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The host mechanisms responsible for protection against malaria
remain poorly understood, with only a few protective genetic
effects mapped in humans. Here, we characterize a host-specific
genome-wide signature in whole-blood transcriptomes of Plasmo-
dium falciparum-infected West African children and report a dem-
onstration of genotype-by-infection interactions in vivo. Several
associations involve transcripts sensitive to infection and impli-
cate complement system, antigen processing and presentation,
and T-cell activation (i.e., SLC39A8, C3AR1, FCGR3B, RAD21, RETN,
LRRC25, SLC3A2, and TAPBP), including one association that vali-
dated a genome-wide association candidate gene (SCO1), implicat-
ing binding variation within a noncoding regulatory element. Gene
expression profiles in mice infected with Plasmodium chabaudi
revealed and validated similar responses and highlighted specific
pathways and genes that are likely important responders in both
hosts. These results suggest that host variation and its interplay
with infection affect children’s ability to cope with infection and
suggest a polygenic model mounted at the transcriptional level
for susceptibility.

host response | parasite load | eQTL | eSNP | genotype-by-environment
interactions

Accumulating evidence has converged on the recognition that
the onset of disease implicates complex biological processes.

Susceptibility to infection, like any other complex trait, is mul-
tifactorial and has a significant heritable component. Genome-
wide association (GWA) approaches have been extended to
mapping the genetic architecture underlying susceptibility to
infectious diseases (1–5), but only hemoglobin mutations and
a handful of other loci conferring risk or protection to malaria
have been identified (5–8). There has also been no explicit effort
to characterize the effects of host regulatory variation, polygenic
inheritance, and genotype-by-infection interactions on malaria
phenotypes in vivo.
Host transcriptional response to malaria infection takes place

in several organs. We set out to uncover the heritable and in-
fection-response components of host immunity to malaria in-
fection in whole blood of a sample of West African children (SI
Appendix, Figs. S1 and S2). Whole blood constitutes a reservoir
of circulating immune and nonimmune cells that respond to
signals from the parasite while incorporating information from
host genotype and play important role in controlling the course
of infection. Blood is also a readily accessible system to capture
these effects in regions of the world where malaria is endemic.
Nonetheless, key transcriptional events in response to infection
take place in other organs such as spleen, liver, and bone mar-
row, the signature of which may not be well preserved in blood.
Also, correcting for the effects of differences of cell type pro-
portions on differential expression can be challenging. Here, we
test the hypothesis that malaria infection, host regulatory

variation, and their interplay generate significant transcriptional
variation that affects key immune response mechanisms. First,
we uncover the magnitude at which malaria infection and par-
asite load impact transcript abundance and identify the immune
processes influenced by these effects. Second, we identify the
genetic factors that influence transcript abundance and test their
dependence on infection status. Finally, we use joint analysis of
genotypic and gene expression data to identify genes and
mechanisms likely affecting the course of infection.

Results
Influence of Infection on Human Transcriptome. By using unbiased
unsupervised statistical analysis, we first evaluated the consis-
tency of the expression profiles between cases and controls (i.e.,
the combined dataset) and across the range of the parasite load
within the infected sample alone (i.e., cases). Clustering of gene
expression profiles based on similarity (Fig. 1 A and C), as well as
principal component (PC) analysis of the genome-wide gene
expression correlation matrix (Fig. 1 B and C), suggest that
individuals cluster largely based on their infection status and
parasite load. This analysis revealed the presence of strong
correlation structure in the data such that expression PC1
(ePC1) explains 19.6% and 17.5% of total variation in the
combined dataset and in the cases, respectively.
Supervised multiple regression and variance component

analyses accounting for sex, hemoglobin genotype, location, total
blood cell counts, and ancestry confirmed the strong effect
exerted by malaria infection and parasite load on the tran-
scriptome. The majority of variation captured by the first ePCs is
explained largely by malaria infection status (74% of total vari-
ation in the combined dataset; P < 10−5) and by parasitemia class
(47% of total variation within the cases; P < 10−4) when modeled
as a function of sex, hemoglobin genotype, location, total blood
cell counts, and ancestry (SI Appendix, Fig. S3). To estimate the
effect of parasite load independently of the hemoglobin

Author contributions: Y.I., P.G., M.C.R., A.S., and P.A. designed research; Y.I., J.Q., J.B., and
E.G. performed research; V.B., T.d.M., J.-C.G., S.G., P.G., and P.A. contributed new re-
agents/analytic tools; Y.I. and J.-P.G. analyzed data; M.C.R. and A.S. supervised recruit-
ment and sample collection in Benin; P.A. oversaw the genomic analysis; and Y.I. and P.A.
wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission. J.C.K. is a guest editor invited by the
Editorial Board.

Freely available online through the PNAS open access option.

Data deposition: The gene expression data reported in this paper have been deposited in
the Gene Expression Omnibus (GEO) database, www.ncbi.nlm.nih.gov/geo (accession no.
GSE34404).
1To whom correspondence should be addressed. E-mail: philip.awadalla@umontreal.ca.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.
1073/pnas.1204945109/-/DCSupplemental.

16786–16793 | PNAS | October 16, 2012 | vol. 109 | no. 42 www.pnas.org/cgi/doi/10.1073/pnas.1204945109

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1204945109/-/DCSupplemental/sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1204945109/-/DCSupplemental/sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1204945109/-/DCSupplemental/sapp.pdf
http://www.ncbi.nlm.nih.gov/geo
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE34404
mailto:philip.awadalla@umontreal.ca
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1204945109/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1204945109/-/DCSupplemental
www.pnas.org/cgi/doi/10.1073/pnas.1204945109


genotype, we rerun PC analysis on 73 infected individuals who
are AA homozygotes for the hemoglobin locus. The expression
profiles again strongly correlate with parasitemia class explaining
39% (P < 10−4) of the variance of ePC1–3.
Next, we evaluated the magnitude and significance of differ-

ential expression of individual transcripts first between cases and
controls, and second between the controls, the high and low
parasitemia groups. ANOVA (accounting for location, sex, he-
moglobin genotype, and infection status) and analysis of covariance
(ANCOVA; accounting also for total blood cell counts and an-
cestry) revealed a strong effect of infection status on whole-
blood transcriptome. A statistical significance threshold at 1%
false discovery rate (FDR; per Benjamini and Hochberg) was
applied to all tests of differential expression. A total of 3,334
transcripts (23%) were differentially expressed between cases
and controls, whereas 3,177 and 3,154 of these transcripts remained
differentially expressed even after accounting for total blood
cell counts and ancestry, respectively (Table 1). Breaking down
the ANOVA into pair-wise comparisons, we observed that
the effect of malaria infection on differential expression of
individual transcripts is highest when comparing controls vs.
the high parasitemia group (4,085 transcripts), and less so
when comparing controls vs. the low parasitemia group (2,377
transcripts), with evidence for a within malaria-infected sam-
ple differentiation (2,078 transcripts; Table 1, Fig. 2 A and B,
and Dataset S1).

Gene Set Enrichment Analysis. Pathway analysis (9) of the differ-
entially expressed genes implicates divergence in core immune
processes. We particularly note a strong signature of induced
innate immunity (up-regulation of IFN-inducible genes, neutro-
phil-associated modules, and markers of FcGR-mediated

phagocytosis) and suppression of several adaptive immune pro-
cesses (down-regulation of MHC genes, T cells, B cells, and
cytotoxic T cell signaling pathways) in the cases relative to con-
trols (Fig. 2 C and D). Few studies that report whole blood or
peripheral blood mononuclear cell (PBMC) transcriptional sig-
natures associated with malaria infection in African populations
have been carried out (10–12). Among these studies, Griffiths
et al. (10) detected two main signatures in whole blood related to
neutrophil and erythroid activity differentiating acutely ill and

Fig. 1. Malaria infection impacts gene expression genome-wide. Correlation structure in whole-transcriptome data for the combined dataset of 155 cases
and controls (A and B) and for the 94 cases alone (C and D). (A and C) Hierarchical clustering of whole-genome gene expression correlation matrix. The
colored bars from left to right indicate the following phenotypes in the proportions displayed in the pie charts: hemoglobin genotype (AA, AC, or AS),
location (Cotonou and Zinvié), and malaria infections status (control and high and low parasitemia groups). Parasite load or log2 parasitemia (low to high) is
shown only in C. (B and D) PC analysis of the correlation matrix. The two major expression PCs (ePC1 and ePC2) are shown and individuals are labeled to
indicate their infection status (controls, blue; high parasitemia, red; low parasitemia, orange).

Table 1. Number of transcripts differentially expressed

Effect ANOVA ANCOVA I ANCOVA II

Malaria
Parasite load 2,971 3,014 1,990
Cases:controls 3,334 3,177 3,154
High parasitemia:control 4,852 4,402 4,085
Low parasitemia:control 2,493 2,438 2,377
High parasitemia:low parasitemia 2,772 2,601 2,078
Three-way comparison 6,178 5,856 5,180

Location
Village:city 1,089 310 30

Sex
Female:male 40 48 43

All contrasts shown in this table are from analyses performed on the cases
and controls combined dataset (155 individuals), except the parasite load
effect, which was estimated by analyzing the 94 cases alone. ANOVA
accounts for the infection status effect, sex, location, hemoglobin genotype
and pair-wise interactions. ANCOVA I and ANCOVA II additionally account
for total blood cell counts and significant gPCs (gPC1-3; Tracy–Widom statis-
tic < 0.01), respectively. The FDR was evaluated by using the Benjamini and
Hochberg method.
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convalescent Kenyan children. The authors reported a list of
genes implicated in these two processes as being differentially
regulated between the two groups. We highlight the replication
of the expression patterns of the following loci: C1QB (Hochberg
and Benjamini q-value = 8.72 × 10−19; fold change, 11.15),
MMP9 (q-value = 1.12 × 10−12; fold change, 11), C3AR1 (q-value =
5.8 × 10−7; fold change, 1.33), IL18R (q-value = 7.96 × 10−7; fold
change, 2.83), and HMOX1 (q-value = 1.1 × 10−8; fold change,
2.08). These genes seem a promising target for focused evaluation
as circulating biomarkers of malaria infection. Several other genes
that paralleled the intensity of the infection in our dataset have
been reported by others (13, 14), but a systematic comparison with
these reports is difficult given differences in study design and the
different in vitro cell populations profiled.
A fraction of the expression differences detected for the par-

asite load effect after accounting for total cell counts is likely
caused by average differences in the proportions of subtypes of
PBMCs (15). To infer these effects in our sample, we used the
genomic signature of flow cytometry-sorted immune cell types
(16) in which cell type-specific modules are constructed based on
transcript abundance of each gene relative to each other cell type
in the PBMC mixture. These expression signatures are con-
structed from healthy individuals and therefore can be used as
a reference panel. We computed Pearson correlation between
parasite load and average transcript abundance of each module
across all 94 infected individuals (SI Appendix, Fig. S4). This
analysis shows a significant effect of parasite load on the six cell
type-specific expression profiles investigated (B cells, T cells,
myeloid dendritic cells, plasmacytoid cells, natural killer cells,

and monocytes; P < 10−7) that can result from modulation of cell
type-specific transcription, a shift of cell type mixture in the
bloodstream, or a combination of both. Particularly, we note that
parasite load is positively correlated with average transcript
abundance of myeloid antigen-processing cells and negatively
correlated with average transcript abundance of B and T cells,
along with the other innate immunity cell types (SI Appendix,
Fig. S4).

Contrasting Host Whole-Blood Response in Humans and Mice.Animal
models represent a valuable companion to the study of human
clinical material for understanding host–parasite interactions in
malaria (17). In particular, mouse models allow detailed char-
acterization of pathogenesis and host response in an experi-
mental framework in which the genetic contribution of the host
and environmental factors (including parasite type and infectious
doses) are carefully controlled. To test the role for some of the
genes and pathways uncovered in our human study in host re-
sponse to malaria, we infected mice (C57BL/6J) with Plasmo-
dium chabaudi AS (106 parasitized erythrocytes, i.v.), and blood
from infected mice was collected 4 d (3.6 ± 0.9% parasitemia)
and 6 d (32.8 ± 2% parasitemia) postinfection. Globin-depleted
total RNA was prepared, and gene expression profiles were
generated by hybridization to microarrays (MouseWG-6 Bead-
Chips; Illumina).
ANOVA revealed 1,783 transcripts differentially expressed

(1% FDR) in at least one of the pair-wise contrasts, with the
effect of infection being highest in the uninfected mice vs. high
parasitemia comparison (1,575 transcripts; Dataset S2 and SI

Fig. 2. Differential expression in whole-blood transcriptome. (A) Volcano plots of statistical significance vs. magnitude of differential expression for the two-
way contrasts between the controls (marked as “C”) and high parasitemia (HP) and low parasitemia (LP) groups. For each transcript, significance is shown as
the –log10 P value on the y axis, and the log2 of magnitude of mean expression difference is on the x-axis. The red horizontal line indicates the 1% FDR
threshold. (B) Venn diagram shows numbers of differentially expressed transcripts for each comparison and the overlaps between them. For each contrast,
GSEA was performed for KEGG pathways (C) and the C2, C3, and C5 collections of the Molecular Signatures Database (D) as previously described (9, 16). Only
pathways and modules significantly enriched (Bonferroni-adjusted P < 0.05) from at least one contrast are shown. Colors in the heat map indicate the en-
richment score from the GSEA analysis.
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Appendix, Fig. S5A). Gene set enrichment analysis (GSEA; 5%
FDR) revealed a strong induction of IFN response, antigen
processing and presentation, and the proteasome modules, along
with a suppression of the B-cell module, which were all consistent
with the human signature (SI Appendix, Fig. S5B). Next, we
compared the gene lists derived from the ANCOVA II and
ANOVA analyses of the human and mouse datasets, respectively.
This contrast was limited to genes significantly regulated (1%
FDR) in both hosts, with 47 genes showing fold change greater
than two in the human dataset. Thirteen genes were significantly
regulated when specifically comparing the high parasitemia group
vs. controls (SI Appendix, Fig. S6A). Of these genes, 11 show the
same pattern of response in both hosts, notably for three Fc
receptors (FCER2, FCGR3B and FCRLA), indicating the impor-
tance of FcGR-mediated phagocytosis in host whole-blood re-
sponse to malaria infection (SI Appendix, Fig. S6B).

Uncovering the Genetic Basis for Gene Regulation in Children Infected
with Malaria. Next, we uncovered the genetic basis of gene ex-
pression variation in malaria by performing a GWA test of
transcript abundance in the human host. We applied Bonferroni
correction for all associations performed in this study. Each of
544,672 SNPs was tested for association with each of the 18,876
expressed transcripts, and a genome-wide Bonferroni correction
for multiple testing accounting for the number of SNPs and loci
was applied. This analysis gave rise to (i) a genome-wide Bon-
ferroni threshold of 4.86 × 10−12 [0.05/(18,876 × 544,672)] for

distal associations, which is likely to be conservative given the
linkage disequilibrium structure across the genome; and (ii)
a genome-wide Bonferroni threshold for local associations con-
sidering the number of SNPs within the region spanning from
100 kb upstream to 100 kb downstream of the transcript (in-
cluding the transcript itself) and accounting for the number of
loci tested. This analysis revealed 263 peak local SNP-probe
associations at P < 1.3 × 10−8 and five peak distal SNP–probe
associations at P < 4.86 × 10−12 in the combined dataset (Fig. 3,
SI Appendix, Fig. S7A, and Dataset S3). The threshold P = 1.3 ×
10−8 is the most conservative threshold for local associations and
corresponds to a test against 196 markers [P = 1.3 × 10−8, or
(0.05/(18,876 × 196)]. The effect sizes of regulatory variation in
our dataset are more than an order of magnitude larger than
typical SNP–disease associations (SI Appendix, Fig. S7C), thus
providing sufficient power to uncover these associations at ge-
nome-wide significance. Applying the same global association
test of gene expression to the cases alone revealed 149 and six
peak local and distal associations, respectively (SI Appendix, Fig.
S7B and Dataset S4). In total, both analyses revealed 265 local
and eight distal peak SNP–gene associations.
We observed significant overlap between these associations

and those reported in 13 published expression quantitative trait
locus (eQTL) studies of various tissues, including peripheral
blood and its derivatives at nominal P values >10−7 and 10−12 for
local and distal associations, respectively. A total of 147 of 272
genes (54%) are replicated, including one distal association with

Fig. 3. Genome-wide eSNP map in malaria-infected children. Circos plot displaying all genome-wide significant associations detected in the combined
dataset of cases and controls and in the cases alone. Each chromosome is shown in a different color. Distal associations are displayed in the center of the plot,
with the links indicating target transcripts. Circularized Manhattan plot displays local associations and their respective significance (−log10 P value). Asso-
ciations significant for the genotype-by-infection effect are shown in red, and those implicating genes differentially expressed at 1% FDR in at least one of
the two-way contrasts among control and high and low parasitemia groups (Table 1) are shown in green.
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AMY1A. Approximately half of these associations (76 of 147) are
exact, namely implicating the same SNP–gene pair and most of
the remaining report a SNP in the same linkage group. The other
associations in our dataset are novel, of weaker strength in the 13
eQTL studies, or might have been reported in other studies.

Joint Action of Host Genotype and Infection on Gene Expression. To
test for genotype-by-infection interactions, we ran a model that
accounts for SNP, infection, SNP × malaria status, sex, location,
RBCs, and WBCs. This analysis identified five peak local geno-
type-by-infection interactions at Bonferroni significance:
PRUNE2 (P = 4.17 × 10−9), SLC39A8 (P = 8.37 × 10−7), C3AR1
(P = 1.07 × 10−6), PADI3 (P = 1.61 × 10−6), and UNC119B (P =
2.15 × 10−6; Fig. 3 and SI Appendix, Table S1). The associations
implicating C3AR1, PADI3, and SLC39A8 are shown in Fig. 4,
and the remaining associations are shown in SI Appendix, Fig. S8.
These findings demonstrated the existence of genome-wide sig-
nificant interactions in malaria, and our data also suggest that
interaction effects are pronounced for several associations be-
neath genome-wide significance.
Our survey of the sources of gene expression variation

revealed dozens of genes under statistically significant joint
effects of malaria infection and host genotype. The genes for
which the infection effect is highly dependent on host genotype
translate into statistically significant interactions. These genes
show a substantial expressed SNP (eSNP) effect in the infected
group or the control group but not in both, or show the effect in
opposite directions in the two different groups. Other genes
subject to interaction effects beneath genome-wide significance
show different magnitudes of eSNP effects between the two
groups and likely have important roles in modulating the course
of infection, and several of them have previously been associated
with malaria (i.e., FCGR3B, PSMB9, and GSTO1) (18–20). In
addition, we discovered several associations implicating key im-
mune processes, particularly antigen processing and pre-
sentation, plasmacytoid dendritic cell activation, and T-cell
activation and expansion (i.e., RAD21, LRRC25, CLEC4C
SLC3A2, and TAPBP) (21–25). The genes that are associated
with an eSNP and that are differentially regulated by the in-
fection are shown in green in Fig. 3 (Datasets S3 and S4 provide
further details). We also note that expression of five genetically
regulated HLA (HLA) class II loci is negatively correlated (r2 =
0.31) with parasite load and with key immune effectors such as
IL18R1, TLR4, TLR5, IFNGR1, and IFNGR2 (P < 10−4), in-
dicating an impairment of antigen processing and likely of sub-
sequent priming of host immune response.
A number of studies surveyed transcriptional genotype-by-

environment interactions in humans and reported dozens of
response eQTLs in vitro under a variety of environmental

challenges such as radiation (26) and treatment with various
agents (27–29). The number of interacting loci in response to
malaria infection in our in vivo study is lower than the number of
response eQTLs reported in these studies despite the fact that
similar sample sizes were used. This is likely because of a com-
bination of factors, notably the strong induction of transcrip-
tional response in vitro, the homogeneity of the cell population
investigated, and the differences in the experimental design and
statistical thresholds applied. Nonetheless, our results are con-
sistent with the concept that transcriptional genotype-by-envi-
ronment interactions are pervasive in human populations and
can be detected in vivo.
Other eSNP associations deserved attention, but the case of

SCO1, which encodes an inner mitochondrial membrane met-
allochaperone, stands out. This gene was implicated in the sec-
ond top GWA hit by Jallow et al. (5) (rs6503319; P = 7.2 × 10−7;
10 kb from the TSS of SCO1), and, here, we detected two ge-
nome-wide significant local eSNP associations for this locus. The
strongest eSNP we detected (rs201621; P = 8.91 × 10−14) is lo-
cated 4 kb upstream of the SCO1 transcription start site in
a strong enhancer (30, 31) (SI Appendix, Fig. S9). This finding
implicates allelic variation of rs201621 in the effect captured by
the malaria GWA study likely through contribution of differen-
tial expression of SCO1 to detoxification pathways of reactive
oxygen species (32).

Discussion
Joint analysis of gene expression and genotypic data demon-
strated that malaria infection and host genotype alters immune
gene expression genome-wide in additive and multiplicative man-
ners. The interactions we report here show the existence of ro-
bust interactions in vivo in an infectious disease. One of these
associations implicates the SLC39A8 locus, which encodes a zinc
transporter protein highly up-regulated in response to primary
T-cell activation, especially in the presence of low concentrations
of zinc (33). Several studies and initiatives have proposed zinc
supplementation as a strategy to help reduce the risk of malaria
episodes (34, 35), and our data implicate a gene whose action is
potentiated by zinc but also clearly and robustly conditioned by
host regulatory variation. The interaction implicating SLC39A8
illustrates a robust in vivo genotype-by-infection effect that is
directly linked to the key process of T-cell development.
Our data also suggest the scenario of the presence of inter-

actions for higher-level malaria phenotypes in the absence of
robust genotype-by-infection interactions for transcription (36).
The case of GSTO1, which encodes a protein involved in the
metabolism of a broad range of xenobiotics, illustrates this sce-
nario (Fig. 4). Supposing only individuals with a transcript abun-
dance of >12.0, indicated by the horizontal line (Fig. 4), have an

Fig. 4. Transcriptional additive and multiplicative effects in malaria. Examples of transcriptional interaction effects implicating the genes SLC39A8, C3AR1,
and PADI3. The case of GSTO1 illustrates the scenario of an interaction effect for a disease phenotype in the absence of a transcriptional interaction. This
example illustrates how the effect of the gene is conditional on genotype with only the minor allele homozygote individuals shifting to the resistance zone
(transcript abundance >12.0 indicated by horizontal line) when infected, giving rise to an interaction effect for the disease phenotype. Genotypes on the
x-axis are labeled to indicate the number of minor alleles and individuals are labeled to indicate their infection status (controls, blue; high parasitemia, red;
low parasitemia, orange). The y axis shows normalized expression values.
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efficient detoxification capacity, certain individuals will have
a greater capacity for parasite clearance and subsequently show
resistance to malaria. Although hypothetical, the example of
GSTO1 illustrates how such effects can be conditional on geno-
type, with only the minor allele homozygote individuals shifting to
the resistance zone when infected, giving rise to an interaction
effect for the disease phenotype. A corollary of these interactions
might mask associations of genotype with disease if the exposure
increases disease risk in one genotype group and decreases it in
another to yield an overall null effect.
In summary, we have provided a genome-wide picture of host

in vivo regulatory variation events in malaria-infected whole-
blood transcriptome and highlighted the implication of regula-
tory variation and interactions in modulating host immune
response. The underlying genetic variation of such effects would
predispose to how children mount an effective immune response
to infection and likely to immunization. We also demonstrate
that a systems genetics approach interrogating whole blood as
one of the disease tissues can facilitate mapping of susceptibility
genes and pinpoint causal mechanisms. Although challenging, it
is equally important to extend this approach to investigate the
key in vivo transcriptional events in malaria control that take
place in other organs such as spleen, liver, and bone marrow.
Last, we believe this approach is promising to uncover the ge-
netic basis of response to infection and to immunization in vivo,
particularly in African populations in which GWA studies are
typically underpowered.

Materials and Methods
Study Population. The human study was approved by the Ethical Review
Committee of Sainte-Justine Research Center and by the Faculté des Sciences
de la Santé of the University of Abomey-Calavi in Benin. A total of 94 malaria-
infected children under the age of 10 y (median age, 3.7 y) and 61 age-
matched control subjects were sampled under informed consent (Dataset
S5). Cases were children admitted to a secondary level hospital in Cotonou,
the cosmopolitan city of the Republic of Benin, and in a rural primary level
health care center in the village of Zinvié, located 36 km from Cotonou.
Cases were sampled within a period of 10 wk in spring 2010.

After an initial assessment by a pediatrician, children with fever and who
were diagnosed as having uncomplicated acute malaria were considered for
the study. Childrenwhosemalaria infection statuswas confirmed by using the
Parascreen P. falciparum malaria rapid diagnosis test and standard thick
blood smear analysis were enrolled. Children presenting symptoms for other
diseases or with known history of HIV were not included. Following blood
sampling, all cases received antimalarial treatment and had an uneventful
course of the disease, except for two children who underwent transfusion at
D+1 and D+2 for worsening anemia. Age-matched controls were from the
city of Cotonou and were siblings of a large cohort of children with sickle-
cell disease registered at the health clinic of the National Center of Sickle
Cell Disease in Cotonou. Hemoglobin testing was done by thin-layer agarose
isoelectric focusing (Pharmacia LKB Biotechnology) on dried blood collected
on Guthrie paper, and S-hemoglobin genotypes were confirmed by geno-
typing the sickle cell mutation (rs334) using the Sequenom assay. None of
the control subjects have sickle-cell disease, and only those without clinical
signs of malaria and who tested negative on both malaria detection tests
were retained. All children recruited in our study were of a similar age and
sampled within similar geographic and hence environmental settings.

Sampling and Genomic Profiling. The same collection protocol was followed
for all samples to minimize heterogeneity for technical reasons. Peripheral
blood samples were collected between 9:00 AM and 2:00 PM and stored at
−30 °C until shipping to Montreal at −20 °C. Approximately 4 mL of blood
was collected: 3 mL for RNA work collected in Tempus Blood RNA Tubes
(Life Technologies) in which blood cells are immediately lysed after collec-
tion and total RNA stabilized, 0.5 mL stored in EDTA tubes for DNA work,
and the remaining blood for thick smear analysis and total cell counts work
with the use of an automated KX-21 blood cell analyzer (Sysmex). Total
RNA was extracted by using a Tempus Spin RNA Isolation kit (Life Tech-
nologies) followed by globin mRNA depletion by using a GLOBINclear-Hu-
man kit (Life Technologies). Total RNA samples were quantified and quality-
checked with the RNA 6000 Nano LabChip kit and the 2100 Bioanalyzer
(Agilent). Only samples of high RNA quality (Agilent RNA Integrity Number

>7.5) were retained for expression profiling. HumanHT-12 BeadChips (48k
probes; Illumina) were used to generate expression profiles following the
manufacturer’s recommended protocols. To minimize chip and batch
effects, the order in which the samples were processed was randomized across
all fixed effects in the sample at the extraction, cDNA synthesis, and hybrid-
ization steps.

Hybridization was performed on two different dates, and five samples
from the first batch were rehybridized with the second batch. Clustering of
these technical replicates with themselves indicated negligible batch effects
in our data. This was confirmed by testing for batch effect in the probe-by-
probe ANOVA. Only well annotated probes (RefSeq) were retained for the
analysis. Furthermore, 472 probes aligning to more than one location in the
African reference genome or overlying SNPs reported in dbSNP Build 135 and
with minor allele frequency (MAF) >5% in the Yoruba sample were removed.
Expression intensities were log2-transformed and quantile-normalized by
using JMP Genomics version 5.0 (SAS) after an outlier filtering procedure
(37) was applied to provide further quality control. The distribution of the
probe-level expression data was assessed for normality by using a Levene
test, and those that showed deviation from normality (P < 0.01) were re-
moved from the analysis. The probes with expression greater than back-
ground levels averaged across all of the arrays were retained for further
analyses as previously described (38). These probes correspond to 23,826 and
27,546 features in the combined dataset of cases and controls and in the
cases alone, respectively.

For the mouse experiment, ten 9-wk-old female C57BL/6J mice were
injected i.v. with 106 P. chabaudi AS parasites to model blood-stage malaria
infection. Animal research has been approved by McGill University review
board and all mice were maintained at the Animal Care Facility according to
the guidelines of the Canadian Council on Animal Care. Parasitemia was
monitored by microscopy of Hemacolor (Harleco)-stained thin blood smears,
and mice were euthanized by CO2 inhalation followed by cardiac puncture
to exsanguinate at day 4 (low parasitemia, n = 5) and day 6 (high para-
sitemia, n = 5). Blood was also collected from age- and sex-matched un-
infected controls. For each condition, blood was pooled in Tempus tubes
(Life Technologies). Total RNA was extracted by using a Tempus Spin RNA
Isolation kit (Life Technologies) followed by globin mRNA depletion by using
a GLOBINclear-Mouse kit (Life Technologies). RNA samples were quantified
and quality-checked with the RNA 6000 Nano LabChip kit and the 2100
Bioanalyzer (Agilent). MouseWG-6 v2 BeadChips (Illumina) were used to
generate expression profiles by using three technical replicates for each
condition. The replicates started at the stage of the RNA sample at which
equal quantities of input RNA from the original stock were subject to the
entire procedure. Expression intensities were log2-transformed and quantile-
normalized.

Genome-wide genotyping data were generated by using OmniExpress
arrays (733k SNPs) and extracted with the Genotyping Module in BeadStudio
software (Illumina). Only samples with call rates >99% were retained, and all
SNPs that had a cluster separation value below 0.3 or call frequency below
99% were removed. The process of quality-control checks resulted in re-
tention of 544,672 SNPs (MAF >10%) in 151 individuals for the population
structure analysis and eSNP analysis. Global genotypic variation and ancestry
was inferred by using Eigenstrat (39), retaining the first three eigenvectors
[genotypic PCs (gPCs) 1–3) according to the Tracy–Widom test statistic (P <
0.01). gPC1–3 scores are used to account for ancestry in the analysis
detailed later.

Statistical Analysis of Gene Expression Data.All statistical analyses on the gene
expression data were performed by using JMP Genomics version 5.0 and SAS
9.3 (SAS). Two datasets were subject to the analyses described later: (i) the
combined dataset (94 cases and 61 controls for the gene expression data-
alone analysis, or 92 cases and 59 controls for the joint genotypic and gene
expression data analysis), and (ii) the cases alone (94 cases for the gene
expression data-alone analysis, or 92 for the joint genotypic and gene ex-
pression data analysis). The malaria effect was considered in three different
ways: (i) cases vs. controls, (ii) log2-scale transformed parasitemia counts as
a quantitative measure of infection severity, and (iii) high vs. low para-
sitemia groups using the median value of the log2 parasitemia counts as
a cutoff. PC analysis, PC variance analysis, and multiple regression analyses
were performed such that the first three ePC are modeled simultaneously or
individually as a function of various effects in the data: malaria infection
status, log2 parasitemia, location, hemoglobin genotype, sex, pair-wise
combination of fixed effects, total cell counts (RBCs and WBCs), and
ancestry (gPC1–3).

SAS GLM was used to evaluate the magnitude and significance of dif-
ferential expression of individual expressed probes. Variance was partitioned
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among themalaria effect, sex, location, hemoglobin, pairwise contrasts, total
cell counts, and ancestry as covariates. Batch effect, age, and pair-wise
contrasts (i.e., malaria × location, malaria × sex and sex × location) were
evaluated and found to be insignificant. Results from the following full
ANCOVA model (ANCOVA II in Table 1) for each malaria effect contrast were
used for GSEA and for the contrast with genotypic effects:

Expression = μ + malaria status + location + sex + Hb + WBCS + RBCS

+ gPC1 + gPC2+ gPC3 + ε

The malaria effect was considered in the ways indicated in Table 1 and the
error ε was assumed to be normally distributed with a mean of zero. For the
mouse dataset, ANOVA was used to evaluate the magnitude and signifi-
cance of differential expression among controls and high and low para-
sitemia groups. Orthology was inferred by using the Ensembl Biomart tool.
A statistical significance threshold at 1% Benjamini and Hochberg FDR was
applied to each term in all tests of differential expression.

GSEA. Enrichment analysis for each contrast (high parasitemia vs. controls,
low parasitemia vs. controls, and high vs. low parasitemia) was performed by
using GSEA (9). The analysis was performed on the C2, C3, and C5 collections
of MsigDB database (http://www.broad.mit.edu/gsea/msigdb). Appended to
C2 canonical pathways are curated signaling pathways from NetPath (40),
molecular signature gene sets of sorted PBMC cell types (16), and gene sets
collected from transcriptional analyses of PBMC samples (41). The resulting P
values from the GSEA were adjusted for multiple testing by using a Bonfer-
roni correction (P < 0.05). Pearson correlations were computed between
parasitemia and average transcript abundance of each module of genes
from six PBMC cell type subsets obtained from Nakaya et al. (16) across all 94
infected individuals.

GWA of Gene Expression. Marker properties and association tests were per-
formed by using JMP Genomics version 5.0 and SAS 9.3 (SAS). Regression tests
for association of gene expression levels with each numeric genotype (coded
as 0, 1, or 2, with each number representing the number of copies of the
minor allele) were performed. Only autosomal SNPs with anMAF >10%, with
missing data <1%, and in Hardy–Weinberg equilibrium (P < 0.01) were
retained for the GWA tests. Tests of association were carried out with two
models for each dataset (the combined dataset and cases only) separately.
We distinguished between local and distal associations based on the location
of the genotype and the associated transcript. We applied Bonferroni cor-
rection for all associations performed in this study. Each of 544,672 SNPs was
tested for association with each of the 18,876 expressed transcripts. This
analysis gave rise to (i) a genome-wide Bonferroni threshold of 4.86 × 10−12

[0.05 / (18,876 × 544,672); (−log10[P] > 11.3) for distal associations and (ii) to
a genome-wide Bonferroni threshold of 2.65 × 10−6 to 1.3 × 10−8 for local

association [−log10(P) > 5.57–7.88], considering the number of SNPs within
the region spanning 100 kb upstream and 100 kb downstream of the tran-
script. Only linkage disequilibrium block tagging SNPs (based on D′ > 0.90)
were used in the full model testing for the interaction effects. The analysis
on the infected sample was performed by using 535,838 SNPs (with no more
than one missing genotype per parasitemia group) and 18,974 probes.

First, a model in which m is the mean measure of transcript abundance,
and the error ε is assumed to be normally distributed with a mean of zero
was used (model 1):

Expression = m + SNP + malaria status + ε [1]

The results from this model provided a list of significant associations that we
compared with the associations reported in 13 published eQTL studies of
peripheral blood or its derivatives at nominal P values > 10−7 and 10−12 for
local and distal associations, respectively. These published associations were
accessed by using the eQTL Browser (http://eqtl.uchicago.edu/cgi-bin/
gbrowse/eqtl/), and we also included the results of our own eQTL study of
the leukocyte transcriptome in the Moroccan population (36).

To test for genotype-by-infection interactions, we ran a model on the
combined dataset (544,672 SNPs and 18,876 expressed transcripts) that
accounts for SNP, malaria status, SNP × malaria status, sex, location, RBCs,
and WBCs, where m is the mean measure of transcript abundance, and the
error ε is assumed to be normally distributed with a mean of zero (model 2):

Expression = m + SNP + malaria status + SNP × malaria status + sex

+ location + RBCS + WBCS + ε
[2]

Because testing for multiplicative SNP effects between the control and the
infected groupmight be sensitive to differences in the representation of each
groupwithin each genotype class, we applied an additional filter to the list of
SNPs in model 2 and excluded all SNPs not in Hardy–Weinberg equilibrium
and with a MAF <10% within each of the subgroups tested. ENCODE data
(30, 31) retrieved from the University of California (Santa Cruz), browser was
used to facilitate the interpretation of the detected eSNP signal for the
SCO1 gene.
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