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The proteins MDM2 and MDM4 are key negative regulators of the
tumor suppressor protein p53, which are frequently upregulated in
cancer cells. They inhibit the transactivation activity of p53 by bind-
ing separately or in concert to its transactivation domain. MDM2 is
also a ubiquitin ligase that leads to the degradation of p53. Accord-
ingly, MDM2 and MDM4 are important targets for drugs to inhibit
their binding to p53. We found from in silico screening and con-
firmed by experiment that lithocholic acid (LCA) binds to the p53
binding sites of both MDM2 and MDM4 with a fivefold preference
for MDM4. LCA is an endogenous steroidal bile acid, variously re-
ported to have both carcinogenic and apoptotic activities. The com-
parison of LCA effects on apoptosis in HCT116 p53þ∕þ vs. p53−∕−

cells shows a predominantly p53-mediated induction of caspase-
3/7. The dissociation constants are in the μM region, but only mod-
est inhibition of binding of MDM2 andMDM4 is required to negate
their upregulation because they have to compete with transcrip-
tional coactivator p300 for binding to p53. Binding was weakened
by structural changes in LCA, and so it may be a natural ligand of
MDM2 and MDM4, raising the possibility that MDM proteins may
be sensors for specific steroids.

HDMX ∣ virtual screening ∣ natural product ∣ cancer pathways ∣
bile acid sensor

The tumor-suppressor protein p53 plays a pivotal role in cancer
(1, 2). Often, its function is severely impaired by upregulation

of its two key negative regulators, MDM2 and MDM4 (1–3). The
N-terminal domains of MDM2 and MDM4 are structurally very
similar and both bind to the same sequence in the intrinsically
disordered N terminus of p53 (2, 4, 5). The binding cavities within
MDM4 and MDM2 are important targets for drug therapy that
releases them from p53 (6–10). Nutlins (11), for example, are po-
tent MDM2 inhibitors and are potential therapeutics (12, 13) as
well as being invaluable research tools for probing p53 pathways
(12, 14), as are spiro-oxindoles, which were found by in silico
methods (15, 16). MDM4 has a different specificity for small
molecules, binding nutlins, for example, less tightly. Accordingly,
MDM4-selective and dual MDM4/MDM2 inhibitors are also
being sought (7, 17, 18). We searched for MDM4 inhibitors by
structure-based in silico screening of binding (6, 19) and identi-
fied LCA as an endogenous inhibitor of bothMDM4 andMDM2.
LCA is a secondary bile acid formed by bacteria in the gut from
its precursor chenodeoxycholic acid (CDCA, Fig S1). It has been
variously reported to show both carcinogenic and apoptotic ac-
tivities (20, 21). LCA is a rare example of a toxic endobiotic that
is efficiently detoxicated by conjugation with taurine or glycine,
sulfation at C-3 by the sulfotransferase SULT2A1, or metabolism
through cytochrome P450 CYP3A enzymes (20). It induces its
own metabolism by activating nuclear receptors like the vitamin
D receptor (22) (VDR) and the farnesoid X receptor (23) (FXR).
Thereby, it inhibits the synthesis of bile acids and promotes the
transcription of genes encoding for sulfotransferases and CYP3A
enzymes.

Results and Discussion
In Silico Screening. Because there are varying conformational
changes in MDM4 induced by different ligands (4, 24, 25), we
applied an ensemble docking approach to four published crystal
structures [Protein Data Base ID codes 3FEA (24), 2VYR (25),
3DAB (4), and 3FE7 (24)]. Starting with a virtual database of
3.6 million ready-to-order molecules, we excluded compounds
with undesirable properties and docked 87,430 molecules to the
ensemble of four MDM4 crystal structures using the program
GOLD (26). Subsequently, we applied post-docking filters based
on pharmacophore information to eliminate unfavorable binding
modes and further narrowed down the list using an expert system
(6, 19) (Fig. 1).

Biophysical Screening and Characterization. We screened 295 pro-
mising compounds from the final list in a fluorescence anisotropy
assay, measuring the displacement of a carboxyfluorescein-
labelled p53-N-terminal peptide (LTFEHYWAQLTS-FAM)
from the N terminus of MDM4 (residues 16–116) or the N
terminus of MDM2 (2–125). The dissociation constants of the
labeled peptide were determined by direct titration on a micro-
titer plate reader (Fig. 2A) to be 12.5� 0.3 nM (MDM4) and
5.7� 1.2 nM (MDM2), consistent with literature values (27).
The stoichiometry of binding of the labeled peptide to MDM4
was found by analytical ultracentrifugation experiments to be
1∶1 (Fig. 2B). Higher DMSO concentrations have a moderately
attenuating effect on the binding of the peptide to MDM4
(Fig. 2D) and MDM2 (Fig. 2E). The dissociation constants of
LCA were determined by a competition assay (Fig. 2C) to be
15.4� 0.6 μM and 66.0� 3.3 μM for the MDM4 and MDM2
complexes, respectively. LCA is a dual inhibitor of MDM4/
MDM2 with a moderate preference for MDM4.

We further characterized the binding of LCA to MDM4 by
NMR and 1H∕15N-HSQC spectra (Fig. 3 A–C). Twenty signals
related to the binding cavity shifted significantly as the ligand
was increased from 0 to 291 μM in 10 increments, giving a KD
of 12.4� 1.4 μM (Fig. 3C). MDM4 was progressively stabilized
by binding to increasing concentrations of LCA, as found by dif-
ferential scanning calorimetry measurements (Fig. 3 D and E),
the Tm of MDM4 is raised by approximately 1.5 K at 100 μM
LCA.

We investigated whether steroids, in general, and bile acids, in
particular, are ligands of MDM4. We measured the binding to
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MDM2 and MDM4 of more than 50 steroids, including approxi-
mately 25 very close structural derivatives of LCA. The most
significant binding analogues are summarized in Fig. 4. Modifi-
cations of the hydroxyl function in position 3 gave a somewhat
greater than sevenfold increase in KD. There were higher losses
of affinity on hydroxylations in ring B or C as well as on intro-

duction of double bonds. Conjugation of the bile acids and cap-
ping of the side chain gave dramatic loss of binding. LCA was the
highest affinity ligand, suggesting it may be a specific MDM4/2
ligand.

The dissociation constants of LCA do not, at first sight, seem
low enough for moderate concentrations to displace tightly
bound MDM2 or MDM4 from p53. But this is illusory. If the
dissociation constant of MDM4 from p53 is KDðMDM4Þ and that
of LCA KDðLCAÞ, then the effective value of KDðMDM4Þ in the pre-
sence of competing LCA is KDðMDM4Þeffective ¼ ð1þ ½LCA�∕
KDðLCAÞÞxKDðMDM4Þ (28). If MDM4 is in competition with
another protein P for the binding to limiting concentrations
of p53, then ½P:p53�∕½MDM4.p53� ¼ ð½P�∕KDðPÞÞ∕ð½MDM4�∕
KDðMDM4ÞeffectiveÞ (28). For example, when the concentration of
LCA ¼ KDðLCAÞ it raises the effective dissociation constant of
MDM4 by a factor of 2, equivalent to lowering its concentration
twofold. Because MDM4 and MDM2 are in competition with
p300 and other proteins for the binding to p53, the raising of
KDðMDM4Þeffective by LCA at concentrations equal to and above
KDðLCAÞ will be highly important in the balance between tran-
scription of cell-cycle arrest and proapoptotic genes and the
MDM2/4 mediated inhibition and degradation of p53. That inhi-
bition would account for the proapoptotic activity of LCA. Single
phosphorylations of the N terminus of p53 change the KDs of
p300 domains and MDM2 by only small factors (29).

Cellular Studies of Apoptosis Induction. We examined the effects
of LCA on the induction of apoptosis in the human colorectal
carcinoma cell line HCT116. Monitoring caspase-3/7 activity
through a TriplexGlo assay, we found significantly increased
caspase activation for concentrations above 150 μM (Fig. 5A).
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Fig. 1. In silico screening workflow. A database of 3.6 million ready-to-order
molecules was filtered to exclude compounds that are either reactive, prone
to interfere with fluorescence-based assays or induce protein aggregation
(34, 35). A total of 87,430 molecules were then docked to the N-terminal
domain of human MDM4 in four crystal structures using GOLD (26, 36, 37)
and two independent scoring functions [Goldscore (36) and Chemscore (38)].
Subsequently, post-docking filters based on pharmacophore information of
protein–ligand complexes eliminated unfavorable docking poses. Docking
scores were normalized and evaluated using an expert system (39).
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Fig. 2. Biophysical characterization of the binding of lithocholic acid toMDM4. (A) Direct titration of 20 nM fluorescent-labeled peptide LTFEHYWAQLTS-FAM
withMDM4 (16–116, C17S; circles) or MDM2 (2–125; squares) in the presence of 10% DMSO, 150 mMNaCl, 25 mM potassium phosphate pH 7.2, 5 mMDTT, and
0.2 mg∕mL ovalbumin. Each data point represents the mean� s:d: of 27 (MDM4) or 2 (MDM2) measurements. The KDs for MDM4 andMDM2 are 12.5� 0.3 nM
and 5.7� 1.2 nM, respectively. (B) Analytical ultracentrifugation of 20 μMMDM4 (16–116, C17S) with 5 μM LTFEHYWAQLTS-FAM at a speed of 36,000 rpm and
283 K in the presence of 25 mM sodium phosphate pH 7.2, 150 mM sodium chloride and 5 mM DTT. The theoreticalMr of MDM4 (16–116, C17S; 11,478) bound
to LTFEHYWAQLTS-FAM (1851) is 13,329, the calculated Mr of the protein-peptide complex from the experiment is 13;130� 170, based on 1∶1 binding stoi-
chiometry. (C) Competitive displacement of the peptide LTFEHYWAQLTS-FAM from the p53-binding site of MDM4 (16–116, C17S; circles) or MDM2 (2–125;
squares) by LCA in the presence of 10% DMSO, 150 mM NaCl, 25 mM potassium phosphate pH 7.2, 5 mM DTT, and 0.2 mg∕mL ovalbumin, giving dissociation
constants of 15.4� 0.6 μM and 66.0� 3.3 μM, respectively. (D/E) Direct titration of LTFEHYWAQLTS-FAM with (D) MDM4 or (E) MDM2 in 150 mM NaCl, 25 mM
potassium phosphate pH 7.2, 5 mM DTT, 0.2 mg∕mL ovalbumin and varying amounts of DMSO (5–20%).
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Concentrations of 250 μM LCA or higher produced a maximal
level (> eightfold elevation) of caspase activity. To differentiate
between p53 pathway-mediated effects of LCA and complemen-
tary ways of apoptosis induction, we treated the isogenic HCT116
p53−∕− cell line with identical concentrations of LCA. We ob-
served a comparably small induction of caspase activity with a
maximal 2.6-fold increase at 300 μM. These data indicate that
the induction of apoptosis by LCA observed in HCT116
p53þ∕þ cells is predominantly p53-pathway mediated.

As a reference compound we used Nutlin-3, which binds tightly
to MDM2 and more weakly to MDM4 (30, 31). In HCT116

p53þ∕þ cells, we found a substantial (> ninefold) increase in
caspase-3/7 activity at 50 μM inhibitor concentration (Fig. 5B).
However, at lower concentrations, no significant caspase induc-
tion was detectable. At concentrations of 50 μMNutlin-3 or high-
er, increased caspase activity (up to fourfold) was also observed in
HCT116 p53−∕− cells, indicating contributions of p53-indepen-
dent pathways to apoptosis. In conclusion, p53-mediated induc-
tion of apoptosis seems to be dominant for both LCA and
Nutlin-3.

To investigate whether the observed effects of LCA are due to
the inhibition of MDM4, we tested the close structural analog
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Fig. 3. (A–C) Concentration-dependent chemical shifts in 15N∕1H-HSQC NMR spectra with 70 μM 15N-labeled MDM4, 150 mM NaCl, 25 mM potassium
phosphate pH 7.2, and 5 mM DTT. The dissociation constant calculated from these shifts was 12.4� 1.4 μM. (D) Differential scanning calorimetry experiments
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each curve. (E) The data are fitted to the equation: T ¼ Tm∕ð1 − ðR∕ΔSD–NðTmÞÞ lnð1þ ½L�∕KDÞÞ, where T is the observed melting temperature, Tm that in the
absence of ligand L, KD its dissociation constant, and ΔSD–NðTmÞ the entropy of denaturation at Tm (6). The resulting KD is found to be 3.8� 2.7 μM. (F) Electro-
static potential mapped on the isodensity surface of LCA in the chair-chair-chair-envelope conformation (geometry optimized at TPSS-D/TZVPP level). Blue—
negative electrostatic potential to red—positive electrostatic potential. (G) Structure of lithocholic acid.
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hyodeoxycholic acid (HDCA) that did not bind to MDM4 in vitro
(Table S1). The structure of HDCA is identical to LCA, apart
from the additional hydroxyl group at C6 and is therefore useful
as a control for target-unspecific bile acid effects. Even at high
HDCA concentrations (up to 400 μM), no caspase 3/7 response
was detectable (Fig. 5C). This correlates well with the lack of
affinity of HDCA toward MDM4. Interestingly, HDCA also did
not show any p53-independent induction of apoptosis (Fig. 5D),
suggesting that increased caspase 3/7 activation by LCA in
HCT116 p53−∕− cells may not be caused by a target-unspecific
bile acid effect.

Conclusions
All those data are consistent with activation of p53 by LCA. The
promotion of apoptosis by LCA is explained by its binding to
MDM4 and MDM2. Whether or not that function of LCA is
a side reaction or a biological response is intriguing and remains
to be discovered. There is the possibility that members of the
MDM family of proteins are sterol receptors.

Methods
Protein Expression and Purification. The N terminus of human MDM4 protein
(residues 16–116, with the stabilizing mutation C17S) was expressed and
purified as described previously (25). Briefly, the N-terminal fusion protein
(6xHis/lipoyl domain/TEV protease cleavage site) was overexpressed using
Escherichia coli C41 cells in 2xTY medium at 20 °C for 16 h and purified using
standard Ni-affinity chromatography protocols. After overnight digestion
with TEV protease, the 6xHis/lipoyl domain was removed by a second Ni-
affinity chromatography step. Finally, gel filtration chromatography using
a Superdex 75 16/60 preparative gel filtration column (GE Healthcare) was
done. The molecular weight and the protein purity of >95% were deter-
mined by SDS gel electrophoresis, MALDI-TOF-MS, and ESI–MS. For 1H∕15N
HSQC experiments the protein expression was carried out in M9 minimal
media with 15N-labeled ammonium chloride as the only nitrogen source.

The plasmid encoding the N terminus of MDM2 (residues 2–125) was a gift
from Dr. Marina Vaysburd (MRC LMB, Cambridge). The protein was expressed
and purified in the same way except for the 6xHis/lipoyl domain tag was
substituted with a GST tag, the affinity tag was cleaved with thrombin, and
GST affinity chromatography was used.

Peptide Synthesis. The p53-derived peptide LTFEHYWAQLTS (27) was syn-
thesized by solid-phase peptide synthesis using standard FMOC chemistry,
labeled with 5-carboxyfluorescein at the α-amino group of serine, and
purified by reversed-phase chromatography. The molecular weight of the
labeled peptide was determined by MALDI-TOF MS with α-cyano-4-hydroxy-
cinnamic acid in 50% acetonitrile/water with 0.1% trifluoroacetic acid as a
matrix.

Fluorescence Anisotropy Spectroscopy. The compound screen was carried out
as titrations in 96-well plates (Corning 3650) using a Pherastar plate reader
(BMG Labtech, Germany) with a 480/520-nm fluorescence polarization mod-
ule and a Bravo 96-channel pipetting robot (Velocity 11). Buffer conditions
for the screen were 25 mM potassium phosphate pH 7.2, 150 mM NaCl, 5 mM
DTT, 0.2 mg∕mL ovalbumin, and 5% v∕v DMSO. For MDM4 and MDM2
screens, protein concentrations of 30 nM and peptide concentrations of
20 nM were used. These concentrations, as well as all buffer conditions were
kept constant during the titration, only the compound concentration was
varied in 25 steps from 0–1mM. This was done by aspirating the same volume
of the sample prior to addition of an aliquot of compound. All titrations were
done at 22 °C. To minimize the errors associated with handling small volumes
(<1 μL), 200 μM stock of compound was used for the first part of the titration,
switching to 2 mM for the second part. The compound stock microtiter plates
were prepared using an epMotion 5070 pipetting robot (Eppendorf AG).

The direct titration of LTFEHYWAQLTS-FAM with MDM4 and MDM2,
respectively, was performed under the same buffer conditions with a final
protein concentration of 250 nM, 500 nM, 1,000 nM, and 2,000 nM protein
and 20 nM peptide. The content of DMSO was varied to study the influence
of DMSO on the dissociation constant (Fig. 2D and E). The Z factor under final
assay conditions was 0.74, indicating that the assay is well suited for discri-
minating between actives vs. inactives (32). Dissociation constants were
calculated from the FP-adapted Cheng-Prusoff equation (33) (http://sw16.
im.med.umich.edu/software/calc_ki/index.jsp).
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Fig. 5. Effects of LCA (A), Nutlin-3 (B), and HDCA (D) on caspase 3/7 activity
in the human colorectal carcinoma cell line HCT116 (gray columns) and the
isogenic HCT116 p53−∕− cell line (dark gray columns). Comparison of LCA
(gray columns) vs. HDCA effects (dark gray columns) on HCT116 p53þ∕þ is
shown in (C). After 24 h treatment time apoptosis is measured by lumines-
cence of a luminogenic substrate cleaved by caspase 3/7 following reaction
with luciferase. Data are normalized to a DMSO-only control and are ex-
pressed as mean� SEM (n ¼ 4). Asterisks denote significant differences
between treatments as revealed by one-way ANOVA and Bonferroni post
hoc test (*** p < 0.001; ** p < 0.01; * p < 0.05).
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Nuclear Magnetic Resonance Spectroscopy. Compounds were dissolved in d6-
DMSO at 40 mM. NMR samples were freshly prepared by adding dilutions of
stock solution to a buffer containing 25 mM potassium phosphate (pH 7.2)
150 mM NaCl, 5 mM DTT, and a final concentration of 5% (v∕v) DMSO-d6.
1H∕15N-HSQC spectra of MDM4 (70 μM) were acquired at 20 °C on a Bruker
Avance-800 spectrometer (800MHz 1H frequency) using a 5-mm inverse cryo-
genic probe.

The average weighted 1H∕15N chemical shift difference Δδð1H∕15NÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔδð1HÞÞ2 þ ðΔδð15NÞ∕5Þ2

p
was calculated and considered to be significant

if greater than 0.04 ppm. Spectral analysis was performed using Sparky 3.114
and Bruker Topspin 2.0 software. KD values were derived from concentration-
dependent chemical shift changes of relevant shifting peaks using the satura-
tion binding equation:

Δδobs

¼Δδmax
½L�0þ½P�0þKD−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð½L�0þ½P�0þKDÞ2−4 · ½L�0 · ½P�0

p

2 · ½P�0
where Δδobs is the average weighted chemical shift difference at a particular
ligand concentration, Δδmax is the difference between the chemical shifts of
the free protein and of the protein in complex, and ½L�0 and ½P�0 is the initial
ligand and protein concentration, respectively.

Analytical Ultracentrifugation. The sedimentation equilibria were analyzed
with a Beckman Optima XL-I ultracentrifuge using a Ti-60 rotor, with samples
containing 20 μM MDM4 and 5 μM peptide LTFEHYWAQLTS-FAM in a buffer
with 25mM sodium phosphate pH 7.2, 150 mMNaCl, 5 mMDTTand a density

of 1.013 g∕cm3 at 36,000 rpm and 10 °C. The calculated Mr of peptide and
protein from this experiment is 13,130. Themeasured wasMr 13,330. Absorp-
tion was monitored at 495 nm, specific for the peptide. Equilibration was
checked by repetitive scans. For data analysis Ultraspin software was used.

In Silico Modeling. All quantum chemical calculations were carried out using
Turbomole v.6.2 (TURBOMOLE GmbH), and electrostatic potentials were
plotted using gOpenMol v. 3.00 (Center for Scientific Computing, Espoo,
Finland).

Cell Culture. Tumor cell lines HCT116 and HCT116 p53−∕− (colorectal carcino-
ma) were maintained in DMEM. Medium was supplemented with 10% fetal
calf serum and 10 μg∕mL gentamicin. Cells were grown at 37 °C and 5%
CO2. Cells were seeded in 96 well plates at 104 cells per well 24 h prior to
experiments.

Caspase-3/7 Assay. Caspase-3/7 activation (a marker of apoptosis) was mea-
sured with the ApoTox-Glo Triplex assay (Promega). Twenty-four hours after
seeding, medium with double the final concentration of LCA and DMSO was
added to an equivalent volume of growth medium. Cells were incubated for
24 h at 37 °C. One-hundred μL of the Caspase-Glo 3/7 reagent was added to
the cells, and after 40 min incubation at room temperature, luminescence
was recorded using an Orion microplate Luminometer (Berthold Detection
Systems). Experiments were performed in quadruplicate.
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