.
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