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Abstract
This article presents an overview of advanced MRI techniques using contrast media in
neuroimaging, focusing on T2*-weighted dynamic susceptibility contrast MR imaging (DSC-
MRI) and T1-weighted dynamic contrast-enhanced MR imaging (DCE-MRI). Image acquisition
and data processing methods as well as their clinical application in brain tumors, stroke, dementia
and multiple sclerosis are discussed.
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Introduction
Contrast agent injection is essential to characterize abnormalities in neuroimaging (see
theprevious articles in this issue). However, contrast-enhancement is non-specific reflection
of blood brain barrier (BBB) disruption. The injection of gadolinium-based contrast agents
(GBCAs) allows characterization of the brain’s hemodynamic processes - brain perfusion-
and the BBB leakage-permeability. It is now recognized that advance MR imaging
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techniques, such as those used to study perfusion and permeability, provide physiologic
rather than simply morphologic data obtained with conventional MRI (1).

Dynamic contrast imaging could be separate in two main categories according to the
contrast agent properties: the dynamic susceptibility contrast imaging (DSC-MRI) using T2-
or T2*- weighted imaging and the dynamic relaxivity contrast-enhanced MRI imaging
(DCE-MRI) using T1-weighted relaxivity imaging. Both perfusion and permeability
measurements could be extracted from these two technique categories, but DSC-MRI is
commonly referred to as “perfusion” imaging and DCE-MRI is commonly referred to as
“permeability” imaging. DSC-MRI is the most utilized technique in clinical imaging of
brain tumor and stroke. This technique can provide hemodynamic metrics such as cerebral
blood flow (CBF), cerebral blood volume (CBV), and mean transit time (MTT). Compared
to DSC-MRI, DCE-MRI has experienced relatively less widespread use, likely owing to
more stringent acquisition and complex requirements to explore BBB permeability.

The aim of this review is to give an overview of the basic principles and common
neuroimaging applications of these two advanced techniques using contrast media.

Imaging Technique
Perfusion: DSC-MRI

Principle—DSC-MRI, also known as perfusion-weighted MR imaging (PWI), MR
perfusion (MRP) or bolus-tracking MRI, is a technique to track the first-pass of an
exogenous, paramagnetic, non-diffusible contrast agent, typically a GBCA through the
tissue. Since it was first described by Villringer et al. in 1988 (2), DSC-MRI has emerged as
a dominant method to study the brain microvascular component. To record the signal loss
due to susceptibility effects during the first passage of a GBCA through the tissue of
interest, T2 or T2*-weighted images should be dynamically acquired at a rate faster than the
time it takes the bolus to pass through the tissue. With the application of tracer kinetic
models for intravascular tracers and the use of the central volume theorem, the major
perfusion parameters cerebral blood volume (CBV), cerebral blood flow (CBF) and mean
transit time (MTT), can be estimated (Figure 1) (3,4).

Images acquisition—A single-shot echo planar imaging (EPI) is generally used because
it provides a means for very rapid image acquisition. EPI is generally performed in
conjunction with multislice gradient-echo (GRE) or spin echo (SE)-EPI techniques. GRE-
EPI methods (T2*-weighted images) are able to provide better spatial coverage of the brain,
are sensitive to both large and small vessels with better signal-to-noise ratio, and require half
the dose of a GBCA compared with multislice SE (T2-weighted images). Compared with
GRE, SE techniques appear to be more sensitive to smaller vessels (capillaries) and have
less image distortion and artifacts at the brain-bone interface (5,6). Despite these advantages,
studies have borne out that GRE sequences are superior in their ability to predict glioma
grade than SE sequences (7,8). Even if combination of both techniques have been reported
(6), the GRE-EPI method is the most widely utilized technique. Both 2D EPI and 3D
sequences are used, however, 2D sequences are usually preferred compared because of their
ability to achieve better spatial resolution, shorter TRs and provide a more accurate
characterization of bolus passage (9). The typical acquisition time for the first pass T2* DSC
MRI acquisition is on the order of 90 seconds. A temporal resolution on the order of 1-2
seconds is desired to obtain the correct shape of the concentration-time curve. The
recommended matrix resolution is 128 × 128. Slice thickness could range between 2 to 5
mm depending on the need for whole brain volume coverage. A combination of a phase-
array coil and parallel imaging, in particular at 3T, offers a good compromise in the quality
of images (10).
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Injection protocol—A GBCA bolus injection should commence within 20 seconds after
the start of the T2* DSC sequence to establish a precontrast baseline. A power injector is
used to inject at a minimum rate of 4 mL/sec, followed by a saline flush at the same rate,
through an 18–22 gauge peripheral intravenous line. A 0.1 mmol/kg dose of GBCA is
generally recommended. When the possibility of contrast agent extravasation exists, i.e.
evaluation of brain tumors, a preload-correction approach is recommended (11). While the
optimal amount of pre-load dosing of GBCA is not entirely clear, work by Hu et al. found
that at 3T, pre-load dose of 0.1 mmol/kg administered 6 minutes before the DSC acquisition
injection appeared to provide correction for leakage effects and to obtain the highest
accuracy of CBV (12). If combined permeability and perfusion MRI is being performed,
then it is recommended that the dose be split into 2 equivalent 0.05 mmol/kg doses (13).

There is no clear consensus in the choice of Gd contrast agent. High relaxivity contrast
agents such as gadobenate dimeglumine allows high-quality (rCBV) maps (14). Gadobenate
dimeglumine and high concentration GBCA gadobutrol give similar high-quality perfusion
maps at dose of 0.1 mmol/kg at 1.5T (15). Whereas at 3T, gadobutrol seems to offer
advantages over gadobenate dimeglumine (16). A recent study concluded that DSC-MRI
with a blood pool agent such as ferumoxytol may provide a better monitor of tumor rCBV
than DSC-MRI with gadoteridol (17).

Image processing—First, the GBCA concentration-time curve is calculated based on the
susceptibility signal intensity-time curve. GBCA concentration is assumed to be
proportional to the change in relaxation rate ΔR2* (or ΔR2 if SE sequence is used) which
can be calculated from the signal intensity (18) via the equation (1):

(1)

Where S(t) is the signal intensity in the voxel at time t and S0 is the baseline signal intensity
before the bolus arrives.

A gamma-variate function is then generally fitted to the curve to eliminate contribution of
tracer recirculation (19).

The most common processing methods used in clinical work give qualitative parametric
maps assuming a constant arterial input function in all the pixels. rCBV (is calculated from
the area under the curve, rMTT from the first moment of the measured efflux concentration-
time curve (i.e. the weighted arithmetic mean of the time values represented in the
concentration-time curve), and rCBF equal to rCBV/rMTT according to the central volume
principle (20). These maps do not afford quantitative assessment of brain hemodynamics,
but provide indicators of hemodynamic disturbances that are very useful in a clinical setting.
They can be interpreted visually or semi-quantitatively by calculating the ratio or difference
between the values in a ROI placed in the abnormal area and a contralateral ROI placed in
the area considered as a normal reference.

To quantitatively determine CBF (mL/100 g/min) and MTT (sec), the arterial input
function (AIF) must be known to correct for bolus delay and dispersion. Following
deconvolution of the concentration-time curve with the AIF, MTT and CBF can be
determined from the tissue residue function: CBF is the peak of the residue function and
MTT is the weighted arithmetic mean of the time of transit values (20–22). CBV (in mL/
100g) is then equal to CBF × MTT according to the central volume principle.

As opposed to the relationship between attenuation and contrast agent concentration in CT
perfusion, there may not always exist a linear relationship between MR signal intensity and
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tissue contrast agent concentration in DSC-MRI (23). In clinical context, this non-linear
relationship is often ignored and this can lead to substantial errors in absolute quantification
of DSC-MRI (24).

Permeability: DCE-MRI
Principle—DCE-MRI is employed to characterize the functional integrity of the BBB via
estimation of microvascular permeability parameters. During T1-weighted DCE-MRI, the
contrast agent accumulation results in T1-shortening and positive enhancement. Through
pharmacokinetic modeling of contrast agent accumulation into the extravascular-
extracellular space (EES), a number of parameters can be determined (Figure 1) (25):

- Transfer constant (Ktrans), frequently called vascular permeability, is a
combination of capillary wall permeability surface area product per unit volume
volume of tissue (PS), and capillary blood flow (F)

- Volume of the EES per volume of tissue (ve)

- Fractional blood-plasma volume (vp)

- Rate constant between EES and blood plasma (kep, where kep = Ktrans/ve).

Image acquisition—Baseline T1 mapping is performed prior to the acquisition of the
dynamic contrast-enhanced images. This is necessary to apply pharmacokinetic modeling
because the relationship between the measured signal intensity and contrast agent
concentration is non-linear (26). The most commonly used method is a multiple flip angle
gradient echo acquisition but inversion or saturation recovery techniques could also be used
(27,28).

Then rapid repeated T1-weighted images are acquired before, during and after bolus GBCA
administration for several minutes. This is commonly performed using gradient echo
sequence (SPGR, MPRAGE, VIBE) that provides adequate compromise between temporal
resolution, volume coverage and sensitivity to T1 effects (29). Although 2D sequences could
be used, 3D sequences are the preferred technique due to its better signal-to-noise-ratio and
less severe distortions.

The acquisition time for the dynamic acquisition should be at least 3–5 minutes, and a
temporal resolution of between 3.5 to 6 seconds would be optimal. The recommended
matrix resolution is 128 × 128. Slice thickness could range between 2 to 7 mm depending on
the need for volume coverage. To improve temporal and/or spatial resolution, parallel
imaging methods or other undersampling methods, as highly constrained back-projection, or
compressed sensing methods can be used (30,31).

Injection protocol—GBCA bolus injection should commence within 20 seconds after the
start of the T1 DCE sequence to establish a pre-contrast baseline. A power injector is used to
inject through an 18–22 gauge peripheral intravenous line, at a rate of 2 to 5 mL/sec,
followed by a saline flush at the same rate. A 0.1 mmol/kg dose of contrast agent is
generally recommended. If combined permeability and DSC-MRI is being performed, then
it is recommended that the dose be split into two equivalent 0.05 mmol/kg doses followed
by a 10 cc saline flush.

Image processing—Many methods have been described to analyse DCE-MRI, from
simple measurement of MR signal changes to physiological methods using pharmacokinetic
models.
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Descriptive methods examine simple descriptions of the signal intensity-time curve like
percentage of enhancement, curve shape, wash-in and wash-out slopes, or time to 90%
enhancement (T90) (32). To improve reproducibility and repeatability, determination of the
contrast-concentration curve could be derived from signal intensity-time curve. A simple
descriptor as the initial area under the contrast agent concentration-time curve (IAUC) can
be calculated without pharmacokinetic modeling. It is widely used in drug trials and appears
to have fair reproducibility. However, what it represents physiologically is unclear as it is a
combination of blood volume, flow, permeability and EES volume (25).

Permeability metrics can also be extracted from the concentration-time curve using
pharmacokinetic models which in theory should limit individual patient variation, scanner
type or imaging technique. Most of pharmacokinetic models applied to DCE-MRI are
compartmental models. A simplification of the pharmacokinetic model was proposed by
Patlak et al., to estimate Ktrans with a graphical approach in case of limited permeability
(33). Models proposed by Toft and Kernode and Larson et al. define Ktrans (min−1) and ve
neglecting the contribution of the intravascular compartment (34,35). However, when there
is a large increase in blood volume, (i.e.in high grade tumor), ignoring the contribution of
the intravascular tracer may be problematic (36). Extensions of this model which take into
consideration the contribution the intravascular contrast have been developed that allow
modeling of vp in addition to Ktrans and ve. These models provide more accurate calculation
of Ktrans and ve (37). Because Ktrans is a composite parameter depending on the relationship
between flow F and capillary permeability–surface area product (PS) more complex models,
such as the adiabatic tissue homogeneity model, separate F and PS (38). However, these
models demand a very high temporal resolution and a high quality of data.

An AIF is needed for the models described above. Ideally, the AIF should be determined in
an artery local to the tissue of interest for each examination. But an accurate measurement is
challenging (39). Several techniques have been proposed, but many groups use an idealized
mathematical function, based on population-averaged AIF (35,40).

Limitations of DSC-MRI and DCE-MRI
Quantification of perfusion and permeability metrics is based on several approximations and
assumptions. Moreover, many acquisition, processing, and interpretation methods are used
for DSC-MRI and DCE-MRI, without standardization across centers. These imply
difficulties to compare and to use the reported values in the literature.

Because the main DSC-MRI acquisition techniques are T2*-weighted methods,
susceptibility artifacts can confound perfusion measurements, particularly in the posterior
fossa, temporal and frontal lobes, hemorrhagic lesions and in the surgical setting where there
can be blood products (13,41). Several solutions include decreasing slices thickness, and
shortening TE with the use of parallel imaging (10).

T2*-weighted methods have also significant T1 sensitivity. When the BBB is disrupted, as is
often the case with brain tumors, the leakage of GBCA results in enhanced T1 relaxation
effects. These effects produce an elevation in the signal curve mask signal that can result in
underestimation of rCBV (42,43). Acquisition method with low flip angle and short TE can
minimize the T1-effets (42). Moreover, the leakage effect can be reduced using GBCA
preloading to saturate the extravascular space, and mathematical correction (11,12). DCE-
MRI metrics could be easily extracted in brain area with high leakage of Gd- in post-Gd
enhanced part of the brain- with a relatively short acquisition time. Measuring permeability
in non-enhanced brain is more challenging: a longer acquisition and an adaptation of
quantification model are needed.
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Imaging Findings/Pathology
This section will highlight the current and future potential clinical applications of DSC-MRI
and DCE-MRI in neuroimaging. Several recent review articles have previously detailed uses
of these techniques (13,44–46).

Brain tumor
The usefulness of DSC-MRI and DCE-MRI in brain tumor imaging is based on the
detection of intratumoral microvascular abnormalities: The disorganized angiogenesis is
associated with vascular permeability induced by the vascular endothelial growth factor
(VEGF)-A in high grade tumor (47). CBV and Ktrans are respectively correlated with these
histopathological findings in high grade tumor (48,49).

The most widely used parameter is the rCBV ratio (tumoral rCBV /contralateral normal
brain rCBV). Several different methods exist to determine the regions of interest (ROI) used
to extract rCBV values. A more accurate measurement of tumoral rCBV is the maximal
rCBV chosen among several ROI placed in several hot spots (50).

Differential diagnosis of intracranial lesions
Differentiation of brain abscess versus cystic brain tumor—Distinguishing a
pyogenic brain abscess from a cystic brain tumor is sometimes difficult using conventional
MRI where both can present as rim-enhancing masses. Diffusion imaging is very helpful to
making a distinction where an abscess is classically associated with internal diffusion
restriction. However small abscess and non-pyogenic abscesses, such as toxoplasmosis, can
display increased diffusion (51). A few studies have demonstrated a significantly lower
rCBV ratio (< 0.95) in the abscess wall than in tumor wall (Figure 2) (52,53). One study
demonstrated that Ktrans and ve could also be helpful for this distinction (54).

Tumefactive demyelinating lesion (TDL) Versus Glioma—A TDL can appear
similar to a brain tumor not only on conventional imaging, but also at histopathology where
hypercellularity and atypical reactive astrocytes can mimic high grade glioma. Cha et al.
have demonstrated that rCBV ratio was useful in differentiating TDL from intracranial
neoplasms, with values of 0.88 and 6.47 respectively (Figure 3) (55). However, some
contrast-enhanced lesions in multiple sclerosis can have an increased CBV (see below) (56).

Differentiation of Cerebral Lymphoma Versus Glioma—A lower rCBV ratio was
found in primary lymphoma than in high grade glioma (Figure 4) because an important
pathological finding is the tumor infiltration along the capillaries, and not an important
tumor neoangiogenesis like in HGG.A threshold value of 1.2 for rCBV ratio gave a positive
predictive value of 94% and a negative predictive value of 89% to differentiate these tumors
(57). In this study, metrics extracted from DCE were not significantly different between
lymphomas, high grade gliomas and metastases (57).

Using a BBB leakage correction algorithm, but not a GBCA preloading, Mangla et al.
reported that percentage signal recovery (PSR) derived from DSC-MRI signal-time curve
was superior to the rCBV ratio to differentiate lymphoma, to high grade glioma and
metastasis. Mean PSR was high in lymphoma (113.1 ± 41.6), intermediate in GBM (78.2 ±
14.3), and low in metastases (53.5 ± 12.9) (58).
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Glioma
Predicting glioma grade—Compared to biopsy or surgery, MRI has the advantage of
being able to evaluate the entire glioma, as well as the surrounding brain parenchyma which
is typically not resected nor biopsied. However, despite numerous shortcomings such as
reproducibility and sampling error, the WHO classification remains the standard reference
for predicting prognosis and guiding therapy in patients with brain tumors. Therapy for high
grade glioma (HGG, WHO grade III and IV) typically consists of surgery and adjuvant
chemoradiation, whereas management for low grade (LGG, WHO grade I and II) is less
invasive.

Compared with conventional contrast-enhanced MRI, perfusion MR using rCBV ratio
increases the sensitivity and predictive value in predicting glioma grade (59). However,
reported threshold values vary due to absence of standardization for acquisition parameters
and processing methods. Maximal rCBV values of LGG are ranged between 1.11 to 2.14,
whereas maximal rCBV values of HGG are higher, between 3.54–7.32 (59–62). Law et al.
demonstrated that a threshold value of 1.75 provides sensitivity of 95%, specificity of
57.5%, PPV of 87%, and NPV of 79.3% (Figure 4) (59).

Ktrans derived from DCE-MRI have also been found to correlate with glioma grade and the
histologic proliferative marker, MIB-1, (63). Using Ktrans extracted from DSC-MRI, the
correlation between Ktrans and tumor grade was less important than the correlation between
rCBV and tumor grade (64). However using DCE-MRI, Ktrans has been found to
discriminate LGG from HGG with a sensitivity and specificity >90% (65,66). Also, rCBV
and Ktrans were correlated for tumor grading, but regions of increased rCBV were different
to regions of increased permeability, likely reflecting the heterogeneity of the glioma
vasculature (64,67).

Predicting prognosis and therapeutic response—DSC-MRI and DCE-MRI can
help in predicting prognostic of glioma. Bisdas et al. determined that an rCBVratio > 4.2
was predictive of recurrence and rCBV ≤ 3.8 was predictive of 1 year survival (68). In
patients with HGG, Hirai et al. demonstrated that rCBV > 2.3 was an independent
prognostic biomarker for predicting survival (69). They found that 2 year survival was
significantly higher for patients with low (≤ 2.3) than with high (≥ 2.3) maximum rCBV.
Cao et al. demonstrated that permeability assessed by DCE-MRI in HGG, although not a
predictor for survival, was a predictor for time to progression (70). Using clinical outcome
and not the WHO classification scheme as reference, Law et al. compared the value of rCBV
in 189 patients with glioma (71). They show that glioma patients who have high baseline
rCBV (>1.75) had a significantly more rapid time to progression than patients with low
rCBV (<1.75), whatever the grade high or low (71). These results suggest that rCBV from
DSC-MRI imaging may overcome some of the limitations of the current histologic methods
to provide an additional prognostic factor for tumor biology.

Guiding biopsy and radiosurgery—Tumor biopsy and radiosurgery are usually guided
with enhancement on post-contrast T1w images (72). The most malignant region of a tumor
could be outside the enhancing of a glioma, DSC-MRI and DCE-MRI may be useful to
guide the surgeon toward the most vascular and malignant portion of the mass (13).

Follow-up of brain tumor
Predicting malignant transformation of LGG—Patients with LGG often undergo
regular follow-up MRI’s to detect malignant transformation at the earliest stage possible.
DSC-MRI perfusion imaging could be helpful. Indeed, studies have demonstrated that high
rCBV (>1.75) in LGG is associated with poor prognosis (71). Moreover significant
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increases in rCBV can be detected up to 12 months before contrast enhancement is noted on
conventional post-contrast T1w images (73).

Therapeutic monitoring—DSC-MRI and DCE-MRI may help monitor treatment
response and recurrence in the post-therapeutic brain because the appearance of contrast
enhancement is nonspecific (1). DSC-MRI (74) and DCE-MRI could be helpful to
differentiate residual or recurrent tumor from therapy induced changes as late necrosis
induced by radiotherapy, pseudoprogression –early necrosis induced by combined
chemoradiotherapy- or pseudoresponse- “masked” disease progression after antiangiogenic.

Delayed radiation necrosis and recurrent tumor: While recurrent tumor demonstrates
increased vascular proliferation and angiogenesis, delayed radiation necrosis (DRN) is an
occlusive vasculopathy. Both conditions can appear as regions contrast enhancement and
sometimes both conditions can be present simultaneously rCBV is decreased and
permeability is mildly elevated in DRN while in residual/recurrent tumor both rCBV and
permeability are significantly elevated (13).

Several studies have demonstrated good results of DSC-MRI in the differentiation between
DRN and tumor recurrence (41,75). While threshold rCBV values vary according the
studies, the rCBV in DRN are lower than the rCBV of normal white matter, whereas in
tumor recurrence rCBV are generally higher than the rCBV of normal white matter. Ktrans
is reduced in DRN because the enhancement is typically slow, without a rapid vascular
phase (13,76). On the other hand, Ktrans is elevated in recurrent tumor, in association with a
very rapid initial increase in the vascular permeability curve, compatible with a rapid
vascular phase (13,76).

Pseudoprogression: Pseudoprogression is an increase of size and enhancement in high-
grade gliomas attributed to the use of combined chemoradiotherapy with temozolomide.
This therapy induced necrosis appears in the first 3 to 6 months of treatment, and occurs
more dramatically than that seen with radiotherapy alone (74,77).

The use of conventional contrast-enhanced MR to distinguish true early progression from
pseudoprogression appears to be limited (78,79). Preliminary findings of pseudoprogression
using DSC-MRI and DCE-MRI suggest a decrease in rCBV and a moderate increase in
vascular permeability (Figure 5) (80,81).

Pseudoresponse: Antiangiogenic agents, such as bevacizumab or cediranib, are now
administrated in patients with recurrent high-grade gliomas (82). The term
“pseudoresponse” is applied to the rapid decrease in enhancement following treatment with
anti-angiogenesis agents (83). The decreased enhancement may at least partially result from
decreased vessels permeability and not necessarily from antitumor effects. Some patients
clinically progress despite absence of enhancing tumor progression on MRI (82). In our
preliminary experience, those patients with true response to bevacizumab appear to
demonstrate a decrease in rCBV and permeability (13). The decrease of Ktrans can be seen
even after a single dose of cediranib and this effect is reversible when the drug is withdrawn
(83).Using a “vascular normalization index”, including in Ktrans, microvessel volume, and
circulating collagen IV was found to be associated with overall survival and progression free
survival in patients given a single dose of cediranib (84).

Ferré et al. Page 8

Magn Reson Imaging Clin N Am. Author manuscript; available in PMC 2013 November 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Other pathologies
Stroke

Preliminary studies using DSC-MRI in acute ischemic stroke have demonstrated its
usefulness in establishing diagnosis and predicting prognosis. The perfusion/diffusion
mismatch -hypoperfusion volume greater than diffusion weighted imaging (DWI) ischemic
lesion volume- is considered to represent the tissue at risk for infarction without arterial
recanalization (85–87). Baseline volume DSC-MRI hypoperfusion demonstrates a better
correlation with NIH Stroke Scale (NIHSS) at baseline or clinical outcome than the volume
of DWI lesions (88,89), regardless of the perfusion parameter used, TTP (88), CBF or MTT
(Figure 6) (85,86).

The most widely used therapy for acute stroke reperfusion is recombinant tissue
plasminogen activator (tPA). Initially it has been proven to improve patients’ outcome if it
used within 3 hours or symptom onset (NINDS study) (90). More recently, the time window
was extended to 4.5 hours in a select stroke population (ECASS-III study) (91). However
this time window ignores the variation between individual stroke patients. Several studies
demonstrated a benefit of thrombolysis outside of the usual time window up to 6 or 9 hours
after clinical onset using different definition of DWI/DSC-MRI mismatch (92–95). Several
perfusion thresholds were used to differentiate “at risk” versus “not at risk tissue” (96). For a
wider clinical use of perfusion imaging in this context, a greater consistency of thresholds
definition is needed. Using automatic software is suggested as a way to improve the
determination of patient who could benefit to recanalization (45).

An early reperfusion response based on MTT has been found to be predictive of clinical
recovery with standard intravenous rtPA therapy. A decrease of ≥30% in the volume of
hypoperfusion on MTT maps 2 hours after treatment was a strong predictor of clinical
outcome (97).

Permeability
Some studies suggested that permeability imaging may be helpful to predict hemorrhagic
transformation (HT) in patients with acute ischemic stroke. In a study of10 patients with
acute ischemic stroke, Kassner et al. found significantly increased permeability in 3 patients
who went on to HT within 48 hours after clinical onset using DCE-MRI with the Patlak
model (98). With this technique, a minimal DCE acquisition duration of 3 min 30 s seemed
to be necessary to discriminate between HT and non-HT patients (99). Permeability maps
extracted from DSC-MRI may also identify patients at risk for HT (100).

Dementia
DSC-MRI has been rarely used to study patient with dementia. Nuclear medicine techniques
or arterial spin labeling (ASL) techniques are preferred because injection of GBCA is not
recommended to evaluate dementia patients with MRI.

However, recent papers showed that reduction of flow, hypoxia, and BBB dysfunction might
initiate or contribute to neuronal degeneration, notably in Alzheimer’s disease (101). Some
studies using MRI have shown increased BBB permeability with normal aging, and also an
increased permeability in patients with vascular dementia compared with age-matched
control (102). Starr et al. demonstrated no significant permeability difference for AD
subjects versus control or for MCI patient versus control (103,104). However these studies
used only descriptive methods to estimate permeability without calculating Ktrans or PS.
Improvement of DCE MRI techniques may permit accurate estimation of permeability in the
hippocampus in a near future (105).
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Multiple Sclerosis
DSC-MRI has demonstrated an increased perfusion in acute multiple sclerosis (MS) lesions,
and decreased CBF and CBV in most nonenhancing MS lesions (56). A decreased CBF was
also found in normal-appearing (NA) white matter (WM) and in gray matter (GM) (106–
108). Cortical hypoperfusion seems to appear early in disease progression. Deep GM
hypoperfusion is found in patients with relapsing remitting and primary progressive MS and
is correlated with fatigue score and neuropsychological dysfunction (107). Decreased
perfusion in MS patient could be explained by the presence of lesions in GM, degeneration
of axons, and neuronal loss secondary to demyelination, hypoperfusion or Wallerian
degeneration. A recent study using DCE-MRI demonstrated the feasibility of DCE-MRI for
the quantitative assessment of PS in normal-appearing white matter as well as in focal
lesions (109).

Summary
DSC-MRI and DCE-MRI can provide imaging biomarkers that reflect brain hemodynamic
processes and permeability. These techniques provide physiologic information to
complement conventional contrast-enhanced MRI, and their added value is now recognized,
especially in of the evaluation of brain tumors and stroke. However, standardization of
acquisition and processing is needed to increase their clinical benefit and allow widespread
use.
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KEY POINTS

- Studying brain perfusion and -permeability is possible without an additional
dose of gadolinium-based contrast agent.

- Dynamic susceptibility contrast imaging (DSC-MRI) using T2- or T2*-
weighted imaging is the most commonly used MR perfusion technique of the
brain.

- Dynamic relaxivity contrast-enhanced MRI imaging (DCE-MRI) using T1-
weighted relaxivity imaging is the most commonly used MR permeability
technique.

- DSC-MRI and DCE-MRI can provide clinically useful physiological
information to complement conventional contrast-enhanced MRI, particularly
of brain tumors and stroke.
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Fig. 1.
Dynamic susceptibility contrast imaging (DSC-MRI)- left column- and dynamic contrast-
enhanced MRI imaging (DCE-MRI) - right column- principles overview. Sample time series
images during the passage of the contrast agent - first row- and the resulting time signal
course - second row. The image processing based on the time curve allows to extract
qualitative or quantitative metrics of perfusion (DSC-MRI) and/or permeability (DCE-MRI)
and obtain parametric maps.
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Fig. 2.
Differential diagnostic of brain tumor using DSC-MRI. Both patients presented with a mass
demonstraing central necrosis and peripheral enhancement (A, D). In a brain abscess, (upper
row) DSC-MRI demonstrates a low rCBV ratio (C) without visible increased perfusion on
the rCBV color map (B), whereas in a brain tumor, in this case a metastasis, (lower row),
DSC-MRI demonstrates an increase perfusion within enhanced parts of the lesion (E) with a
high rCBV ratio (F).

Ferré et al. Page 19

Magn Reson Imaging Clin N Am. Author manuscript; available in PMC 2013 November 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 3.
Differential diagnosis of an intracranial mass using DSC-MRI. Both patients presented with
a peripherally enhancing, centrally necrotic mass (A, E). In Balo concentric sclerosis (upper
row), DSC-MRI demonstrates a low rCBV ratio (C) without visible increased perfusion on
the rCBV color map (B). Concentric enhancement of the lesion is seen on sagittal post-
contrast T1-weighted image (D). In a high-grade glioma (lower row), DSC-MRI
demonstrates increased perfusion within the enhancing portions s of the lesion (F) with a
high rCBV ratio (G).
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Fig. 4.
Differentiation of brain tumors involving the corpus callosum using DSC-MRI:
glioblastoma (upper row), primary CNS lymphoma (middle row) and low-grade glioma
(lower row). Contrast enhancement within the tumor seen on axial T1-weighted image post-
gadolinium does not discriminate glioblastoma (A) from and lymphoma (D). rCBV color
maps demonstrates increased perfusion within glioblastoma(B), but not within lymphoma
(E). The rCBV ratio - tumoral rCBV /normal brain rCBV- is elevated (>1.75) for
glioblastoma and low for lymphoma. The non-enhancing low-grade glioma, seen with
increased signal on FLAIR images (G) has decreased perfusion on rCBV map (H) with a
low rCBV ratio. Visual inspection of the curve demonstrates a high percentage signal
recovery within lymphoma (F-double arrow), not visible for low grade glioma (I).
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Fig. 5.
Post-therapeutic evaluation of high-grade glioma using DSC-MRI and DCE-MRI. Both
patients demonstrate increased contrast enhancement 3 months following combined
chemoradiotherapy with temozolomide. (A, F). Pseudoprogression may demonstrate
decreased perfusion with a low rCBV ratio using DSC-MRI (B, C) and moderate vascular
permeability (D, E) with a progressive enhancement (E) using DCE-MRI. True early
progression may demonstrate increased perfusion with a high rCBV ratio (G, H) with high
permeability and rapid enhancement (I, J).
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Fig. 6.
Acute ischemic stroke in left middle cerebral artery territory, due to a left internal carotid
artery occlusion (C). Diffusion-weighted image (A) and ADC map (B) demonstrates an
ischemic core smaller than the hypoperfused territory seen on TTP (D) or MTT (E) maps, as
red area. The perfusion/diffusion mismatch – difference between these two volumes- is
considered as the tissue at risk to infarction without arterial recanalization.
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