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The remarkable strength of glasses is examined using the random
first order transition theory of the glass transition. The theory
predicts that strength depends on elastic modulus but also on the
configurational energy frozen in when the glass is prepared. The
stress catalysis of cooperative rearrangements of the type respon-
sible for the supercooled liquid’s high viscosity account quantita-
tively for the measured strength of a range of metallic glasses,
silica, and a polymer glass.

elasticity ∣ elastic shear modulus ∣ Frenkel strength

A fundamental question about solid matter is what ultimately
determines its mechanical strength. Glasses, in the popular

mind, are easy to break, but in fact, if surface cracks are carefully
avoided, glasses turn out to be intrinsically quite strong. Nearly a
century ago, Frenkel provided an elegant argument for the max-
imum stress that a solid could withstand (1). Crystalline metals
were found to be hundreds to thousands of times weaker than
the Frenkel estimate (2). This observation inspired the extremely
fruitful ideas of dislocations and grain boundaries that provide
easy ways for polycrystalline metals to rearrange and plastically
deform (3–6). Glasses come much closer to the Frenkel limit but
still fall short in strength (7). In this paper we explore quantita-
tively the notion that the mechanical failure of glassy materials
ultimately arises from strain catalyzed rearrangements of the
same kind as those responsible for the high supercooled liquid
viscosity. The idea that there is a relation of yield strength to the
glass transition itself is not new and has been examined in various
ways (6, 8–12). Here we go further by exploiting the current quan-
titative understanding of cooperatively rearranging regions that
has emerged from the random first order transition (RFOT) the-
ory of glasses (13–19) in order to make some specific predictions.
RFOT theory describes the microscopic origin of cooperatively
rearranging regions and predicts they are compact, containing
a few hundred molecular units near the laboratory glass transition
temperature Tg. These regions become more fractal, resembling
strings or percolation clusters (20) at higher temperatures where
flow is no longer thermally activated (21) but rather dominantly
collisional. The quantitative predictions of RFOT theory con-
cerning the well-established thermodynamic/kinetic correlations
in the viscous liquid state, dynamical heterogeneity in super-
cooled liquids (18), and the aging (22) and rejuvenating (19)
properties of the glassy state proper agree quite well with obser-
vations (23). It is thus natural to enquire as to what the theory
predicts for the material strength of glasses.

We begin by reviewing how activated events occur in liquids
and glasses in the absence of stress. The easiest way to concep-
tualize activated events in the RFOT theory is through what is
called the landscape library construction by Lubchenko and
Wolynes (22). This construction has also been used to define
point-to-set correlation lengths (24, 25) allowing many key points
of RFOT theory to be confirmed via computer simulations (26–
29). This construction is schematically pictured in Figs. 1 and 2. In
mean field RFOT theory, below a dynamical transition tempera-
ture TA, the system becomes trapped in one of an exponentially
large number of possible metastable states that are minima of a
free energy functional (14). For molecular fluids these states can
be taken as nearly structurally synonymous with the inherent

structures that precisely correspond to minima of the potential
energy (16), but the individual stability of these states at finite
temperature depends not only on their energy but also on their
vibrational entropy. Irreversible reconfiguration events even-
tually take place by rearranging molecules in ever-larger regions
of size N until a critical size is reached. Above the Kauzmann
temperature, TK , the configurational entropy is extensive, and so
as the size of a reconfiguring region increases, the number of
possible local rearrangements grows as well. Generally moving to
any one of these rearranged structures costs free energy because
the environment of the rearranging region does not fit the new
locally accessible alternative structures as well as it fits the origi-
nal free energy minimum from which rearrangement starts. The
typical mismatch energy ΔEðNÞ near the Kauzmann transition
scales as γNx. The power law in mean field theory represents
a surface energy (14) so the exponent x ¼ 2∕3, but scaling argu-
ments (13) suggest there should be a somewhat weaker scaling
with x ¼ 1∕2 near an ideal glass transition at TK due to wetting
from the numerous alternative states that can be interpolated
between the fixed environment and the core of the rearranging
region.

Xia and Wolynes showed the coefficient in the mismatch
energy can be computed near TK by assuming a locally sharp
interface and by making a microscopic estimate using density
functional theory of the localization free energy that is entropic:
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Here αL determines the size of the vibrational fluctuations in a
minimum and is roughly 100, reflecting displacements following
Lindemann’s stability criterion allowing localized motion of
about one-tenth of the interparticle spacing, a.

Above TK any mismatch energy can, however, be overcome by
the entropic driving force favoring reconfiguration to one of the
many alternate structures,FbulkðNÞ ¼ −TscN where sc is the con-
figurational entropy per particle. Balancing FbulkðNÞ and ΔEðNÞ
gives an activation free energy to be overcome for irreversible re-
arrangement, ΔF ‡, which is a function of sc. ΔF ‡ diverges near
TK as sc vanishes. This prediction then connects the kinetics of
rearrangements with thermodynamics, a hallmark of the RFOT
theory. Using the approximate coefficient γ obtained by Xia and
Wolynes the absolute magnitude of barriers is also predicted
to follow an Adam–Gibbs-like relation ΔF ‡ ¼ A∕sc but with a
specific numerical value for A ¼ ð27π∕16ÞkBðlnðαLa2∕πeÞÞ2.
Because the Lindemann parameter αL depends only weakly
on the potential, in RFOT theory then ΔF ‡∕kBT is again dom-
inantly a function of the configurational entropy, across a range of
substances.

The landscape library argument can also be used in the so-
called “aging” regime to describe motion in the glass (22). In the
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aging regime, the initial configuration is not one chosen from the
thermal equilibrium ensemble at the ambient temperature but
instead structurally resembles a system that was equilibrated at
a higher so-called “fictive” temperature. In a simple quench to
low temperature the fictive temperature initially is the laboratory
glass transition temperature Tg. For this nonequilibrium situation
the initial configuration then will not only gain entropy by recon-
figuring locally but also will release an additional energy per
particle ΔΦ, which represents the energy frozen in at the glass
transition (22). If we assume the configurational heat capacity
has the empirical form ΔcpðTgÞ · ðTg∕TÞ this excess energy
is ΔΦ ¼ ΔcpðTgÞTg lnðTg∕TÞ.

Owing to this excess driving force, reconfiguration events
occur sooner in a glass than they would in a liquid structurally
equilibrated to the same ambient temperature. The nonequili-
brium activation free energy can be written in terms of the activa-
tion free energy for an equilibrium liquid at a higher specific
configurational entropy:

ΔF‡
n:e: ¼ ΔF ‡

eqðTsc þ ΔΦÞ: [2]

ΔF ‡
eqðTscÞ is the function giving the activation barrier in the equi-

librium liquid, written in terms of its configurational entropy
at temperature T. In the glass below its Tg this formula implies
the rates follow something close to an Arrhenius law but with an
activation enthalpy diminished from what it was at the higher
temperature at which it fell out of equilibrium. In this way, this
RFOT argument accurately predicts the so-called nonlinearity
parameter x describing the ratio of activation enthalpy for motion
in an equilibrated liquid to that for glasses that have fallen out of
equilibrium (22).

The Volger–Fulcher law, while describing the deep glassy
behavior, breaks down at higher temperatures in supercooled
liquids. In mean field theory this breakdown occurs because the
mismatch coefficient γ itself vanishes at the mean field spinodal
temperature TA (14, 28, 30). Schmalian, Stevenson, and Wolynes
have argued that the Volger–Fulcher relation will actually break

down at a somewhat lower temperature Tc because the shape of
correlated activated regions changes at higher temperatures in
such a way that the mismatch energy now scales linearly inN (20).
The high temperature, entropically favored shapes are lattice
animals whose exposed surface scales directly with their number
of constituents as does their shape entropy. In this regime the
scaling of mismatch energy can be written as vintb where b is the
number of equivalent broken bonds at the surface of the rearran-
ging region. Schmalian, Stevenson, and Wolynes showed that
near TK , b is approximately 3.2N and the coefficient of vint can
(like the surface mismatch energy γ) be obtained from density
functional reasoning vint ¼ ð1∕zÞð3∕2ÞkBT lnðαLa2∕πeÞ.

The free energy profile for such fractal rearranging regions
either monotonically increases withN or decreases monotonically
with N. This means that there will be a change in the rearrange-
ment mechanism from activated dynamics to one dominated
by collisions at high temperature. The crossover to barrierless re-
configuration is thus determined by the condition scðTcÞ ¼
spercc − ΔΦ∕Tc ¼ ΔcpðTgÞTg∕TKð1 − TK∕TcÞ. The critical cross-
over parameter under the assumption the clusters are percola-
tion-like is spercc ¼ 1.28kB. For equilibrated liquids this relation
predicts crossover temperatures agreeing with those found using
Stickel plots (31). The RFOTargument then also predicts barrier-
less reconfiguration will occur for nonequilibruim glasses if
heated when

kBTc

ΔcpðTgÞTg − ΔΦ
¼ kB

ΔcpðTgÞ
TK

Tg

�
1 −

spercc

Δcp
TK

Tg

�
−1
: [3]

This specific prediction for crossover to collisional dynamics in
superheated glasses has not yet been tested in the laboratory
although it would be interesting to check it experimentally by
using lasers to rapidly heat glasses. Below the crossover tempera-
ture, fractal rearranging regions also provide the low barrier tail
to the barrier distribution since fluctuations can allow the non-
uniformly linear increasing free energy profile to cross zero. This
tail, for large fluctuations, manifests itself as a separate relaxation
peak, the so-called secondary or β relaxation (32).

What does RFOT theory then suggest about how reconfigura-
tion events occur under stress? If a sample of glass is put under a
uniform shear stress, σ, the energy per unit volume is immediately
raised by an amount σ2∕2G whereG is the elastic shear modulus
(33). It has long been known this energy can be explosively re-
leased by cracking the glass. This effect is demonstrated by the
famous Prince Rupert’s drops (34). The stress need not always

Fig. 1. We show in the upper part of the figure schematic snapshots of local
rearrangement starting from an initial frozen configuration in an imposed
stress field σ. Following Lubchenko and Wolynes (22) the lower left panel
shows the spectrumof possible free energyminima for a large sample of glass.
Levels are listed in order of the internal free energy ϕ, comprising the poten-
tial energy along with a vibrational entropic contribution. When the glass is
trapped in a single such state, local regions of size N can rearrange to new
minima while only weakly disturbing their environment elastically. Connected
energy levels are shown in the next two panels. When an imposed stress σ is
imposed the energy levels are shifted and the energy cost of moving N par-
ticles is reduced by an amount ðκσ2∕2GÞNVbead where G is the elastic modulus
and κ is a factor that includes the elastic response of the environment that
does not shift to a new minimum. Vbead is the volume of a molecular unit.
Eventually for sufficiently large N a distinct structure is formed coincident
in free energy with the initial state, allowing irreversible motions to occur.

Fig. 2. The local level libraries in Fig. 1 when thermally averaged yield a free
energy profile for rearranging a specific region as a function of the number
of displaced particles N. The average mismatch energy is balanced against a
term containing the configurational entropy (from averaging over all the
states), any initially excess energy frozen into the glass along with a contri-
bution from relaxing strains via reconfiguration in an imposed stress field.
The activation barrier is lowered by the imposed stress, eventually vanishing
when the stress is sufficiently large, leading to rapid failure of the glass’s
structural integrity.

Wisitsorasak and Wolynes PNAS ∣ October 2, 2012 ∣ vol. 109 ∣ no. 40 ∣ 16069

PH
YS

IC
S



lead to cracking directly. It is reasonable to expect that, of the
myriad of possible states envisioned in RFOT theory, a significant
fraction will also allow this stress energy to be released without
cracking or forming voids. Indeed a vanishing stress energy of the
rearranged state is expected because the most stable mean field
free energy minimum corresponding to delocalized molecules
can be thought of as being a typical disordered liquid ensemble
and is thus completely incapable of sustaining static shear. Be-
cause the imposed stress energy can be removed by appropriately
rearranging a region, imposed strains will lower the activation
barrier and will catalyze the rearrangement. If the stress is suffi-
ciently large the rearrangement may even occur without any sig-
nificant barrier at all, just as takes place at the thermal crossover
at Tc. This crossover to barrierless reconfiguration would thus
give the limiting strength of the glass if we assume there are
no easier routes for the glass to rearrange (like cracking). Strain
catalysis means that a stressed glass will always flow at some finite
rate even for the smallest stresses (6, 33, 35) and thus a glass will
deform, given time, at somewhat lower stresses than this limit.
This gentler flowing situation is probably quite relevant in many
practical situations. Flow itself can act to further catalyze rearran-
gements. The resulting additional enhancement of reconfigura-
tion speed is a facilitation or mode coupling effect. Lubchenko
has shown that this effect [that would be contained in a more
complete RFOT theory including mode coupling effects (36)]
does a good job describing the crossover to steady state nonlinear
rheology (37). Similar effects have been studied in mode coupling
treatments of dense colloid rheology (38, 39). We will, in this
paper, however, concentrate on the immediate effect of stress
on the activated events that occur before flow starts and leave the
physics of developed plastic flows for future work. The limiting
strengths we calculate in this paper then should be upper bounds
representing extremely rapid failure of the glass.

Naively speaking, in order to compute the effect of stress cat-
alysis on the activation barrier one merely needs to account for
the strain energy lost in the fluidized region and thus must add to
the bulk thermodynamic driving force term ð−Tsc − ΔΦÞN an
additional contribution σ2NV bead∕2G to compute the lowering
of the thermal barrier for compact clusters or to find the limiting
stress where barrierless rearrangement may occur. Here V bead is
the volume of a “bead” (i.e., movable unit of the glass), which can

be inferred from the molar fusion entropy (23, 30). There is a
subtlety, however; as pictured in Fig. 3 fluidizing a region of the
glass also allows Hookean elastic rearrangements of the sur-
rounding matrix to occur without it being necessary for the out-
side region to move to any alternate free energy minima. This
outer region while elastically responding thus does not elicit
any mismatch energy. The strain energy relieved by rearrange-
ment of a region of size N (40) nevertheless becomes larger than
σ2NV bead∕2G.

For an arbitrarily shaped rearranging region the exact calcula-
tion of the additional strain energy relieved by harmonically dis-
torting the outer region would seem to be a complex problem in
elastic theory. The result for spherical regions, however, has been
known for some time where it has been used to develop the the-
ory of the elastic modulus of composite media containing holes
(41). The calculation is mathematically quite analogous to the
calculation of intrinsic viscosity made first by Einstein (42) for
the effect on viscosity of suspending solid colloidal particles in a
fluid and still more closely follows Taylor’s analysis of the viscosity
changes due to suspending liquid drops or bubbles in a fluid (43).
For spheres the additional energy released (analogous to the
excess viscous dissipation in the hydrodynamic problems) is still
proportional to the sphere’s size and according to MacKenzie
depends on the Poisson’s ratio characterizing bulk versus pure
shear deformations. Taking over MacKenzie’s correction gives
then an energy increment for rearranging a region of size N,

Fig. 3. The upper panel shows a uniform strain field acting on the glass
sample in its original state. A fluidized region allows the surrounding mate-
rial to elastically deform in a nonuniform way in the imposed stress field
shown schematically in the lower panel. This allows additional strain energy
to be released without costing any additional mismatch energy.

Fig. 4. Strength as a function of shear moduli. The experimental strength
(red triangle) and the predicted strength (black circle) have nearly the
same slope and are quite different from Frenkel strength (blue solid line).
Typical value of crystal strength (violet solid line) and strength in the limit
T → 0; Tg → TK (black solid line) are also shown in comparison.

Fig. 5. A plot of the strength, σ�, measured from the experiments versus
theoretical estimation derived from the RFOT theory. The dotted line plots the
perfect match between the experiments and the predictions, σ�

Expt ¼ σ�
Pred. The

experimental data used are shown in Table S1.
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ΔEelastic ¼ κ σ2

2GNV bead where κ ¼ 3 − 6∕ð7 − 5νÞ in terms of the
Poisson’s ratio ν. For the typical Poisson’s ratio of metallic
glasses κ ≈ 1.8.

Directly calculating the correction for nonspherical shapes is
indeed complex. In addition, considerable distortions from sphe-
rical geometry are energetically still more favorable in relieving
stress than for the region to remain compact and thus at high
stress such distortion should again lead to barrierless breakup,
just as critical flow rates lead to dissolution of drops in emulsions
(44–46). The latter problem has led to an extensive literature (40–
47). We will use, nevertheless, the spherical value of the correc-
tion κ for all shapes of cooperatively rearranging regions. We sus-
pect this simplification is probably not too bad for small stresses
and not too far from TK . This surmise is buttressed by the experi-
ence for the corresponding hydrodynamic problem of computing
the intrinsic viscosity of complex shapes, a problem that has been
extensively studied in polymer chemistry (40). In that problem the
shape effects are quite modest. By adding the increased relieved
strain energy to the reconfiguration driving force, in analogy with
Eq. 2, the activation barrier for flow in a strained glass can again
be written in terms of the function giving the barrier for equili-
brated liquids ΔF ‡ ¼ ΔF ‡ðTsc þ ΔΦþ κσ2V bead∕2GÞ. With
this simplification, then, barrierless reconfiguration should finally
occur when scðTcÞ ¼ spercc − ΔΦ

T − κ σ2

2GT V bead. As in the popular
J-point scenario (48) an apparent spinodal to reconfiguration
apparently can be approached by tuning either the temperature
T or the stress σ. Again fluctuations in local stability should favor
the same fractal rearrangements that are eventually responsible
for barrierless reconfiguration before this point is actually
reached. Following Stevenson and Wolynes’s arguments for the
secondary relaxations without stress, the weight for such rare fluc-
tuations is still exponentially suppressed when the increment
spercc − ΔΦ

T − κ σ2

2GT V bead − scðTÞ is positive.
The argument, just given, relating barriers in the glass under

stress to those for thermal motions in the equilibrated liquid
should hold for temperatures not too far from TK because the
shapes of rearranging regions are then determined entropically.
There are corrections, however, away from TK . At very high
temperatures near to the mean field spinodal TA the mismatch
energy cost goes down, leading to an additional weakening of
the glass. Conversely at low temperatures, much below TK , we
also must account for both the fact that the mismatch energy
becomes pinned at its TK value and that at the same time the
importance of shape entropy is lessened by the diminished tem-
perature. A detailed account of the latter effects is contained in
SI Text. When the latter effects are included along with the cal-
culation of the excess energy we find an explicit equation for the
limiting strength σ�:

σ�
Pred ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2GkBT
κV bead

��
3.20

TK

T
− 1.91

�
−
ΔcpðTgÞ

kB

Tg

T
ln

Tg

TK

�s

[4]

The contribution in this expression involving Δcp represents
the weakening caused by the excess energy that has been frozen
in at the glass transition. If we could be cosmologically patient this
excess energy would disappear by annealing to Tg ¼ TK giving
then the ultimate achievable strength of a glass. At very low
temperatures the strength of this most stable glass will be then
σ�
ideal ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3.6GkBTK∕V bead

p
. We can write the shear modulus

in terms of the spinodal temperature TA and the bead size, fol-

lowing Rabochiy and Lubchenko by estimating vibrational displa-
cements from Debye continuum theory and assuming a limiting
Lindemann ratio for the maximal thermal excursions (5, 49).
Using this relation gives G ¼ 24.9kBTA∕V bead (see Fig. S1). If
we now take TA ≈ Tm the melting point and use the typical ratio
of TK∕Tm of between 0.4 and 0.7 we find the ultimate limiting σ�
is proportional to the elastic modulus. Such a linear correlation
between strength and modulus resembles Frenkel’s estimate and
indeed has been examined experimentally. We find the ideal limit
strength from RFOT theory to be uniformly about 30% higher
than Frenkel’s. The weakening of the glass due to energy frozen
in at the glass transition is however substantial. This excess energy
lowers the strength quite a bit below the RFOT ideal value and
below the Frenkel value but still gives strengths greatly exceeding
the measured strength of polycrystalline metals. We have gath-
ered from the literature data for the input thermodynamics.
We then compared the RFOT theory predictions to measured
strengths for some metallic glasses, silica, and a polymer glass,
PMMA. Details of the input data and measured strength data
can be found in SI Text.

In Fig. 4 we display results for the strength versus shear mod-
ulus. The predicted strengths generally exceed but are close to the
measured yield strengths. On this plot we also show both the
Frenkel estimate and ourTg ¼ TK ideal value. A typical polycrys-
talline material value of one-hundredth of the Frenkel value is
also plotted. Clearly the present RFOT predictions account very
well not only for the trends but even the actual magnitude of the
strength. In Fig. 5 we show the comparison of measured strengths
against the complete predictions. Not only the glassy metals but
also silica and the plastic PMMA have strengths not terribly far
off the RFOT predictions. Although the main dependence on
elastic modulus is clear, the RFOT theory results also depend
on other quantities, such as Δcp and the ratio of the ambient
temperature to glass transition temperature. However, as we can
see, both the predicted ratios of strength to modulus for the mea-
sured systems and the measured ratios show no overall trend with
liquid fragility or glass transition temperature (see Fig. S2). Of
course because modulus and Tg are well correlated the absolute
strengths themselves do correlate with Tg. It may be possible to
test the theory further. Again, rapid heating should lower the
yield strength in a predictable way. In addition, superstable
glasses can be made via vapor deposition (50). Their effective
temperature corresponds to being roughly half way to the Kauz-
mann temperature. We see their strength should thus be propor-
tionately closer to the Frenkel limit.

RFOT theory accounts well for the measured strength of
laboratory glasses of various composition. The good agreement
between theory and experiment suggests that the correlated re-
arranging regions responsible for high temperature viscosity in
supercooled liquids also limit the strength of nonequilibrium
glasses. There seems to be no necessity to invoke then any addi-
tional defects of a point-like or line-like character to play a pro-
minent role in weakening glasses that are prepared in an ordinary
fashion by cooling a melt.
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