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Drylands occupy large portions of the Earth, and are a key terrestrial biome from the socio-ecological
point of view. In spite of their extent and importance, the impacts of global environmental change on
them remain poorly understood. In this introduction, we review some of the main expected impacts of
global change in drylands, quantify research efforts on the topic, and highlight how the articles
included in this theme issue contribute to fill current gaps in our knowledge. Our literature analyses
identify key under-studied areas that need more research (e.g. countries such as Mauritania, Mali,
Burkina Faso, Chad and Somalia, and deserts such as the Thar, Kavir and Taklamakan), and indicate
that most global change research carried out to date in drylands has been done on a unidisciplinary
basis. The contributions included here use a wide array of organisms (from micro-organisms to
humans), spatial scales (from local to global) and topics (from plant demography to poverty allevia-
tion) to examine key issues to the socio-ecological impacts of global change in drylands. These papers
highlight the complexities and difficulties associated with the prediction of such impacts. They also
identify the increased use of long-term experiments and multidisciplinary approaches as priority
areas for future dryland research. Major advances in our ability to predict and understand global
change impacts on drylands can be achieved by explicitly considering how the responses of
individuals, populations and communities will in turn affect ecosystem services. Future research
should explore linkages between these responses and their effects on water and climate, as well as
the provisioning of services for human development and well-being.
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1. DRYLAND ECOSYSTEMS: DEFINITION AND
IMPORTANCE
Drylands occupy large portions of the Earth’s surface
characterized by low and highly variable precipitation
that does not compensate for the evaporative demands
imposed by the intense solar radiation and extreme
temperatures [1]. Different criteria have been used
over the years to define aridity and to set the climatic
boundaries of drylands [2]. The classification proposed
by the United Nations Environmental Programme
(UNEP), based on the aridity index (AI, the ratio of
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mean annual precipitation to mean annual potential
evapotranspiration), is widely used nowadays [3].
According to this criterion, drylands are defined as
regions with an AI , 0.65, and are subdivided in four
categories: hyper-arid (AI , 0.05), arid (0.05 , AI ,

0.20), semi-arid (0.20 , AI , 0.50) and dry–subhumid
(0.50 , AI , 0.65). Overall, these areas cover 5.1 �
107 ha, totalling 41 per cent of the land surface (see
[1] for a detailed account of the area occupied by each
dryland subtype).

The climatic characteristics of drylands, coupled
with the relatively low fertility of their soils [4],
impose important limitations on their biota [5]. As a
consequence of these constraints, dryland vegetation
is typically sparse and forms a ‘two-phase’ mosaic
(figure 1) where discrete vegetation patches, mostly
grasses and shrubs, are separated by a matrix of bare
ground and/or biological soil crusts (BSCs hereafter)
dominated by lichens, mosses and cyanobacteria [6].
This journal is q 2012 The Royal Society
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Figure 1. Examples of dryland vegetation. (a) Mixed shrubland dominated by Ericameria nauseosum in Utah, USA (photo by
M. A. Bowker); (b) shrubland dominated by Chamaecrista cytisoides in Brazil (photo by R. Romao); (c) shrubland dominated
by Quercus coccifera and Rosmarinus officinalis in Spain (photo by J. L. Quero); (d) Stipa tenacissima grassland in Morocco
(photo by F. T. Maestre); (e) Festuca orthophylla grassland in Peru (photo by J. Monerris); ( f ) open woodland dominated

by Eucalyptus populnea and Acacia aneura in Australia (photo by S. Soliveres); (g) shrubland dominated by Eulychnia acida
in Chile (photo by C. Barraza); (h) grassland dominated by various Stipa and Festuca species in Argentina (photo by
J. Gaitán); (i) Larrea cuneifolia shrubland in Argentina (photo by E. Pucheta); ( j) savannah of Acacia totalis in Kenya
(photo by V. Polo).
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The extensive areas devoid of vascular vegetation char-
acterizing dryland landscapes, their harsh climate and
some environmental problems caused by the misman-
agement of their natural resources (e.g. dust bowls and
desertification; see [7,8]), have contributed to the gen-
eral public’s impression that drylands are unproductive
and ‘useless’ ecosystems, both from the ecological and
socio-economical points of view [9].

The vision of drylands as areas of little value does
not match reality. Not only are these ecosystems very
diverse, but they also provide a fascinating natural lab-
oratory to study evolution and species adaptation to
extreme conditions, as well as offering ecosystem ser-
vices that are essential for the maintenance of life
[2,10]. Drylands include some of the most diverse
biomes in terms of animal diversity, such as deserts
and xeric shrublands [11], and host about 20 per
cent of the major centres of plant diversity worldwide
[12]. In addition to their high plant diversity, which
are in some cases higher than those found in more pro-
ductive biomes [13,14], dryland ecosystems also
harbour highly diverse microbial and soil communities
[15,16]. Many dryland species also show high levels of
genetic differentiation among populations [17]. Such a
biodiversity is crucial for maintaining ecosystem multi-
functionality (i.e. the ability of ecosystems to maintain
multiple functions and services simultaneously, such
as carbon storage, productivity and the build-up of
nutrient pools [18]), as suggested by recent studies
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carried out with vascular plants and BSCs worldwide
[19–22]. Moreover, drylands also display a wide
array of vegetation (figure 1) and soil types. As an
example of the latter, a global survey of 224 dryland
ecosystems in 16 countries identified 26 different soil
types [19].

Drylands are also of paramount importance for
humans for multiple reasons. First of all, over 38 per
cent of the global human population lives in them
[11]. Second, drylands possess a massive amount of
key resources, including most of the world’s oil reserves
[23], as well as large deposits of valuable minerals such
as gold, copper and silver [12]. Third, these environ-
ments are crucial for achieving global sustainability,
and for the well-being of human populations worldwide
[8,24]. Over 90 per cent of the dryland human settle-
ments are located in developing countries, and a
substantial part of them lag far behind the rest of the
world with regards to development indicators [10].
Some features of these settlements, coupled to their bio-
physical features, underlie their socio-economical
situation in the so-called drylands syndrome [7]. These
characteristics include the sparse distribution of human
populations over the territory, and their remoteness
from markets and political centres. These limitations
impose serious difficulties on delivering services effi-
ciently, and on deploying effective communication,
healthcare and educational systems [8]. Furthermore,
severe land degradation and desertification is also
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present in 10–20% of drylands, and their consequen-
ces are estimated to directly affect approximately 250
million people in the developing world [7]. These
numbers are likely to expand substantially as a conse-
quence of both climatic changes and the projected
exponential human population growth [25].
2. GLOBAL ENVIRONMENTAL CHANGE EFFECTS
ON DRYLANDS
Increases in temperature, nutrient availability and
atmospheric carbon dioxide (CO2) concentration, as
well as changes in precipitation patterns and land use
are key drivers of ongoing global environmental
change (hereafter global change) faced by terrestrial
ecosystems worldwide [25]. With the aim to set the
context for this theme issue, in this section we high-
light some of the most important socio-ecological
consequences of global change in drylands. However,
we do not intend to provide a comprehensive overview
on how such changes will affect dryland ecosystems
and the people living in them, as such a thorough
review is beyond the scope of this introduction.

The biophysical characteristics of drylands make
them highly vulnerable to global change drivers, and
to climate change in particular [8,26–28]. Two com-
ponents of climate change are of particular interest for
drylands: the expected increase in temperature and
the predicted changes in precipitation patterns. There
is much ongoing discussion on the range of temperature
increase, which depends on the greenhouse gases emis-
sion scenario and the geographical region considered,
and this may have been overestimated in dryland
regions owing to model deficiencies [29]. However,
there is generalized agreement by most models that a
warming of over 38C and a 100 per cent increase in
the frequency of extremely warm years is expected for
drylands worldwide by the late twenty-first century
[25]. Projections of the changes in precipitation
amounts and patterns are subject to a greater degree
of uncertainty. A multi-model analysis projects vari-
ations in annual precipitation from 230 per cent to
þ25 per cent in drylands, depending on the geographi-
cal region considered [30]. Specifically, most climatic
models project that drylands located in China are
expected to see an increase in total rainfall amounts
by 10–20%, but precipitation will be reduced by 5–
30% in large portions of the drylands in the Americas,
Africa, Australia and the Mediterranean Basin [30].
However, regional models predict important local-
scale variations superimposed upon these overall
trends [31–33]. Even in areas where precipitation will
increase, the expected rise in temperature will increase
evapotranspiration rates, which may cancel out the
expected positive effects of enhanced precipitation on
soil moisture and ecosystem productivity. As a conse-
quence of expected climatic changes, soil moisture is
projected to decrease by 25 per cent in a substantial
portion of drylands worldwide [30]. However, these
overall trends may need to be interpreted with caution
when translated to concrete situations in the light of
expected changes in rainfall variability. Climate
models project an increase in precipitation variability
in drylands, including more extreme rainfall events
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and intense droughts [34]. Large rainfall pulses infil-
trate deeper and last longer than smaller rain events
[35], and thus even areas undergoing decreases in
annual precipitation could experience increased soil
moisture if precipitation becomes more variable but is
characterized by larger pulses [36,37]. Nevertheless,
there is evidence that climate change will exacerbate
the aridity of most drylands worldwide, such as the
southwestern US [38], the Mediterranean Basin [39],
southern Africa [40], Australia [41], South America
[42] and China [33].

Predicting effects of global change on dryland ecosys-
tems is not straightforward. This is because of the
complex interactions and contrasting effects of predicted
changes in different global change drivers. For instance,
while the expected reductions in water availability will
likely exacerbate water stress and reduce productivity
of dryland vegetation [43–45], increases in [CO2] may
improve the water use efficiency (WUE) of plants, and
thus ameliorate and potentially counterbalance negative
effects of reduced soil moisture [46–48]. However,
improvements in WUE may not suffice to compensate
negative effects on soil moisture of increased evapotran-
spiration and reduced rainfall scenarios, particularly
when feedbacks between elevated CO2, water availability
and vegetation are taken into account [49]. Indeed,
reductions in above-ground biomass with increased
warming and drought in drylands have been widely
documented [50–53]. The size and frequency of rainfall
events modulate processes such as soil and ecosystem
respiration [54,55], microbial activity [56] and plant
physiology and primary productivity [57]. Thus, modifi-
cations in precipitation patterns with climate change will
largely affect ecosystem functioning in drylands [58],
although some of these changes may not be necessarily
negative (see [59] for a review). For example, increases
in above-ground net primary productivity (ANPP)
with increases in rainfall variability (less but more intense
rainfall events) have been observed in semi-arid steppes
from North America [36].

Global change will have important effects on dryland
organisms other than vascular plants. The dryland biota
in general is known to be well-adapted to infrequent,
intense and unpredictable pulses of precipitation [4].
However, increasing temperatures and prolonged
drought events associated with global change will pose
physiological water balance challenges to a wide suite
of organisms, including birds [60], reptiles [61] and
insects [62], as transpiration increases. Expected changes
in temperature and rainfall frequency may even promote
extreme mortality events, as recently recorded in organ-
isms as disparate as small birds [63] and mosses [64].
Recent experimental studies have also shown that warm-
ing by 2–38C will reduce the cover and diversity of BSC-
forming lichens [65], and will promote declines in both
bacterial and fungal activity and biomass, overall bac-
terial diversity and the bacteria:fungi ratio [64,66,67]
in drylands.

Experiments and syntheses conducted in recent
years have projected modifications and disruptions in
species and multi-trophic interactions in drylands
[61,68]. The complexities in the responses of organisms
to global change challenge the establishment of general
predictions. However, the expected overall decrease in
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water availability under global change is likely to pro-
mote higher competition among vascular plants,
stronger herbivory effects on plants and more intense
predator–prey interactions (see [61] for a review).
Such responses may cascade throughout the whole eco-
system, ultimately promoting shifts in the structure and
composition of dryland communities [69].

Dryland biogeochemistry is largely driven by rainfall
and the associated effects on net primary productivity
[35,70,71]. Thus, changes in precipitation frequency
and amount, as well as in evapotranspiration rates pro-
jected by climatic models, are expected to result in
important changes in processes such as soil C and nutri-
ent cycles. These alterations may be mediated by
changes in land use (see Thomas [72] for a discussion),
and by modifications in the richness and composition of
biotic components, such as plants and BSCs, induced by
global change [65,73–75]. Experimental reductions in
overall precipitation have been found to lower litter
decomposition rates in the Argentinean Patagonia [76]
and the Chihuahuan Desert [77]. However, similar
results have not been found in observational studies
[78]. Contradictory responses of nitrogen (N) mineraliz-
ation and availability to changes in water availability have
also been reported [76,79,80]. Maestre et al. [20] found
that a 2.58C experimental warming enhanced soil CO2

efflux, particularly in areas dominated by BSCs, in a
semi-arid environment from Spain. However, Lellei-
Kovàcs et al. [81] did not find a significant effect of
warming on this variable in a semi-arid forest–steppe
ecosystem from Hungary. Studies conducted in the
Sonoran Desert suggest that soil respiration may be
less related to soil moisture and more to available
carbon [82]. These results contrast with many other
studies conducted in drylands worldwide suggesting
that C fluxes are either tied to photosynthesis, and there-
fore fluxes will change as plants respond to variation in
soil moisture availability [54], or that variations in seaso-
nal rainfall, coupled to associated changes in
temperature, largely regulate C fluxes [73,83]. In this
direction, reductions in approximately 30 per cent in
annual precipitation have been reported to lower daily
soil CO2 efflux by 50 per cent in Mediterranean semi-
arid shrublands [51]. Moreover, less frequent, more
intense rainfall pulses have been found to increase this
variable up to 30 per cent in the Chihuahuan Desert
[37]. Modelling studies suggest that expected changes
in precipitation and temperature, coupled with increases
in [CO2], will increase soil respiration in a nonlinear
fashion in this desert [84]. Other studies have found
that soil organic matter can be negatively affected by
expected changes in climate and [CO2] in drylands
[74]. However, this response does not seem to be univer-
sal, as global change may promote C storage in soil
through increased biomass production and reduced C
turnover [85]. These results emphasize the nonlinear
dependency between biogeochemical cycles in drylands
and global change, and the difficulties faced by dryland
researchers when projecting the ecological effects of
such change.

The effects of other global change drivers, such as
enhanced N availability, on drylands are also difficult
to predict. Studies have reported both positive and
negative effects of increased N fertilization on these
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ecosystems (see [86] for a review). These effects
depend both on the amount of N considered and on
factors such as overall water availability and the rela-
tive concentrations of other nutrients, such as
phosphorus [87]. In addition, there is evidence that
the frequencies of wildland fires in many dryland
regions (e.g. the Mediterranean Basin) have increased
during the last century [88]. Expected increases in
temperature and decreases in ambient moisture are
likely to further increase fire recurrence intervals
[89]. More fires may act synergistically with N depo-
sition and the invasion by exotics to alter vegetation
structure [86]. For example, many drylands are
being invaded by exotic species, a process that reduces
ecosystem functioning [90] and is expected to be
further worsened with global change [91]. Moreover,
the productivity and cover of these exotics has also
been reported to be enhanced with N deposition
[92]. This process may favour the accumulation of
flammable biomass and enhance the connectivity of
otherwise isolated plant patches, further altering fire
regime and severity [93].

Ongoing global change is also promoting important
shifts in species composition, and reductions in species
richness in drylands worldwide [94–96]. These pro-
cesses will likely have cascading effects on other biota
and on ecosystem functioning [93,97,98]. As an
example, a recent survey of global drylands has
shown that plant species richness is positively linked
to ecosystem multifunctionality, which is also nega-
tively related to annual mean temperature [19].
These results suggest that changes in climate and bio-
diversity expected under global change will negatively
impact the provision of ecosystem functions and ser-
vices in drylands. The phenomenon of shrub
encroachment (i.e. the expansion of woody vegetation
into former grasslands [99]), a key land-cover change
affecting drylands worldwide, has multiple effects on
ecosystem structure and functioning [100]. Although
this phenomenon has not been found to significantly
affect ecosystem attributes such as biodiversity at the
global scale [100], it may either enhance or reduce
plant species richness at local and regional scales
[97,101]. Some studies have suggested that different
global change drivers, such as increases in [CO2] and
in the frequency of large precipitation events, may
favour shrubs at the expenses of grasses in drylands
[49,102,103]. Thus, it is likely that shrub encroach-
ment will be augmented in the future [35], even if
other factors known to promote this land-cover
change (e.g. grazing [99]) are reduced. Many dryland
regions are experiencing other land-use changes,
including: (i) large-scale growth of urban and indus-
trial areas (e.g. the case of Phoenix in the USA
[104]), (ii) the afforestation of former grassland areas
(e.g. large-scale plantations of fast-growing tree species
in Australia, Argentina, Paraguay and Uruguay [105]),
(iii) the replacement of traditional agricultural uses by
modern, irrigation-based, agriculture (e.g. Almerı́a
province in southeast Spain [106]), and (iv) the
extensive deforestation of dry forests (e.g. Cerrado,
Caatinga, Chaco of Brazil, Bolivia, Paraguay and
Argentina) to expand the area devoted to the pro-
duction of intensive crops such as soy [107–109].
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These processes are substantially affecting the hydrol-
ogy [110–112] and biogeochemistry [113] of dryland
ecosystems worldwide. Land-use change is also a
major threat to their biodiversity [28], and the effects
on ecosystem processes and services may act synergis-
tically with those of other global change drivers [114].

Global change will also have dramatic impacts on the
human populations in drylands. Such impacts are
mostly linked to water availability, food security and
socio-political conflicts in developing regions, as well
to reductions and/or alterations in other ecosystem
services important for human development and
well-being. The intrinsic variability in precipitation
characterizing drylands, which is inversely proportional
to the total amount received [115], together with recur-
rent droughts promoted by phenomena such as El Niño,
have a direct impact on millions of people who practise
subsistence farming in drylands and whose crop yields
are largely dependent on precipitation [116,117].
Most climatic projections agree with the fact that
many drylands, such as the Mediterranean Basin, wes-
tern USA, southern Africa and northeastern Brazil,
will suffer a decrease of water resources with ongoing cli-
mate change because of increases in the variability of
rainfall and in the frequency and duration of droughts
[10,30]. These climatic changes will exacerbate food
production and security issues. Moreover, they are
likely to worsen already existing socio-political conflicts
and limit the development of agricultural programmes,
particularly in regions where water conflicts are already
arising (e.g. Egypt, Sudan and Israel [118,119]).

Expected changes in water availability will likely
increase the frequency and magnitude of humanitarian
crisis in many dryland areas around the world [120].
Health conditions and diseases are likely to be magnified
under climate change because of the expansion of illness
vectors (e.g. malaria and dengue [121,122]), and the
reductions in the availability and reliability of freshwater
supply. Both factors will increase the incidence of gastro-
intestinal diseases [123]. Human populations living in
drylands have a great variety of mechanisms to adapt to
slow climatic changes and extreme climatic events,
which strengthen their ability to cope with projected
water shortages [124,125]. However, there is increasing
agreement that global change will increase human
migration in drylands [126]. Not surprisingly, the term
climatic refugees, persons who migrate because of direct
and indirect effects of global change, is being increasingly
used [127]. Recent studies have also highlighted the tight
connections between drought and warming and the rise
of armed conflicts in drylands worldwide [66,128,129].
Thus, accumulated evidence suggests that the expected
changes in precipitation and temperature will further
worsen the disastrous humanitarian consequences
resulting from armed conflicts and food shortages, as
well as migrations, in many developing dryland regions.

Human populations living in drylands will also be
affected by the alterations induced by global change
in ecosystem services other than food production and
freshwater supply. For example, primary production
is a key supporting service that in drylands is nega-
tively correlated with temperature and positively with
precipitation [130]. Expected changes in these climatic
attributes in most dryland regions will likely reduce the
Phil. Trans. R. Soc. B (2012)
productivity of both crops and natural vegetation. This
will not only affect food production and security, but
also will have key implications for soil conservation
and climate regulation, given the strong impacts of
vegetation and its development on processes such as
soil erosion, nutrient cycling, carbon sequestration
and water run-off and infiltration [5,95,111,112].
Such impacts may act synergistically with global
change-induced biodiversity losses, as biodiversity is
crucial for maintaining ecosystem services in drylands
[19,131]. Climate-induced migrations and land-use
changes are also expected to negatively impact on
important cultural services, such as social identity
and diversity, tourism and recreation [120,132,133].

To summarize, the contrasting effects of various
global change drivers, and the complexity of the
responses to such drivers, challenge the elaboration
of accurate projections on their consequences for dry-
land ecosystems. However, the evidence accumulated
so far clearly indicates that global change will increase
the degree of abiotic stress experience by multiple
organisms living in drylands, will promote important
changes in ecosystem structure and functioning and
will negatively affect the food security, health and wel-
fare of dryland human populations. While some of
these changes may not necessarily be perceived as
negative from the ecological point of view (e.g.
increase in WUE of dryland vegetation and positive
effects of shrub encroachment on carbon storage),
the plethora of effects expected on both biotic and
abiotic components, and the synergies that can be
established between multiple global change drivers
(e.g. land use and global change), will make drylands
more vulnerable to disturbances, reducing their ability
to provide goods and services to humans [7,19,35].
3. RESEARCH GAPS AND FUTURE DIRECTIONS
Understanding how global change will affect the
composition, structure and functioning of dryland
ecosystems, and how these changes might affect the
livelihoods of the millions of people depending on
their goods and services has been declared a top
priority by the scientific community [25]. As such, it
is not surprising that hundreds of studies on the
topic have been published in the international,
peer-reviewed literature (figure 2 and electronic supple-
mentary material, appendix S2). Despite increasing
research efforts, dryland regions such as the Guajira
(Colombia), deserts such as the Thar (Pakistan,
India), Sahara (Morocco, Argelia, Mauritania, Egypt,
Mali, Chad, Libya, Niger, Sudan and Tunisia), Kavir
(Iran) and Taklamakan (NW China, Kazakhstan,
Uzbekistan and Turkmenistan) and countries such as
Burkina Faso and Somalia remain poorly studied
(figure 2), and deserve further attention in order to
attain a better knowledge of drylands worldwide.
Gaining this basic knowledge will further increase
our ability to predict global change impacts. Naturally,
we acknowledge that political and economic instability
in certain regions does not warrant the feasibility of
broader scale dryland research. Nonetheless, we
suggest that logistic constrains can be solved in many
places by involving local researchers.
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Figure 2. Research efforts on global change conducted in drylands (indicated by dashed borders), according to the country

where the work was carried out. To obtain data for this map, we searched for peer-reviewed field studies on this topic in
the ISI web of knowledge database (http://www.isiwebofknowledge.com) published between 1899 and 2011 (see electronic
supplementary material, appendix S2 for details). Dashed areas represent drylands, as defined by UNEP [3]. The studies
from countries such as the UK mostly reflect research based on paleo-scales, when these regions were drylands.
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Beyond an overall call to action to increase future
research efforts in those areas underexplored so far
(figure 2), there are important issues that deserve
special attention from dryland scientists. We list below
some of important topics that require particular atten-
tion to achieve a better understanding of the impacts
of global change in drylands, and illustrate the novel
contributions of the articles included in this theme
issue to fill in current gaps in our knowledge.

First, there is a need for more information on how
global change drivers will affect key soil processes
and stocks related to organic matter in drylands.
This urgency arises from the implications of these
processes for their role in soil fertility and the deve-
lopment of desertification. Such data are also needed
to forecast possible feedback effects on the climate
system promoted by expected increases in soil respir-
ation, a component of the biosphere’s C cycle
representing more than 60 per cent of total ecosystem
CO2 efflux [134]. This key process has been poorly
studied in drylands in comparison to other biomes.
For example, less than 8 per cent of case studies of a
global soil respiration database accounting for more
than 800 studies come from drylands [135], and
many dryland regions are completely missing from
this database (e.g. northern Africa, southern Spain,
South Africa, Chile, Argentina, Kenya, Mali, Niger
and the Arabian Peninsula, to name a few). Recent
research efforts, such as the CARBOAFRICA network
(http://www.carboafrica.net), are contributing to fill
this gap by gathering information on the C cycle and
other greenhouse gases in multiple sites across sub-
Saharan Africa. In addition to these efforts, future
research must evaluate how different global change
drivers affect soil C stocks and fluxes in drylands, par-
ticularly in under-studied regions of Africa and Asia.
Thomas [72] explores how grazing, a major land use
in drylands worldwide, affects soil CO2 efflux and
organic C in two sites in the Kalahari desert (southern
Botswana; see electronic supplementary material,
appendix S1 for geographical location of the study
Phil. Trans. R. Soc. B (2012)
sites of this theme issue) with well-developed BSCs
dominated by cyanobacteria. He found that in areas
devoid of vascular plants, which dominate these savan-
nah-like landscapes [136], organic C is not evenly
distributed through the soil profile, as it concentrates
under BSCs. Soil CO2 efflux was also significantly
higher on sandy soils where the BSC was removed,
and on calcrete soils where the BSC was buried
under sand. These results confirm the importance of
BSCs for C cycling in drylands, and show how inten-
sive grazing negatively affects C sequestration and
storage. This study also illustrates how land use affects
key soil properties linked to the C cycle, and can be
used to provide sound recommendations to manage
grazing areas to maintain a positive C balance in
African drylands.

In a survey of the published literature on global
change and drylands (see the electronic supplementary
material, appendix S2), we found only 84 studies with
fieldwork in more than one continent (approx. 3.8%
of the total of studies reviewed). A disproportionate
number of these studies correspond to French–Algerian
collaborations [137,138], which likely reflect colonial
history. It is interesting to note, however, that the
number of multi-continent studies has been increasing
over recent years (number of multi-continent studies
versus year of publication, Spearman correlation
coefficient ¼ 0.77, p , 0.001), suggesting that inter-
national collaborations are gaining importance [19,
139,140]. Future avenues of dryland research should
also take advantage of naturally occurring latitudinal
gradients of temperature and precipitation, leaving
aside geopolitical barriers whenever feasible, to better
encompass the biology of deserts in a variety of regions.
After all, species and ecological/socio-economical issues
do not understand political frontiers [141], and scien-
tists researching them should strive to act accordingly.
In addition, large-scale studies can provide important
insights to understand how dryland ecosystems func-
tion, and how global change may affect them. A good
example of the benefits of multi-continent research is

http://www.carboafrica.net
http://www.carboafrica.net
http://www.isiwebofknowledge.com
http://www.isiwebofknowledge.com
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provided in this issue by Sala et al. [142], who analyse
16 datasets from multiple continents to analyse how
precipitation controls ANPP in drylands. These authors
found that the relative importance of current- versus
previous-year precipitation as a driver of ANPP chan-
ges along precipitation gradients, suggesting that the
ANPP of dryland ecosystems will respond to global
change-driven alterations in water availability. Another
multi-continental study included in this theme issue is
that by Salguero-Gómez et al. [143], who introduce a
novel approach—coupling robust climatic projections
with stochastic, stage-structured models constructed
from long-term demographic datasets—to examine the
effects of precipitation shifts on populations of two
desert plant species from the Colorado Plateau Desert
(USA) and the Negev Desert (Israel). By using simu-
lations based on long-term field data, they found that
projected precipitation changes (wetter and drier grow-
ing seasons in the USA and Israel, respectively) will
increase the population growth rates of both species.
Their findings suggest that native desert plants, and
thus the resources they provide, might be more resilient
to global change than previously thought. These studies
also illustrate the importance of carrying out research on
multiple sites along wide environmental gradients to
fully unravel basic principles underlying the functioning
of dryland ecosystems, and thus provide insight into
how global change will affect them.

A key feature of dryland ecosystems is the high inter-
annual variability in their precipitation regime [115].
While the importance of precipitation as a key driver of
ecosystem dynamics and socio-economical development
in drylands is largely acknowledged [144,145], previous
climate change research has mostly evaluated the impacts
of changes in the mean climate variables (but see
[61,146]). Therefore, it remains largely unknown how
dryland ecosystems may respond to variation in the pre-
cipitation regime. This topic is of utmost importance in
the dryland research agenda, given the evidence of an
ongoing global increase in the interannual variability
of precipitation, and the predicted intensification of
extreme events by climate change models [25,147,148].
D’Odorico & Bhattachan [149] investigate current
patterns of hydrologic variability in global drylands and
review the implications of such fluctuations. These
analyses highlight the complexities of the impacts of
climate variability on drylands. While precipitation varia-
bility is often perceived as a disturbance for ecosystems
and societies that makes difficult the provisioning of eco-
system services such as food production, the authors
suggest that such variability may also enhance ecosystem
resilience and promote the maintenance of biodiversity.
This property, in turn, may allow dryland ecosystems to
recover faster after severe disturbances, including those
induced by extreme climatic events.

Research should also focus on understanding the
responses to global change of important yet traditionally
under-studied organisms. Among them, special atten-
tion must be directed to BSCs, an integral biotic
component of drylands [5]. These organisms strongly
influence key functional processes, including C and N
cycling, soil stabilization and infiltration [6,73,150].
Despite the multiple ecosystem processes and organ-
isms affected by them, relatively few experimental
Phil. Trans. R. Soc. B (2012)
studies have evaluated the response of BSC constituents
to global change drivers, and most of them have been
carried out in drylands from North America and
Australia [64,151–154]. Escolar et al. [65] evaluated
how the composition, structure and performance of
lichen-dominated BSCs respond to predicted climatic
changes in semi-arid, central Spain. Warming according
to the Intergovernmental Panel for Climate Change
projections [25] promoted a significant decrease in the
richness and diversity of the whole BSC community, a
result that was accompanied by important shifts in
species composition. These results suggest that global
change will strongly affect BSCs, with expected changes
in richness and composition that could reduce or even
reverse the positive effects of these organisms on
multiple ecosystem functions.

In addition to expanding our efforts to under-studied
organisms, future studies should also focus on biotic
interactions across trophic levels. Their importance to
predict future species distribution under climate
change has already been highlighted [155]. Here, we
emphasize the important research gaps in our
knowledge on how dryland trophic interactions might
be affected by global change. González-Megı́as &
Menéndez [68] evaluated the effect of future changes
in rainfall patterns on detritivore–plant–herbivore
interactions in a semi-arid region from Spain. The
authors found that changes in rainfall intensity modified
the effect of below-ground detritivores on both plant
traits and above-ground herbivore abundance. These
results illustrate how global change will affect trophic
levels and their interactions differentially. The authors
also discuss the difficulties in predicting the responses
of whole communities to global change when examining
isolated organisms.

The importance of taking into account multiple
drivers when evaluating global change impacts on
ecosystems and the use of long-term experiments have
been advocated many times [114]. Nonetheless, there
are very few long-term experiments carried out in dry-
lands that can inform us about how multiple
simultaneous global change drivers can affect ecosystem
structure and functioning (e.g. the Mojave Global
Change Facility, where the impacts of changes in precipi-
tation, nitrogen deposition and soil surface disturbance
on the Mojave Desert are being explored; http://web.
unlv.edu/Climate_Change_Research/MGCF/). Synthe-
sizing data from one of these experiments, Ban & Lai
[156] evaluated how N deposition affected plant com-
munity structure in a 10-year field experiment located
in Inner Mongolia. The authors found significant
reductions in species richness (up to 50–70%) after N
addition. The responses of species richness and above-
ground biomass to N inputs were greater in wet years
than in dry years. Interestingly, N addition reduced the
resistance of the semi-arid grassland studied to drought,
diminishing ecosystem stability. Given the strong effects
that N deposition has on the functioning of grasslands
[157], these results have important implications for
understanding the impacts of N deposition and climate
change on the biodiversity and ecosystem services
provided by these important ecosystems.

Owing to the multiple goods and services provided
by drylands, and their importance to sustain life on the
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Figure 3. (a) Historically, there has been a lack of integration among biogeochemistry (BGC), sociology (SOC) and ecology
(ECO) in global change research carried out in drylands, as shown in the Venn diagram for the number of publications on this
topic. To obtain this diagram, we classified the dryland publication list obtained from our literature search (see the electronic
supplementary material, appendix S2) into three disciplines—biogeochemistry, ecology and sociology—by adding those key-
words and their possible seven combinations to this search. Areas are proportional to the number of publications, and the

overlap between them indicates integrative efforts. (b) The present theme issue undertakes an integrative approach of biogeo-
chemistry, ecology and sociology to offer a better understanding of how global environmental change will affect dryland
ecosystems and their biota, including humans. Roman number position represents areas of expertise included in each manu-
script of the theme issue: (I) Maestre et al. (this study), (II) Thomas [72], (III) Escolar et al. [65], (IV) Salguero-Gómez et al.
[143], (V) González-Megı́as & Menéndez [68], (VI) Ban & Lai [156], (VII) Sala et al. [142], (VIII) D’Odorico et al. [149],

(IX) Huber-Sannwald et al. [133] and (X) Dougill et al. [163].
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Earth [10], it is not surprising to find the large number
of studies devoted to this topic in recent years
[158–160]. Among them, those exploring how eco-
system services can be used to improve the livelihood
of the poorest have been prioritized by scientists
working in the natural and the social sciences alike.
Community-based projects incorporating payments
for ecosystem services (CBPES) allow individuals,
governments, NGOs and private companies to pay
for ecosystem services such as C storage and water
conservation by supporting local-level projects pro-
moting both community development and poverty
alleviation [161]. These projects are being encouraged
by international climate policies and investments
[162]. In this issue, Dougill et al. [163] review multiple
CBPES that deliver C and poverty reduction benefits
in African forests. The authors discuss how CBPES
can be successfully established in African rangelands,
which have received little attention to date, despite
their importance for the global C cycle and the main-
tenance of the livelihood of millions of persons in some
of the poorest regions of the planet [164]. Through a
literature review, Dougill and collaborators provide
important insights and guidelines to design effective
CBPES that can substantially contribute to poverty
alleviation in drylands.

Most global change research carried out in drylands
until now has been done on a unidisciplinary basis.
When reviewing the literature on this topic (see the elec-
tronic supplementary material, appendix S2), we found
very few studies that would fall in more than one of
major research categories (ecology, biogeochemistry
and sociology), and there is no overlapping among the
three categories (figure 3a). Things are, however, start-
ing to change, and some exemplary initiatives in this
regard are GLOWA (http://www.glowa.org), a
Phil. Trans. R. Soc. B (2012)
multidisciplinary team addressing water usage issues in
Israel, or the International Network of Research on
Coupled Human and Natural Systems (http://chans-
net.org/), which facilitates communication and colla-
boration among scholars from around the world who
are interested in coupled human and natural systems.
The Central Arizona-Phoenix LTER (http://caplter.asu.
edu/), where scientists from different disciplines and
community partners work together to study the structure
and function of an urban desert ecosystem, and how
urban development in Phoenix (USA) affect ecosystem
services in the Sonoran Desert, is also a noteworthy
research programme. Calls for such multidiscipli-
nary approaches have been made countless times in
the past, regardless of biome. Because of the tight and
intricate relationships between ecosystem services,
biodiversity and human livelihoods in drylands [10], as
well as the convergence of human conflicts and resource
limitation, we cannot but further emphasize the need for
the integration of multidisciplinary teams when conduct-
ing research on topics such as land degradation and
desertification, global change and water management.
Ultimately, we believe that a major breakthrough in
our understanding of global change in drylands will
come by the use of multidisciplinary approaches.
Huber-Sannwald et al. [133] do so by combining the
use of different conceptual frameworks with a thorough
analysis of biophysical, socio-economical and historical
data to assess the challenges and opportunities for liveli-
hood development in drylands. Their results provide
important insights to understand the complexities built
into land degradation and desertification processes in
socio-ecological dryland systems, and illustrate the
potential of multidisciplinary studies to advance our
knowledge of the links between human development,
desertification and global change.
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4. CONCLUDING REMARKS
There are important gaps in our knowledge of the
ecological, biogeochemical and socio-economical
impacts of global change in drylands, but also exciting
challenges for future research on this topic. This theme
issue aims to fill some of these gaps by including
reviews and primary research articles illustrating the
impacts of key global change drivers on fundamen-
tal ecosystem components and processes, and by
examining the links between these impacts and the
livelihood of human settlements in drylands from a
multidisciplinary perspective (figure 3b).

Owing to the large number of matters involved in
evaluating and determining global change impacts
in drylands, we do not provide a complete, definitive
overview of this topic in the present theme issue.
Each of the topics treated would certainly require a
theme issue by itself, and some important topics,
such as global change effects on animals, are under-
represented in this issue simply due to lack of space
(but see González-Megı́as & Menéndez [68]), and
because they have recently been the subject of
a theme issue of the journal [165]. The diverse
contributions included in this theme issue are, how-
ever, highly timely in our opinion, as they deal with
crucial, yet poorly understood issues on ecological
impacts of global change. We believe that the topics
treated here are in urgent need of conceptual advances
in order to improve the livelihood of people living in
drylands (e.g. desertification and management of
natural resources to improve human well-being
in developing areas [133,163]). We expect that
the multidisciplinary, multi-organismal approach
followed in this theme issue will advance our under-
standing of the projected effects of global change in
drylands, and will stimulate further research on this
important topic.
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Reyes, J. & Gutiérrez, J. R. 2007 Tree establishment
along an ENSO experimental gradient in the Atacama
Desert. J. Veg. Sci. 18, 195–202. (doi:10.1111/j.1654-

1103.2007.tb02530.x)
43 Haase, P., Pugnaire, F. I., Clark, S. C. & Incoll, L. D.

1999 Environmental control of canopy dynamics and
photosynthetic rate in the evergreen tussock grass
Stipa tenacissima. Plant Ecol. 145, 327–339. (doi:10.

1023/A:1009892204336)
44 Xu, Z. & Zhou, G. 2011 Responses of photosynthetic

capacity to soil moisture gradient in perennial rhizome
grass and perennial bunchgrass. BMC Plant Biol. 11,
21–32. (doi:10.1186/1471-2229-11-21)

45 Wang, L., D’Odorico, P., O’Halloran, L. R., Caylor, K. &
Macko, S. 2009 Combined effects of soil moisture and
nitrogen availability variations on grass productivity in
African savannas. Plant Soil 328, 95–108. (doi:10.1007/
s11104-009-0085-z)

46 Woodward, F. I. & Kelly, C. K. 2008 Responses of
global plant diversity capacity to changes in carbon
dioxide concentration and climate. Ecol. Lett. 11,
1229–1237. (doi:10.1111/j.1461-0248.2008.01240.x)

47 Morgan, J. A. et al. 2011 C4 grasses prosper as carbon
dioxide eliminates desiccation in warmed semi-arid
grassland. Nature 476, 202–206. (doi:10.1038/nature
10274)

48 Maseyk, K., Hemming, D., Angert, A., Leavitt, S. W. &

Yakir, D. 2011 Increase in water-use efficiency and
underlying processes in pine forests across a precipi-
tation gradient in the dry Mediterranean region over
the past 30 years. Oecologia 167, 573–85. (doi:10.
1007/s00442-011-2010-4)

49 Tietjen, B., Jeltsch, F., Zehe, E., Classen, N.,
Groengroeft, A., Schiffers, K. & Oldeland, J. 2010
Effects of climate change on the coupled dynamics of
water and vegetation in drylands. Ecohydrology 3,
226–237. (doi:10.1002/eco.70)
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