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Abstract
Background—Non-exercise algorithms are cost-effective methods to estimate cardiorespiratory
fitness (CRF) in healthcare settings. The limitation of current non-exercise models is that they
were developed with cross-sectional data.

Purpose—To extend the non-exercise research by developing algorithms for men and women
using longitudinal data on indicators available in healthcare settings.

Methods—The sample included 1325 women (aged 20–78 years) and 10,040 men (aged 20–86
years) who completed from two to 21 maximal treadmill tests between 1977 and 2005. The data
were analyzed in 2011 and 2012. The dependent variable was CRF measured by treadmill test.
The independent variables were age, body composition (percentage fat or BMI); waist
circumference, self-reported physical activity; resting heart rate; and smoking behavior.

Results—Linear mixed-models regression showed that all variables were independently related
to CRF. There was a positive association between CRF and physical activity. Higher levels of
body composition were linked to lower CRF. High resting heart rate and smoking resulted in
lower estimates of CRF. The error estimates of the percentage fat algorithms were: women, 1.41
METs (95% CI=1.35, 1.47); and men, METs 1.54 (95% CI=1.51, 1.55). The BMI models were
somewhat less accurate: women, METs 1.51 (95% CI=1.45, 1.58); and men, 1.66 METs (95%
CI=1.63, 1.68).

Conclusions—These results showed that the CRF of women and men can be estimated from
easily obtained health indicators. The longitudinal non-exercise algorithms provide models to
accurately estimate CRF changes associated with aging and provide cost-effective algorithms to
track CRF over time with health indicators available in healthcare settings.

Introduction
Low cardiorespiratory fitness (CRF) is associated with increased risk of cardiovascular
disease, type 2 diabetes and all-cause mortality.1–12 Unlike other important risk factors, CRF
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is not routinely measured in most healthcare or fitness settings. Measuring CRF requires
trained personnel to administer a maximal or submaximal exercise test using specialized
equipment. The most valid measure of CRF is a maximal exercise test with oxygen
consumption measured by indirect calorimetry. A common alternative is a submaximal test
in which maximal oxygen uptake (VO2max) is estimated from heart rate response to
submaximal exercise.13,14 With the publication of non-exercise algorithms, it is now
feasible to estimate CRF without administering an exercise test.15–24

The non-exercise method estimates CRF using health indicators typically available in
healthcare settings. The variables used include age and gender in combination with body
composition, and self-reported physical activity. The concurrent validity correlations for the
first published non-exercise equations17 ranged from 0.78 to 0.81 and the SEs of estimate
(SEE) ranged from 1.51 to 1.60 METs (5.3 to 5.6 ml/kg/minute). The non-exercise estimates
were found to be more accurate than commonly used submaximal CRF estimates of
maximal capacity.13 Post hoc analysis revealed that the non-exercise models accurately
estimated the CRF of individuals who had a positive exercise electrocardiogram (ECG) or
were taking hypertension medication. Several investigators15–24 have published non-
exercise algorithms.

The advantage of the non-exercise method is that it makes it possible to estimate a patient’s
CRF with reasonable accuracy using health indicators commonly available in field and
healthcare settings. Published non-exercise algorithms have two limitations. First, the non-
exercise algorithms were developed with cross-sectional data. Although non-exercise cross-
sectional models provide accurate estimates at the population level, the accuracy of the
cross-sectional models to estimate CRF changes is not known. Second, age was included as
a linear term in the cross-sectional models and recent longitudinal data25,26 demonstrated
that CRF declines at a nonlinearly with aging. In the current study, these two limitations
were addressed. The purpose was to develop longitudinal non-exercise algorithms for men
and women that estimated CRF changes associated with aging.

Methods
Study Population

The sample included 1325 women and 10,040 men who completed at least two
comprehensive medical examinations at the Cooper Clinic in Dallas TX between 1977 and
2005. The women ranged in age from 20 years to 78 years and the men from 20 years to 86
years. The women completed 2–14 tests (M=2.9) for a total of 3816 observations; and 25%
completed three or more tests, and 5% did six or more. The men completed 2–21 tests
(M=3.9) for a total of 38,716 observations; 25% of the men completed four or more tests,
and 5% did nine or more. All participants had normal resting or exercising ECGs, a BMI
≥18.5, and were able to reach 85% of their age-predicted maximal heart rate during the
exercise tests. Those who reported a history of myocardial infarction, stroke, or cancer were
excluded. Patients with physician-diagnosed diabetes or those who used insulin were also
excluded. The patients were relatively healthy women and men.

Participants came to the clinic for periodic preventive health examinations and for
counseling regarding diet, exercise, and other lifestyle factors associated with increased risk
of chronic diseases. Participants were unpaid volunteers and were not recruited to the study.
Many were sent by their employers for the examination, some were referred by their
physicians, and others were self-referred. Participants were predominantly white, well-
educated, and of middle and upper SES; all had access to health care.
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Because individuals were excluded if they had major chronic diseases, failed to achieve at
least 85% of their estimated maximal heart rate on the treadmill test, or had abnormal
exercise tests, the study population was healthier than the general population. Participants
signed an informed consent for the clinical examinations and follow-up, and the study was
reviewed, approved and had ethical approval from the IRB of the Cooper Institute. A
detailed description of the Aerobics Center Longitudinal Study (ACLS) cohort with multiple
tests is provided in other sources.8,25

Clinical Examinations
The clinical examinations were completed after an overnight fast of at least 12 hours and
included a physician examination, clinical evaluations such as blood chemistry analyses and
blood pressure measurements, questionnaires on personal health history and smoking
behavior, and a maximal treadmill exercise test. Smoking status (current smoker or not), and
physical activity habits were obtained from a standardized questionnaire. Height and weight
were measured on a physician’s scale and stadiometer. BMI was computed by standard
formula from measured height and weight. Waist circumference was measured level with
the umbilicus. Percentage fat was measured by either hydrostatic weighing27 or skinfold
thickness28,29; 22% of women and 49% of men had hydrostatic data. The method used to
measure percentage fat is described in detail elsewhere.30

Cardiorespiratory fitness was quantified as the duration of a symptom-limited maximal
treadmill exercise test using a modified Balke protocol.31 Patients were encouraged to give
maximal effort, and the test endpoint was volitional exhaustion or termination by the
physician for medical reasons. The mean (±SD) percentage of age-predicted maximal heart
rate achieved during exercise was 103.6% (±6.5%). The speed and elevation of the final
minute of the treadmill test was used to convert treadmill performance to METs using the
American College of Sports Medicine (ACSM) equation.32 Exercise treadmill duration on
this protocol with adults is highly correlated (r ≥0.92) with measured peak oxygen
uptake.33,34

Self-reported aerobic exercise (physical activity) was assessed with a five-level physical
activity index (PAI) based on patient response to questions in the medical history
questionnaire about their regular physical activity habits during the past 3 months.35,36 If
participation in an activity was reported, the patient was asked to provide additional
information about the type of activity, number of times per week, duration of each exercise
session, and distance or time spent in the activity. Table 1 provides the ACLS criteria used
to define the individual’s PAI. Walking and jogging were chosen as the basis for the PAI
used herein because it was the most common activity for this population. The PAI data were
treated as a categoric variable; the referent category was PAI 0: “no regular activity.”

The five-level model was used to develop a second physical activity variable defined as
inactive and active. Active was walking or jogging ≥10 miles per week.37,38 The referent for
the two-level model was “inactive.” The guide for the inactive and active criteria was the
DHHS consensus exercise recommendation of “at least 150 minutes of moderate-intensity
aerobic activity (i.e., brisk walking) every week.38 Assuming that individuals walked at a
rate of 3.3 mph, walking or jogging ≥10 miles per week represents aerobic exercise of ≥200
minutes per week. The active category is slightly higher than the DHHS consensus
recommendation of “at least 150 minutes of moderate-intensity aerobic activity (i.e., brisk
walking) every week.”
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Statistical Analyses
Linear mixed-models (LMM) regression using a random longitudinal growth model was
used to analyze the data.39,40 Stata 12 xtmixed program was used for all LMM analyses,
which were completed in 2012. The dependent variable was CRF scaled in METs. The
independent variables were age, age,2 body composition, physical activity, resting heart rate,
and smoking behavior.

Combinations of independent variables were used to develop four gender-specific prediction
models. The models included percentage fat or BMI and either the five-level or two-level
physical activity variables in combination with the other independent variables. Each
regression coefficient was tested with a z-statistic to determine if it was different from 0.
Only variables with regression weights significantly greater than 0 were included in the
model. The accuracy of the non-exercise models was defined by the SEE for the fixed
model, which was computed as the square root of the sum of the random intercept and
residual variances.39–41

Results
Table 2 provides the descriptive statistics for the women and men at their first test (baseline)
and for all tests (total observations). Ages ranged from 20 years to 78 years for women and
from 20 years to 86 years for men. The data exhibited the well-documented gender
differences in body composition and CRF. The mean CRF of men was about 20% higher
than that for women, and the mean percentage fat of women was about 6% higher than that
for men. The total observations in Table 2 showed that 25% of women and 31% of men
walked or jogged ≥10 miles per week. The percentage of men who reported that they
currently smoked was 11.3% compared to 6% for women.

The first step was to examine and define the linearity of longitudinal change in CRF with
aging. Figure 1 provides the linear and quadratic LMM age-CRF regression lines for women
and men. The analyses found that the relationship was not linear but quadratic (p<0.001).
Figure 1 shows that at about age 45 years, CRF of both women and men started to decline,
and the trajectory of change accelerated with aging. After about age 60 years, the linear
model systematically underestimated the quadratic trend, and this bias increased with aging.

Tables 3 and 4 provide the women and men’s longitudinal non-exercise algorithms and the
SEE (95% CI). Provided are four, gender-specific prediction models that include percentage
fat or BMI and either the five-level or two-level physical activity variables in combination
with waist circumference, resting heart rate, and smoking behavior. All regression
coefficients were significant (p<0.001).

Although the women’s and men’s models exhibited the same general trend, the SEE of
women’s models was lower (0.13 METs vs 0.16 METs) than that for the men’s models.
There was an inverse relationship between CRF and resting heart rate and body
composition. The significant relationship between CRF and the physical activity variables
was positive. Each of the physical activity coefficients for the five-level models was
different from 0, the referent. The two-level models (inactive, active) were slightly less
accurate (≈0.02 METs) than the five-level physical activity models. The most accurate
models were those that included percentage fat and the five-level physical activity variables.
The SEEs of the percentage fat models were ≈0.10 METs lower than those for the BMI
models.
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Discussion
These results established that CRF could be estimated by modeling longitudinal health
indicators typically measured at fitness and healthcare settings. The error estimates of the
algorithms ranged from 1.41 to 1.69 METs, within the range reported with cross-sectional
models.15–24 The percentage fat and the five-level physical activity algorithms were more
accurate than the BMI models, but BMI has greater utility, as percentage fat estimates are
often not available in healthcare settings. The error estimates for the BMI models were
≈0.12 METs higher than those for the percentage fat algorithms.

A new finding was that the models that used the two-level, inactive–active scale were nearly
as accurate as the five-level physical activity scale. The advantages of the inactive–active
scale are that it provides an easier method to estimate physical activity and is consistent with
the level of aerobic activity recommended for American adults.38 These longitudinal
analyses revealed that waist circumference, resting heart rate, and smoking behavior were
predictors of CRF, independent of gender, age, physical activity, and body composition,
which are the variables that comprise cross-sectional models.15–24 Because of the well-
documented gender differences in body composition28,29 and the large sample sizes, gender-
specific longitudinal algorithms were developed. The error estimates for the women’s
models were ≈0.13 METs lower than those for the men, which has been reported with cross-
sectional models.17,21

An important aspect of this study was the use of serial data and statistical modeling to build
the longitudinal algorithms. Cross-sectional algorithms use age and CRF as a linear
relationship.15,17,21–23 These longitudinal results are consistent with published data 25, 26

showing that the trend for measured CRF is quadratic, not linear. Figure 1 documents the
bias. At age 70 years, the quadratic trend was ≈0.75 METs lower than the linear estimate,
and the systematic bias grew to ≈2 METs at age 80 years, and over 3 METs for men aged 85
years. A likely reason for the linearity difference between cross-sectional and longitudinal
analyses is that the upper age limit of the cross-sectional subjects was ≤70 years, whereas
the age ranges for these ACLS samples were 20–78 years for women and 20–86 years for
men.

Although cross-sectional models15–24 provide accurate estimates of CRF at the population
level, they do not furnish information concerning the model’s utility to assess changes in
CRF. Since the serial tests were the random part of the modeled data, the LMM algorithms
give unbiased estimates of changes in CRF with aging. The residuals (measured CRF–
estimated CRF) of all models were contrasted by age (Appendix A, available online at
www.ajpmonline.org). The bivariate graph documented that slopes of the age by residual
regressions lines did not differ from 0 (p>0.05), and the residuals for both the fixed and
random models were evenly distributed across the age range studied. An important feature
of these longitudinal findings over cross-sectional models15– 24 is that the algorithms can be
used to track fitness over time with health indicators commonly available in healthcare
settings.

Measured CRF is a strong independent predictor of all-cause and cause-specific mortality in
asymptomatic individuals as well as those with existing metabolic or cardiovascular
disease.1,2,4,6–8,11,12,36,37,42 Although the relationship between measured CRF and health
risk is well documented, the validity of non-exercise CRF to estimate health risk is just
starting to evolve. Stamatakis43 reported that non-exercise CRF18 was associated with all-
cause and CVD mortality in men and women aged 35–70 years in the United Kingdom.
Although research documenting health risk with non-exercise CRF is lacking, there is
evidence linking variables that comprise non-exercise algorithms to health risk.
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Numerous investigators7–9,44–47 have linked obesity to health risk. Talbot and associates12

examined the associations between self-reported leisure-time physical activity and VO2peak
with the risk of coronary events in healthy younger (aged ≤65 years) and older (aged ≥65
years) men. They reported that for younger men, higher CRF, but not physical activity, was
associated with a reduced risk of coronary heart disease. In older men, both high-intensity
(≥6 METs) leisure-time activity and measured CRF reduced coronary risk. In a longitudinal
study of men and women without documented cardiovascular disease (CVD) at baseline,
Nauman et al.48 reported that an increase in resting heart rate over 10 years was associated
with all-cause and heart-disease mortality. Mailey et al.20 reported that aggregated
cardiovascular disease conditions reported by older men and women (aged ≥60 years) were
inversely associated with non-exercise estimated fitness.

The major strengths of this study are the use of large samples of women and men with serial
data measured across the adult life span and CRF measured with a maximal exercise test.
LMM is an ideal method to model longitudinal data because it accommodates unbalanced,
unequally spaced observations over time.39,40 Compared to published cross-sectional
algorithms,15–24 the advantages of the longitudinal models are that the gender-specific
algorithms: (1) account for the quadratic aging trend; (2) provide unbiased estimates of
changes in CRF with aging; and (3) included smoking, waist circumference, and resting
heart rate as independent variables. To our knowledge, these are the only longitudinal non-
exercise models currently available to estimate CRF, and they provide a cost-effective
method to track fitness over time.

The ACLS consisted mostly of white patients who were well educated, of middle and upper
SES, and had access to health care. Although the overall ACLS cohort is similar to the
general population for many risk factors, the multi-visit cohort studied is more fit than the
overall ACLS cohort.49 The mean CRF of the overall ACLS cohort, aged 40–49 years, was
8.3 METs for women and 10.9 METs for men,1 about 2 METs lower than for these multi-
visit men and women. Lee and associates9 reported that changes in measured CRF were
associated with health risk over 11.4 years of follow-up of ACLS men who had at least two
medical examinations. To further validate these longitudinal models, research is needed to
determine if the algorithms identify health risk when applied to patients who differ in race
and have major chronic diseases.

Finally, research is needed to determine if the longitudinal algorithms predict health risk and
if changes in non-exercise CRF are associated with health risk.

Table 5 illustrates scenarios that apply the algorithms to estimate CRF from clinical data. It
is cumbersome to make these calculations by hand and it is recommended that it be
accomplished using computer technology. The scenarios illustrate the basic calculations of
the models that differ in body composition, physical activity and gender. Provided next are
suggestions designed to integrate the algorithms with existing computer technology.

1. Select the equations that are most suitable for a clinical setting.

2. Develop a computer database to enter and store the clinical variables. Designing
software or using commercial database software such as Microsoft Excel can
accomplish this.

3. Program the database to estimate CRF using the selected equation.

4. Provide a means to put the CRF estimates into a report that can be the focus of
individual counseling on current level of fitness, and if serial measures are
available, changes in fitness over time.
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In summary, the longitudinal non-exercise models are cost-effective algorithms with
functions to estimate CRF. The longitudinal prediction models account for the nonlinear
age–CRF relationship and provide unbiased estimates of changes in CRF. The longitudinal
algorithms provide a cost-effective method to track changes in CRF with health indicators
available in fitness and healthcare settings.
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Figure 1.
The linear and quadratic LMM regression lines for women and men
Note: The linear model defined the yearly decline in CRF at −0.0545/year for women and
for men, −0.0767/year. The LMM quadratic models are: women, CRF=8.2475 + (age ×
0.1391) − (age2 × 0.0020); and men, CRF=11.0850 + (age × 0.1378) − (age2 × 0.0022).
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Table 1

Criteria for defining level of physical activity for the previous 30 days

Physical activity index Five-level physical activity criteria Two-level physical
activity criteria

0 No regular activity 0 Inactive

1 Other: Participated in some other regular physical activity such as bicycling,
swimming, racquet sports, and other strenuous sports, but not walking or
jogging

2 Low: Walked or jogged <10 miles per week

3 Moderate: Walked or jogged 10–20 miles per week 1 Active

4 High: Walked or jogged >20 miles per week
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Table 3

Longitudinal algorithms for estimating maximal CRF (METs) for women

Model Women’s equations SE estimate (95%
CI)

Percentage fat
 Five-level

CRF(METs) = 13.4967 + (Age × 0.1200) − (Age2 × 0.0017) − (%fat × 0.0817) − (WC × 0.0140) −
(RHR × 0.0342) + (PAI-1 × 0.2402) + (PAI-2 × 0.2735) + (PAI-3 × 0.7432) + (PAI-4 × 1.0346) −
(CS × 0.3207)

1.41 (1.35, 1.47)

 Two-Level CRF(METs) = 13.7415 + (Age × 0.1223) − (Age2 × 0.0018) − (%fat × 0.0819) − (WC × 0.0141) −
(RHR × 0.0349) + (Active × 0.6061) − (CS × 0.3188)

1.43 (1.37, 1.49)

BMI
 Five-level

CRF(METs) = 14.5493 = (Age × 0.1136) − (Age2 × 0.0016) − (BMI × 0.1500) − (WC × 0.0088) −
(RHR × 0.0359) + (PAI-1 × 0.2091) + (PAI-2 × 0.2275) + (PAI-3 × 0.7021) + (PAI-4 × 1.0070) −
(CS × 0.3005)

1.51 (1.45, 1.58)

 Two-level CRF(METs) = 14.7873 = (Age × 0.1159) − (Age2 × 0.0017) − (BMI × 0.1534) − (WC × 0.0088) −
(RHR × 0.0364) + (Active × 0.5987) − (CS × 0.2994)

1.53 (1.47, 1.59)

%fat, percentage body fat; CRF, cardiorespiratory fitness; CS, currently smoke; PAI, physical activity index; RHR, resting heart rate; WC, waist
circumference
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Table 4

Longitudinal algorithms for estimating maximal CRF (METs) for men

Model Men’s Equations SE estimate (95%
CI)

%fat
 Five-level

CRF(METs) = 17.7357 + (Age × 0.1620) − (Age2 × 0.0021) − (%fat × 0.1057) − (WC × 0.0422) −
(RHR × 0.0363) + (PAI-1 × 0.2153) + (PAI-2 × 0.3655) + (PAI-3 × 0.8092) + (PAI-4 × 1.1989) −
(CS × 0.4378)

1.54 (1.51, 1.55)

 Two-level CRF(METs) = 18.1395 + (Age × 0.1662) − (Age2 × 0.0022) − (%fat × 0.1077) − (WC × 0.0431) −
(RHR × 0.0380) + (Actve × 0.6429) − (CS × 0.4339)

1.56 (1.54, 1.59)

BMI
 Five-level

CRF(METs) = 20.8013 + (Age × 0.1610) − (Age2 × 0.0022) − (BMI × 0.2240) − (WC × 0.0334) −
(RHR × 0.0375) + (PAI-1 × 0.2163) + (PAI-2 × 0.3447) + (PAI-3 × 0.7877) + (PAI-4 × 1.1961) −
(CS × 0.4306)

1.66 (1.63, 1.68)

 Two-level CRF(METs) = 21.2870 + (Age × 0.1654) − (Age2 × 0.0023) − (BMI × 0.2318) − (WC × 0.0337) −
(RHR × 0.0390) + (Active × 0.6351) − (CS × 0.4263)

1.69 (1.67, 1.72)

%fat, percentage body fat; CRF, cardiorespiratory fitness; CS, currently smoke; PAI, physical activity index; RHR, resting heart rate; WC, waist
circumference
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