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Lymphatic dissemination from the primary tumor is a major mech-
anism by which breast cancer cells access the systemic circulation,
resulting in distant metastasis andmortality. Numerous studies link
activation of hypoxia-inducible factor 1 (HIF-1) with tumor angio-
genesis, metastasis, and patientmortality. However, the role of HIF-
1 in lymphatic dissemination is poorly understood. In this study, we
show that HIF-1 promotes lymphatic metastasis of breast cancer by
direct transactivation of the gene encoding platelet-derived growth
factor B (PDGF-B), which has proliferative and chemotactic effects
on lymphatic endothelial cells. Lymphangiogenesis and lymphatic
metastasis in mice bearing human breast cancer orthografts were
blocked by administration of the HIF-1 inhibitor digoxin or the
tyrosine kinase inhibitor imatinib. Immunohistochemical analysis of
human breast cancer biopsies demonstrated colocalization of HIF-
1α and PDGF-B, which were correlated with lymphatic vessel area
and histological grade. Taken together, these data provide experi-
mental support for breast cancer clinical trials targeting HIF-1
and PDGF-B.
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Metastasis is the major cause of mortality in breast cancer
patients (1). Metastatic dissemination of cancer cells from

the primary tumormay occur via blood vessels or lymphatic vessels
(LVs). In breast cancer, the most clinically important predictor
of distant organ metastasis and patient mortality is the presence
and extent of axillary lymph node (LN) metastasis (1). Increased
density of peritumoral and intratumoral LVs in breast cancer is
significantly associated with LN metastasis and patient mortality
(2). Two members of the vascular endothelial growth factor
(VEGF) family, VEGF-C andVEGF-D, bind toVEGF receptor 3
on the surface of lymphatic endothelial cells (LECs) to stimulate
growth of LVs (lymphangiogenesis) and cancer cell metastasis to
LNs and distant sites (3, 4). VEGF-A, which primarily stimulates
blood vessel angiogenesis, promotes lymphangiogenesis and LN
metastasis, and members of the angiopoietin, FGF, insulin-like
growth factor (IGF), and PDGF families also have been reported
to promote lymphangiogenesis and metastasis (1, 5).
Intratumoral hypoxia is a common finding in breast cancer, and

severe hypoxia [pO2 <10 mm Hg (∼1.5% O2)] is associated with
a significantly increased risk of metastasis and patient mortality
(6). A major mechanism by which hypoxia promotes metastasis is
through the hypoxia-inducible factors (HIFs), which activate the
transcription of genes that play key roles in many critical aspects of
cancer biology, including angiogenesis, metabolic reprogramming,
epithelial–mesenchymal transition, and tissue invasion (7). HIFs
are heterodimers composed of an O2-regulated HIF-1α or HIF-2α
subunit and a constitutively expressed HIF-1β subunit (7). HIF-1α
is required for vascular metastasis from breast to lung in autoch-
thonous (8) and orthotopic transplantation (9–11) mouse models.

Clinical studies have found that increasedHIF-1α levels in primary
breast tumors are significantly associated with peritumoral LV
density (12) and patient mortality (13). HIF-1α levels also were
associated with LN metastasis in esophageal cancer (14). How-
ever, the mechanisms by which hypoxia stimulates LV density and
LN metastasis in breast cancer are not known.
We addressed this issue using an orthotopic mouse model in

which human breast cancer cells (BCCs) were injected into the
mammary fat pad (MFP) of SCID mice. We previously dem-
onstrated that stable transfection of MDA-MB-231 human BCCs
with lentiviral vectors encoding shRNA to knock down the ex-
pression of HIF-1α (1αKD), HIF-2α (2αKD), or double knock
down of both HIF-1α and HIF-2α (DKD) resulted in decreased
primary tumor growth and lung metastasis compared with cells
transfected with empty vector (EV) (9, 10). Treatment of tumor-
bearing mice with digoxin, a drug that inhibits HIF activity, also
impaired primary tumor growth and lung metastasis (10, 11). In
the present study we have demonstrated effects of HIF loss of
function on LN metastasis and LV density and have delineated
molecular and cellular mechanisms underlying these effects.

Results
HIFs Regulate Peritumoral LV Density and LN Metastasis of BCCs.
SCID mice received MFP injections of MDA-MB-231 BCCs,
and the ipsilateral axillary LNs were harvested 24 d later. His-
topathological examination of H&E-stained sections of the pri-
mary orthografts revealed a necrotic core in all tumor samples
resulting from intratumoral hypoxia (15). H&E staining of axil-
lary LNs showed distorted LN architecture, with loss of corti-
comedullary definition and hypochromatic nuclei, in mice
bearing EV tumors, whereas LNs from mice bearing 1αKD,
2αKD, or DKD tumors presented a more preserved overall
histology (Fig. S1A, Upper). Examination at higher magnification
revealed that LNs from EV tumor-bearing mice contained cells
characterized by anisocytosis, heterochromatic nuclei, and fre-
quent mitoses (Fig. S1A, Lower). There was a decrease in the
clinical histopathology score (HPS) of LNs from mice bearing
1αKD, 2αKD, or DKD tumors as compared with EV tumors
(Fig. S1B). Because histopathological examination may un-
derestimate LN metastasis (16), we performed immunohisto-
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chemistry (IHC) on the same specimens with an antibody specific
for human vimentin (Fig. S2A), expression of which is not reg-
ulated by HIFs (Fig. S2B). Most cells identified as LN metastatic
foci by H&E were positive for human vimentin (Fig. 1A). Linear
regression analysis showed a significant correlation (r= 0.90; P <
0.001) between HPS and the vimentin-positive area quantified by
digital image analysis (Fig. S2C), which was decreased by 47% in
1αKD, 62% in 2αKD, and 76% in DKD LNs as compared with
EV LNs (Fig. 1B).
Given our observation that LN metastasis of BCCs requires

HIF and evidence that LV density is correlated with LN me-
tastasis (1), we investigated whether HIF loss of function in
BCCs had an effect on peritumoral LV density by performing
IHC for podoplanin, which is expressed on LVs but not on blood
vessels (3, 4). We found that LVs were located at the periphery
of MDA-MB-231 tumors (Fig. 2A), as is commonly observed in
human breast cancers and xenografts (1). LV density surround-
ing tumors composed of 1αKD, 2αKD, or DKD cells was re-
duced by 45%, 24%, and 27%, respectively, as compared with
tumors composed of EV cells (P < 0.05). Tumor cells enter the
lymphatic system by invading LVs (1). The luminal space of LVs
from EV tumor-bearing mice was occupied by BCCs, whereas
LVs in 1αKD, 2αKD, or DKD tumors seldom contained intra-
vasated cells. IHC for podoplanin and vimentin performed on
consecutive sections revealed intravasation of BCCs into LVs at
the periphery of the primary tumors (Fig. 2B) and the presence
of LVs in the subcapsular space of the ipsilateral axillary LNs
(Fig. 2C). These findings suggest that HIF activity in BCCs is
critical for LV density, LV invasion, and LN metastasis.

HIF-1 Regulates PDGF-B Levels in Human BCCs. To establish a molecu-
lar basis for the effect of HIFs on LN metastasis and LV density,
we analyzed the expression of genes implicated in lymphangio-
genesis (3–5). Exposure of MDA-MB-231 BCCs to hypoxia in-
duced the expression of VEGF-A, BNIP3, and GLUT1 mRNAs,
which are well-established HIF targets, as determined by reverse-
transcription quantitative real-time PCR (qPCR) (Fig. 3A). HIF-
1α and VEGF-C expression are associated with lymphangiogenesis
in oral squamous cell carcinoma (17), but although VEGF-C
mRNA was highly expressed in MDA-MB-231 cells, it was not
induced by hypoxia, a result that is consistent with a previous re-
port (18). VEGF-D expression is reduced in breast cancer biopsies
and is inversely correlated with LN metastasis (19), and levels of
VEGF-D mRNA were decreased in MDA-MB-231 cells under
hypoxic conditions (Fig. 3A).
The presence or absence of HIF-1α and PDGF-B expression

has been correlated in breast cancer biopsies (20), PDGF-B
expression has been associated with LN metastasis in gastric
cancer (21), and overexpression of PDGF-B in a tumor cell line
increased lymphangiogenesis and lymphatic metastasis (22).
Levels of PDGF-B mRNA, but not PDGF-A, PDGF-C, or
PDGF-D mRNA, were significantly increased under hypoxic
conditions (Fig. 3A). Further analysis revealed that mean PDGF-
B mRNA levels increased 4.5-fold after 24 h and 5.5-fold after
48 h at 1% O2 relative to MDA-MB-231 cells maintained at 20%
O2 (Fig. 3B, Upper). PDGF-B protein levels increased 2.2-fold
after 48 h at 1% O2 (Fig. 3C). Exposure of MDA-MB-231 cells
to the prolyl hydroxylase inhibitor dimethyloxalylglycine
(DMOG), which blocks HIF-1α and HIF-2α degradation (23),
stimulated increased PDGF-B expression as determined by flow
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Fig. 1. HIF knockdown in breast cancer cells inhibits lymph node metastasis.
MDA-MB-231 human BCCs, which were stably transfected with EV, or vectors
encoding KD shRNAs directed against HIF-1α (1αKD), HIF-2α (2αKD), or both
(DKD), were orthotopically transplanted into the MFP of SCID mice. (A)
Axillary LNs ipsilateral to the tumors were harvested 24 d after trans-
plantation, and sections were stained with an antibody specific for human
vimentin [brown staining, which is cytoplasmic in high-magnification

photomicrographs (Lower Images)]. (Scale bar, 50 μm.) Dotted lines in low-
magnification photomicrographs (Upper Images) indicate the boundary be-
tween normal lymphoid cells and infiltrating vimentin-positive BCCs. (Scale
bar, 500 μm.) (B) Digital image analysis of the vimentin-positive area. *P <
0.05 vs. EV by Bonferroni test after one-way ANOVA. Data are expressed as
mean ± SEM (n = 5 tumors each).
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cytometry (Fig. 3D). PDGF-B mRNA levels also were induced
fourfold by hypoxia in MDA-MB-435, another metastatic BCC
line (Fig. 3B, Lower). HIF DKD in MDA-MB-231 or MDA-MB-
435 cells inhibited PDGF-B mRNA expression at 1% O2 by 56%
and 42%, respectively, relative to EV cells (Fig. 3E). To com-
plement the genetic loss-of-function studies, MDA-MB-231 cells
were exposed to digoxin, which had no effect on PDGF-B
mRNA levels at 20% O2 but inhibited hypoxic induction in
a dose-dependent manner with an IC50 of 65.2 ± 1.2 nM and with
complete inhibition at concentrations ≥100 nM (Fig. 3F).

PDGFB Is a Direct HIF-1 Target Gene.Although previous studies have
shown that PDGF-B mRNA expression is regulated by hypoxia
and HIF-1 in other cell types (24–26), it was not established
whether PDGFB is a direct HIF-1 target gene, which requires the
identification of a HIF-1–binding site within the context of a
functional hypoxia response element. To address this question, we

identified seven matches to the consensus HIF-binding site (HBS)
sequence 5′-[A/G]CGTG-3′ in the human PDGFB gene (HBS1–
7; green triangles in Fig. 3G). To determine whether HIF-1 binds
to any of these sites, we performed ChIP followed by qPCR using
primers spanning the putative HIF-1–binding sites. RPL13A,
which is a gene that is not transactivated by HIF-1, served as
a negative control (Fig. S3A). ChIP revealed significant DMOG-
induced binding of HIF-1α and HIF-1β only to HBS5, which is
located in intron 3 of the PDGFB gene and contains tandem HIF-
1–binding sites (Fig. 3G–I and Fig. S3 A and C). In contrast, ChIP
analysis of DMOG-induced binding of HIF-2α showed no sig-
nificant enrichment at any of the HBSs studied (Fig. S3B).
However, HIF-2α binding to the VEGFA gene, which served as
a positive control, was observed. To determine whether the 39-bp
HBS5 sequence is sufficient to regulate hypoxia-induced tran-
scription of a heterologous gene, we constructed luciferase re-
porter genes containing wild-type HBS5 or a mutant HBS5 in
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Fig. 2. HIF knockdown decreases the density of peritumoral lymphatic vessels. (A) IHC for podoplanin in primary breast cancer orthografts. LVs are stained
brown and are visible at low (Upper Row; scale bar, 500 μm) and high (Lower Row; scale bar, 50 μm) magnification. Values under each column correspond to
mean LV area digitally quantified for EV, 1αKD, 2αKD, or DKD tumors and expressed in thousands of square millimeters. (B and C) IHC of consecutive sections
for human vimentin and podoplanin in the peritumoral region of MDA-MB-231 orthografts (B) or in axillary LNs (C). Invasion of cancer cells (CCs) into an LV
was observed in the primary tumor, and CCs were observed in the vicinity of LVs in metastatic axillary LNs. Positive staining is brown; sections were coun-
terstained with hematoxylin; note the absence of podoplanin staining of a blood vessel (BV). *P < 0.05 vs. EV by Bonferroni test after one-way ANOVA. Data
are shown as mean ± SEM (n = 5).
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Fig. 3. Hypoxia induces HIF-1–dependent PDGFB gene transcription. (A) Hypoxia-induced expression of HIF-1–regulated (gray bars) and prolymphangiogenic
(blue bars) mRNAs in MDA-MB-231 BCCs; mRNA fold change in cells after 24 h at 1% O2 relative to 20% O2 is shown. (B) PDGF-B mRNA levels in BCCs after 24
or 48 h at 20% (red bars) or 1% (blue bars) O2. (C) PDGF-B immunoblot assay of MDA-MB-231 BCCs exposed to 20% or 1% O2 for 24 or 48 h. (D) PDGF-B
expression after exposure of BCCs to DMOG. Numbers indicate mean fluorescence intensity by flow cytometry. (E) PDGF-B mRNA expression in EV and DKD
subclones of MDA-MB-231 and MDA-MB-435. (F) Effect of digoxin on PDGF-B mRNA expression. (G) Location of each candidate HBS in the human PDGFB
gene. (H and I) ChIP assay for HBS5 in cells exposed to vehicle or DMOG using HIF-1α (H) or HIF-1β (I) antibodies. RPL13A was used as a negative control. (J)
Hypoxia response element reporter assay. A wild-type sequence at HBS5 or a mutant sequence containing dual CGT→AAA substitutions was inserted into
a firefly luciferase (Ff) reporter and cotransfected with a control Renilla luciferase (Rn) reporter into cells that were incubated at 20% or 1% O2 for 24 h. The
Ff/Rn ratio was calculated and normalized to 20% O2. (K) HIF-1α, PDGF-B, and podoplanin IHC in consecutive sections of an MDA-MB-231 orthograft.
Deconvoluted images were pseudocolored to localize HIF-1α+ (red), PDGF-B+ (green), and HIF-1α+PDGF-B+ (yellow) BCCs and podoplanin-positive LVs (white).
(Scale bar, 50 μm.) *P < 0.001, 1% vs. 20% O2 in B; *P < 0.05 vs. EV at 20% O2 and

#P < 0.05 vs. EV at 1% O2 in E; *P < 0.001 vs. 20% O2 at corresponding doses
in F; *P < 0.05 vs. vehicle in H and I; *P < 0.05 vs. WT at 20% O2, and

#P < 0.05 vs. WT at 1% O2 in J by Bonferroni test after ANOVA. Data are shown as mean ±
SEM (n = 3–4).
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which the two 5′-ACGTG-3′ sequences (red in Fig. 3G) were
replaced by 5′-AAAAG-3′. Luciferase expression in cells trans-
fected with the reporter containing wild-type HBS5 increased 22-
fold under hypoxic conditions (Fig. 3J), whereas mutation of
HBS5 significantly reduced hypoxic induction, demonstrating that
HBS5 is a functional hypoxia-response element.
If HIF-1 is critical for PDGF-B expression in vivo, then the

proteins should colocalize in breast tumors. To test this hy-
pothesis, we performed immunohistochemical analysis of HIF-1α
and PDGF-B protein expression in MDA-MB-231 orthografts
using consecutive 5-μm sections; this analysis revealed colocali-
zation of HIF-1α and PDGF-B expression (Fig. 3K). Further-
more, HIF-1α+/PDGF-B+ double-positive cells were detected
near podoplanin-positive LVs, suggesting a paracrine effect of
HIF-1→PDGF-B signaling on lymphangiogenesis.

HIF-1→PDGF-B→PDGFRβ Signaling Enhances LEC Proliferation and
Migration. Overexpression of PDGF-B in T241 fibrosarcoma
cells promoted lymphatic metastasis by stimulating LEC migra-
tion and proliferation (22). To evaluate the paracrine role of
PDGF-B expression by BCCs on LVs, we next analyzed the ex-
pression of its cognate receptor. PDGFRβ mRNA was expressed
in human LECs, and exposure of the cells to 1% O2 for 48 h
increased PDGFRβ mRNA levels by more than fourfold (Fig.
4A). Flow cytometry demonstrated PDGFRβ protein on the
surface of LECs, and expression levels were increased signifi-
cantly under hypoxic conditions (Fig. 4B). Treatment of LECs
with digoxin significantly inhibited the hypoxic induction of
PDGFRβ mRNA (Fig. 4A). These data suggest that HIF-de-
pendent induction of PDGFRβ may increase the sensitivity of
hypoxic LECs to PDGF released from hypoxic BCCs. To dem-
onstrate PDGF-BB→PDGFRβ signaling, LECs were treated
with recombinant PDGF-BB protein, which induced phosphor-
ylation of PDGFRβ that peaked at 5–10 min and returned to
baseline levels after 15 min (Fig. 4C). PDGF-BB–induced
phosphorylation of PDGFRβ was decreased significantly when
LECs were cotreated with the tyrosine kinase inhibitor imatinib
(Fig. 4D), as previously reported (5).
To link transactivation of PDGFB by HIF-1 in BCCs (Fig. 3) to

increased LV density in primary breast tumors (Fig. 2), we in-
vestigated whether conditionedmedium (CM) from hypoxic BCCs
exerts a proliferative effect on LECs. CM from hypoxic EV cells
had a greater stimulatory effect on LEC proliferation (assayed by
flow cytometry) than did CM from nonhypoxic cells, but this
hypoxic induction was lost when DKD cells were used as the
source of CM (Fig. 4E). The proliferative effect of hypoxic CM on
LECs also was lost when EV cells were treated with imatinib (Fig.
4E). Hypoxia increases the migration of LECs toward MDA-MB-
231 cells (18). LEC chemotaxis was stimulated by hypoxic CM
from EV cells but not from DKD cells or EV cells treated with
imatinib (Fig. 4F). Treatment of EV cells with neutralizing anti-
body against PDGF-B abrogated the effect of hypoxic CM on LEC
proliferation (Fig. 4G) and migration (Fig. 4H).
To establish definitively the role of PDGF-B expression in the

proliferative and chemotactic effect of hypoxic CM from BCCs,
we transduced MDA-MB-231 cells with lentivirus encoding an
shRNA-targeting PDGF-B (sh576), which blocked the hypoxic
induction of PDGF-B by >80% at the mRNA and protein levels
(Fig. 4 I and J). The proliferative effect of CM from hypoxic EV
cells was not observed when LECs were exposed to CM from
hypoxic sh576 BCCs (Fig. 4K). Loss of the chemotactic effect of
CM from hypoxic BCCs on LECs also was observed when sh576
cells were assayed (Fig. 4L). These results indicate that HIF-1–
dependent PDGF-B expression by BCCs mediates the pro-
liferative and chemotactic effects of hypoxic CM on LECs, which
is dependent on signaling through PDGFRβ phosphorylation,
because it was inhibited by concentrations of imatinib that do not
affect VEGF, EGF, or FGF receptor signaling (27, 28).

HIF-1 or PDGFR Inhibition Decreases Tumor Growth, LV Density, and
LN Metastasis. Because cell-culture data indicated that HIF-1–
mediated PDGF-B expression in BCCs induces proliferation and
migration of LECs, we investigated whether inhibition of HIF-1
or PDGFRβ with digoxin or imatinib, respectively, would de-
crease LV density and LN metastasis after MFP injection of
MDA-MB-231 or MDA-MB-435 cells. HIF inhibition by digoxin
resulted in a 78% reduction in tumor growth (Fig. 5A) and mass
(Fig. S4A), a 47% reduction in peritumoral LV density (Fig. 5B),
and a 94% reduction in ipsilateral axillary LN metastasis (Fig.
5C). PDGF-B knockdown (Fig. S4B) resulted in a 77% reduction
in tumor growth and mass compared with EV cells (Fig. 5D and
Fig. S4C), a 46% reduction in LV density (Fig. 5E), and a 68%
reduction in LN metastasis (Fig. 5F). Thus, HIF-1–dependent
PDGF-B expression in BCCs contributes significantly to peritu-
moral LV density and axillary LN metastasis.

Imatinib Decreases LV Density and LN Metastasis Independently of
Tumor Mass. Imatinib treatment was shown to decrease LV
density in gastric cancer xenografts (21), although effects on LN
metastasis were not analyzed. Imatinib reduced the growth of
MDA-MB 231 and MDA-MB-435 primary tumors by 52% and
58%, respectively (Fig. 5 G and M), peritumoral LV density by
60% and 55% (Fig. 5 H and N), and LN metastasis by 45% and
40% (Fig. 5 I and O). The effects of imatinib on tumor volume
reflected corresponding changes in tumor mass (Fig. S4 D–G).
To exclude any contribution of decreased primary tumor growth
to reduced LN metastasis, we allowed imatinib-treated orthog-
rafts to grow to a similar volume as tumors from saline-treated
mice (Fig. 5 J and P). Peritumoral LV density was decreased by
36% and 31% (Fig. 5 K and Q), and LN metastasis was de-
creased by 38% and 58% (Fig. 5 L and R) in MDA-MB-231 and
MDA-MB-435 orthografts, respectively. Thus, PDGFR in-
hibition blocks LN metastasis independently of effects on pri-
mary tumor growth. Histopathological analysis revealed the
absence of tumor foci in the lungs of the same tumor-bearing
mice, suggesting that lymphatic metastasis precedes vascular
metastasis in this model (Fig. S5).

HIF-1α and PDGF-B Levels Are Correlated with LV Area and Predict
Histological Grade. In light of the evidence from animal studies
that HIF-1–mediated PDGF-B expression in BCCs regulates LV
density and LN metastasis, we sought to extend these findings to
clinical cases of breast cancer. Although a prior study had shown
that HIF-1α and PDGF-B expression are associated in breast
cancer biopsies, histological colocalization was not investigated
(20). We analyzed biopsies of 16 women diagnosed with breast
cancer, whose clinical characteristics are summarized in Table S1.
IHC for HIF-1α and PDGF-B indicated that BCCs in human
invasive ductal carcinoma coexpress HIF-1α and PDGF-B (Fig.
6A). Quantitative digital analysis of signal intensity revealed that
expression of HIF-1α and PDGF-B was linearly correlated in
breast cancer biopsies from patients diagnosed with grade 2 (in-
termediate differentiation) or grade 3 (poorly differentiated)
breast carcinoma, according to the Scarff–Bloom–Richardson
histopathological score (Fig. 6B) (29, 30). Mean signal intensity
increased with histological grade for both HIF-1α (Fig. 6C, Left)
and PDGF-B (Fig. 6C, Right). We digitally quantified the mean
luminal LV area in the same samples subjected to podoplanin
IHC (Fig. 6D) and found that LV area increased as a function
of histological grade (Fig. 6E). Given these data indicating that
HIF-1α and PDGF-B levels and LV area are correlated with
the grade and, therefore, with the progression of human breast
cancers, we modeled the interaction among these variables.
Multiple linear regression analysis showed that HIF-1α and
PDGF-B expression, together with LV area, are linearly corre-
lated and predict the Scarff–Bloom–Richardson histopathological
score (Fig. 6F). Other factors (tissue area, vessel number, or total
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Fig. 5. HIF-1 or PDGF-B inhibition decreases LV area and LN metastasis of BCCs. (A–C) SCID mice received MFP injection of MDA-MB-231 cells and were treated
with digoxin (blue, DIG) or saline (red, SAL). Serial tumor volumes (A), podoplanin-positive peritumoral LV area (B), and vimentin-positive area in axillary LNs (C)
are shown. (D–F) MDA-MB-231 cells stably transducedwith vector encoding shRNAagainst PDGF-B (sh576) or empty vector (shEV)were injected into theMFP, and
tumor volumes (D), podoplanin-positive LV area (E), and vimentin-positive LN area (F) were determined. (G–I) MDA-MB-231 tumor volumes (G), podoplanin-
positive area (H), and vimentin-positive LN area (I) were determined inmice treatedwith imatinib or saline. (J–L) MDA-MB-231 orthografts were grown to similar
mean volumes (J; 830 ± 70 mm3) for quantification of the podoplanin-positive LV (K) and vimentin-positive LN (L) areas. (M–O) MDA-MB-435 tumor volume (M),
podoplanin-positive LV area (N), and vimentin-positive LN area (O) were determined inmice treated with imatinib or saline. (P–R) MDA-MB-435 orthografts were
grown to similar mean volumes (P; 800 ± 48 mm3) for quantification of podoplanin-positive LV (Q) and vimentin-positive LN (R) areas. In A, G, J,M, and P, arrow
indicates initiation of drug treatment. *P < 0.05 by Student’s t test or Bonferroni test after two-way ANOVA. Data are expressed as mean ± SEM (n = 5–8).
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tissue cell number) were not significant predictors in the model
and were eliminated after best-subset regression analysis. Taken
together, the data obtained from patient samples are consistent
with the animal and cell-culture experiments, indicating that HIF-
1→PDGF-B→PDGFRβ signaling plays a critical role in de-
termining LV density and LN metastasis in human breast cancers.

Discussion
Our findings demonstrate the direct involvement of HIFs in the
lymphatic metastasis of breast cancer. We identified PDGFB as
a HIF-1 target gene that is transcriptionally activated in hypoxic
BCCs. Genetic HIF or PDGF-B loss of function resulted in
decreased LN metastasis and decreased peritumoral LV density.
Inhibition of HIF activity or PDGFRβ signaling by treatment of
tumor-bearing mice with digoxin or imatinib, respectively,
mimicked the effect of genetic knockdown in BCCs by signifi-
cantly decreasing LV density and LN metastasis. Moreover, we
found a strong linear correlation between histological grade,
HIF-1α and PDGF-B expression, and LV area in human breast
cancer biopsies. HIF-1α and PDGF-B expression were colo-
calized in 15 of the 16 biopsies analyzed, supporting the clinical
implications of our mouse model.
Previous descriptive studies reported correlations between

HIF-1α expression and VEGF-C, FGF-2, and PDGF-B in breast
cancer (12, 20), gastric carcinoma (21), squamous cell carcinoma
(14, 17), and mesothelioma (31). Importantly, HIF-1α levels had
prognostic value in LN-negative breast carcinomas (13). How-
ever, the molecular mechanisms underlying these clinical
observations were not delineated, and it was not known whether
HIF inhibition could affect lymphatic dissemination of cancer
cells. We show that genetic knockdown of HIF activity in BCCs
resulted in tumors with decreased metastasis to axillary LNs in
vivo and decreased LEC chemotaxis toward CM from BCCs ex
vivo. Peritumoral LV density also was impaired in vivo along
with decreased proliferation of LECs in response to CM from
BCCs ex vivo, thus demonstrating that HIF activation is critical
for lymphovascular dissemination.
Screening of genes encoding lymphangiogenic members of the

VEGF, FGF, IGF, and PDGF families revealed that only
VEGF-A and PDGF-B expression was induced by hypoxia in
MDA-MB-231 and MDA-MB-435 BCCs. Analysis of candidate
hypoxia response elements in the PDGFB genomic sequence,
including a candidate in the 5′-flanking sequence that previously
was found to be nonfunctional (25), revealed that HIF-1, but not
HIF-2, binds selectively to a site in intron 3 to activate PDGFB
transcription, thereby delineating the molecular mechanism un-
derlying previous observations of HIF-1–dependent induction of
PDGF-B in hypoxic cells (24, 32, 33). Because coexpression of
HIF-1α and PDGF-B in BCCs was required to establish the
relevance of our findings, we confirmed that PDGF-B+ cells in
breast cancer orthografts were also HIF-1α+. In addition, HIF-
1α+PDGF-B+ cells were in close proximity to LVs, a result that
is consistent with a paracrine effect of PDGF-B on peritumoral
LVs. Our data confirm previous chemotactic and proliferative
effects of PDGF-B on LECs in addition to the effect of PDGF-B
in promoting intratumoral lymphangiogenesis and lymphatic
metastasis (22) and indicate that PDGF-B is a major down-
stream effector of HIF-1 in the stimulation of LECs by hypoxic
BCCs. Despite the absence of HIF-2 binding to the PDGFB
gene, HIF-2α loss of function impaired LN metastasis and lym-
phangiogenesis in MDA-MB-231 orthografts, suggesting that
additional HIF target genes contribute to the lymphatic metas-
tasis of breast cancer cells. VEGF-A stimulates lymphangio-
genesis and lymphatic metastasis as well as angiogenesis (34–36).
Although VEGF-A expression also was induced by hypoxia in
BCCs, genetic knockdown of PDGF-B expression was sufficient

to decrease LV density and LN metastasis. However, VEGF-A,
as well as VEGF-C and other factors that are constitutively
expressed in BCCs, also may contribute to LN metastasis.
Pharmacological inhibition of HIF activity or PDGF signaling

using digoxin or imatinib, respectively, decreased primary tumor
growth, LV density, and LN metastasis following MFP injection of
MDA-MB-231 or MDA-MB-435 cells, which are derived from
triple-negative breast cancers that lack expression of the estrogen,
progesterone, and HER2 receptors and respond poorly to cur-
rently available therapies (37). These data suggest that HIF in-
hibition and PDGFRβ blockade represent candidate strategies to
reduce primary tumor growth and lymphatic dissemination, which
in turn should reduce metastatic disease and mortality in breast
cancer. Furthermore, we have reported previously that digoxin
potently inhibits breast cancer metastasis to the lungs via blood
vessels (10, 11). However, the translational implications of the
current study should be interpreted with caution, because imatinib
also blocks PDGFRβ signaling in vascular pericytes, an effect that
impaired vessel stability, increased tissue hypoxia, and facilitated
hematogenous metastasis in a 4T1 mouse breast cancer model in
which rapid tumor growth occurs, bypassing regional LN dissem-
ination (38). In addition, imatinib is not a specific PDGFRβ in-
hibitor, because it impairs signaling through other tyrosine kinases
in a concentration-dependent manner (27, 28). Thus, imatinib
could have countertherapeutic effects in breast cancers that me-
tastasize primarily through the hematogenous route or in late-stage
cancers in which lymphatic dissemination already has occurred.
Notably, our clinical data revealed coexpression of HIF-1α

and PDGF-B in invasive breast carcinomas, and this coex-
pression correlated with LV area and histological grade
according to the Scarff–Bloom–Richardson scale, which in turn
is an important predictor of patient survival and response to
chemotherapy (29, 30, 39). Data obtained from patient samples
are, by their nature, usually correlative, but they provide im-
portant confirmation that the results we obtained from mouse
orthograft and cell-culture models are clinically relevant. Taken
together, our results suggest a critical role of HIF-1→PDGF-
B→PDGFRβ signaling in lymphangiogenesis in intermediate to
poorly differentiated invasive breast cancers and warrant addi-
tional studies with larger sample sizes to evaluate further the
prognostic and therapeutic implications of these findings. Spe-
cifically, our results suggest that HIF-1α and PDGF-B coex-
pression may identify LN-negative breast cancer patients who
are at high risk for LN metastasis and might benefit from
treatment with drugs targeting one or both of these factors.

Materials and Methods
The following experimental procedures are described in SI Materials and
Methods: orthotopic transplantation of human breast cancer cells, cell cul-
ture, immunoblot assays, reverse transcription and quantitative real-time
PCR, flow cytometry and cell-cycle analysis, ChIP, histopathology, immuno-
histochemistry, analysis of clinical breast cancer specimens, digital image
analysis, shRNA expression, migration assay, luciferase reporter assay, and
statistical analyses. Clinical characteristics of 16 women diagnosed with
breast cancer, whose biopsies were analyzed by immunohistochemistry, are
presented in Table S1. The nucleotide sequences of primers that were used
for quantitative PCR after reverse transcription of mRNA are presented in
Table S2. The nucleotide sequences of primers used for quantitative PCR
after chromatin immunoprecipitation are presented in Table S3.
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