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One important aspect of climate change is the increase in average temperature, which will not only
have direct physiological effects on all species but also indirectly modifies abundances, interaction
strengths, food-web topologies, community stability and functioning. In this theme issue, we high-
light a novel pathway through which warming indirectly affects ecological communities: by changing
their size structure (i.e. the body-size distributions). Warming can shift these distributions towards
dominance of small- over large-bodied species. The conceptual, theoretical and empirical research
described in this issue, in sum, suggests that effects of temperature may be dominated by changes in
size structure, with relatively weak direct effects. For example, temperature effects via size structure
have implications for top-down and bottom-up control in ecosystems and may ultimately yield novel
communities. Moreover, scaling up effects of temperature and body size from physiology to the
levels of populations, communities and ecosystems may provide a crucially important mechanistic
approach for forecasting future consequences of global warming.
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1. INTRODUCTION

Climate change may become one of the major drivers
affecting the diversity, composition, structure and
functioning of ecological communities over the next
several decades. Specific changes will include shifts in
the means and variability of ecologically important fac-
tors, including temperature, precipitation, irradiance
and wind. While all of these aspects of climate change
are likely to have profound effects on natural commu-
nities, with potential feedbacks from communities to
climate, the focus of this theme issue is on warming.
Global surface temperature increased by 0.74°C on
average over the last century (1906—2005) with greater
warming on land than on oceans [1]. Future warming
is likely to be between 1.1°C and 6.4°C by the end of
the twenty-first century, depending on the projection
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scenario used [1]. Predicted increases in global mean
temperature conceal, of course, considerable regional
and local variation. For example, land surfaces,
mountain ranges and arctic regions are experiencing
stronger increases in temperature than other areas [1].
A pressing issue is predicting the effect of increased
temperature for ecosystems across the globe.

Among the various pathways by which temperature
affects ecological communities, the increase in rate of
biochemical reactions caused by warming is particu-
larly well known. Increases in temperature directly
affect all individuals in a community, particularly
ectotherms (figure la), by accelerating the speed of
all biochemical reactions that compose their cellular
metabolism [2]. This heated metabolism has knock-
on effects on the physiological rates, including
growth, reproduction, respiration and mortality [2-5].

Climate change will affect patterns and processes of
species and food webs in a variety of ways besides meta-
bolic rates, such as modification of dispersal rates, spatial
decoupling of interactions and shifted phenology

This journal is © 2012 The Royal Society


mailto:ubrose@gwdg.de
http://crossmark.crossref.org/dialog/?doi=10.1098/rstb.2012.0232&domain=pdf&date_stamp=2012-09-24

2904 U. Brose et al.

Introduction. Climate change and size structure

(community g

direct trophic effect

direct temperature
effect

first degree effect

second degree effect

third+ degree effect

emergent community
effect

on individual
physiology

ecosystem
functioning &

Yy 4

on population biomass
density and stability

on feeding rates

on community structure
and stability

on rates and stability of
ecoystem processes

© 060060 0000 <=

Figure 1. Direct temperature effects on individual physiology (red, a) affect population biomass density and stability
(orange, b) and feeding interactions (orange, c), cascading through the food web on trophically adjacent (yellow, b) and
remote populations (white, b) with knock-on consequences for community structure and stability (purple, d) and ecosystem

functioning (purple, e).

resulting in a rearrangement of species interactions
[6]. This theme issue, however, focuses primarily
on metabolic consequences of warming as one of the
most fundamental and universal impacts at the level
of individual organisms, and at higher levels of organi-
zation, such as populations, communities and
ecosystems. Additionally, metabolic process rates are
strongly constrained by individual body masses [3,5],
which indicate an important interaction between body
masses and environmental temperature that is rooted
in cellular metabolism. Ultimately, the metabolic and
physiological effects of climate change on higher levels
of ecological organization may provide a mechanistic
and predictive understanding how increasing tempera-
ture may modify natural ecological communities. This
theme issue integrates novel approaches for addressing
the consequences of climate change in complex, size-
structured ecosystems. This includes the development
of novel concepts [7—10], model analyses [11-13] and
empirical studies in marine [14,15], freshwater [16,17]
and terrestrial ecosystems [18—22]. In the following,
we will introduce the framework of this theme issue by
describing the complexity and the size structure of natu-
ral communities and how they might interact with
climate change in determining top-down or bottom-up
control, community stability and spatial processes.
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2. FOOD WEBS AND INDIRECT
WARMING EFFECTS
Trophic consumer—resource interactions provide the
backbone of ecological and evolutionary dynamics,
as all species must acquire resources to survive and
reproduce. These fundamentally important energetic
interactions among species compose complex food
webs, in which all species of a community are directly
(by a consumer—resource interaction; figure 1: arrows)
or indirectly (over multiple consumer—resource inter-
actions) linked to each other. In these complex
networks, direct temperature effects on the physiology
of a species (figure 1: a) will modify the growth and
mortality conditions of all other species of the commu-
nity resulting in different biomass and abundance
densities (figure 1: b). Hence, direct temperature
effects at the physiology level (figure 1: red a) can
cause changes at the population level of the same
species (figure 1: orange b), species that are directly
linked (figure 1: yellow b) and also species that are
only indirectly linked (figure 1: white b). Henceforth,
we will refer to all effects that are not mediated by
direct modifications of a species’ physiology as indirect
warming effects.

Understanding the potential for cascading effects to
spread through a food web requires knowledge on how
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Figure 2. Thermal cascades in a tri-trophic food chain: temperature may affect populations positively or negatively. These

direct effects (red, a) trigger thermal cascades on populations on lower or higher trophic levels. Sizes of the nodes represent
changes in population biomass densities relative to original food chain (left panel).

pairs of species are trophically connected. In food
webs, there are often relatively short paths between
pairs of species: on average, any pair of species is sep-
arated by only two links (i.e. there is one intermediary
species) [23,24]. Despite a general decay in interaction
strength with the number of links involved [25], these
short paths imply that climatic effects on a species will
lead to indirect effects on almost all other species
within the food web. Interestingly, these cascading
effects of external stressors can be much stronger
than the immediate effects of stressors on particular
species [26]. This can cause apparently idiosyncratic
effects, because the consequences of positive or negative
direct warming effects have different indirect implications
depending on (i) which species is directly affected (e.g.
top or basal species) and (i) whether the cascade is
bottom-up or top-down (see figure 2 for an illustration).
For instance, a negative response of the basal species in
the food chain of figure 2 may reflect a direct negative
warming effect on the basal or the top species, and a posi-
tive response of the top species can be associated with a
direct positive warming effect on the top or the basal
species (figure 2). Predicting the likelihood and strength
of these ‘thermal cascades’ will depend on our under-
standing of warming effects on network structure [27]
and species interaction strengths [28,29].

In addition to physiological accelerations, warming
can have effects on the interaction strengths between
species (figure 1: ¢) driven by digestion, movement, be-
haviour and encounter rates [30,31]. While biochemical
accelerations of digestion rates increase the maximum
feeding rates of consumers and decrease the time they
require for handling resources, behavioural responses
to warming drive the rates of movement, encounter,
attack and also interference competition among consu-
mer individuals [28,29,32,33]. Two contributions to
this theme issue analyse consumer—resource interaction
strengths, one focusing on a marine benthic community
[15] and the other on a global database of nonlinear
functional responses across different ecosystem types
[10]. Interestingly, both studies support prior findings
[28,29,32] that increases in feeding rates with tempera-
ture are generally weaker than those of respiration,
but also that many species show considerable variation
in their mass-feeding rate scalings with temperature
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[10,15]. This indicates that warming should cause
net energy losses, which might explain decreases in
population densities with warming [34]. Moreover,
nonlinear deviations from simple exponential Arrhenius
relationships indicate that warming effects go beyond
simple accelerations of physiological processes
[10,33]. In particular, behavioural responses cause non-
linear deviations that need to be taken into account for
understanding how warming effects on interaction
strength (i) differ across species [15] and (ii) interact
with constraints of body masses [10].

Overall, predicting the consequences of warming
requires knowledge of the topology of the interaction
network as well as interaction strengths [25,35-37],
which are both closely linked to the body masses
of the species and the community size structure
[38—-46]. Subsequently, we will first describe the con-
cept of size-structured communities and then illustrate
its interaction with warming effects.

3. SIZE STRUCTURE OF NATURAL
COMMUNITIES

Food webs can contain hundreds of species and
thousands of interactions. However, they exhibit a sur-
prisingly consistent topological architecture across
different ecosystem types [47-51] and evolutionary
time [52]. This conserved architecture is mediated
by fundamental constraints on who can consume
whom, leading to a pattern of strongly hierarchically
ordered sets of species that feed on nearly contiguous
ranges of mostly lower ranked species [53,54]. While
this ordering is likely influenced by various factors,
one of the strongest drivers may be organismal size
determining, for example, that many species feed on
resources smaller than themselves (figure 3), and
feed on all taxa between a specific minimum and maxi-
mum size [41,46,55—-57]. Some types of consumers
break these rules; for example, it is obvious that
parasitoids and parasites feed on organisms larger
than themselves [39,58—-60]. In general, however,
predator—prey communities exhibit a consistent size
structure (see figure 3 for an illustration) characterized
by (i) increases in body masses with trophic levels
(i.e. predators become larger along food chains),
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Figure 3. Body size determines the trophic position and net-
work environment of a species: with increasing body size the
trophic level and the number of prey species (generality)
increases and the number of predators (vulnerability) decreases.

(i1) decreases in predator—prey size ratios with trophic
levels (i.e. predators and their prey become more simi-
larly sized along food chains), while (iii) generality (i.e.
the number of links to prey) and vulnerability (i.e. the
number of links to predators) increase and decrease,
respectively, with body mass [39,42,43,45,61]. In con-
sequence, large and rare species usually occupy high
trophic levels, consume many prey species and have
few predators, whereas small and abundant species
are found at low trophic levels with few links to prey
but many links to predators (figure 3). Hence, many
characteristics of how species are embedded in
complex food webs are determined by their sizes
[45,46,57,62], which stimulated the development of
allometric network models [41].

These allometric studies include taxonomically
defined species that are characterized by their popu-
lation-averaged body masses thus ignoring variance
in body masses within populations. During their onto-
genetic development, however, individuals often
increase in size by several orders of magnitude,
which can lead to drastic changes in diet during an
individual’s life. This has led to a ‘size spectrum’
approach to food web ecology [63-65]. In this
approach, individuals differ only in body size (taxo-
nomic differences are ignored), individuals grow at a
rate determined by how much they eat, and what
they eat is determined by their size. Studies bridging
the gap between purely size-based and purely taxo-
nomic descriptions of ecosystems are beginning to
emerge and show that, for example, predicting the
strengths of trophic interactions [66] or the robustness
of food webs [67] benefits from analysis of both
taxonomy and size.

The systematic size structure of natural communities
is crucially important for maintaining network persist-
ence (i.e. decreasing the likelihood that dynamics lead
to extinctions) [61,68—70], preventing competitive
exclusion processes among basal species such as plants
[69], and buffering against unstable enrichment effects
[71] and secondary extinctions waves [72]. However,
the question of how warming interacts with size structure
has been relatively unexplored. The contributions to this
theme issue bridge this gap. As many qualitative aspects
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of size structure (figure 3) equally characterize marine,
freshwater and terrestrial ecosystems [42,43], this
may allow generalizing the findings across these diverse
community types. In the following, we introduce the con-
tributions to this theme issue on effects of warming in
size-structured communities in sections on top-down
or bottom-up control, changes in community stability
and interactions with spatial patterns and processes.

4. WARMING AND TOP-DOWN CONTROL
Warming often induces decreases in individual
body masses within and across populations [73,74]
suggesting that warmed communities may be composed
of more abundant, smaller species (figure 4a). While
these smaller species are expected to exhibit more
rapid population oscillations and lower community
stability [75], they will also have different diets, which
will likely modify network structure (figure 4b).
For instance, by using a temperature-based extension
of the allometric diet-breadth model, Petchey et al
[27,41] suggest that future networks may be character-
ized by smaller species with less links, more intra-guild
predation and lower trophic levels (figure 4b). These
network modifications may have severe implications,
as top-down control should be weakened by intraguild
predation, which may negatively impact ecosystem
functioning [76]. Locally or temporally, however,
warming can also have positive effects on population-
averaged body sizes, for example, by favouring larger
individuals in particular seasons [17]. The interaction
of warming with the size structure of the community
thus needs to be specified for the geographical location
and season. One contribution to this theme issue
presents a replicated drought experiment to simulate cli-
mate change effects on stream food webs [16]. Drought
simplified the food webs by reducing species richness
and the number of trophic links. Interestingly, two
classes of species were particularly prone to extinction:
(1) the largest species, and (ii) those that were rare for
their size (i.e. rare after accounting for effects of their
body size, [16]).

Warming may also alter predator—prey size ratios,
but as a result of differential range shifts of predators
and prey [21]. Prey of vertebrate species migrating in
altitude are larger than prey species already inhabiting
this area, whereas predators that expand their ranges in
altitude are not different in size than the natives [21].
This leads to decreases in predator—prey body-size
ratios, which have similar implications for the commu-
nity size structure as the loss of large species, and this
is ultimately likely to affect community dynamics
[61,68,75].

The loss of large-bodied populations in food webs—
as may result from warming [73,74]—may cause
secondary-extinction avalanches [72,77,78]. Climate
change may thus induce trophic cascades where the
loss of species (in particular large ones) has alternating
positive and negative effects on the trophic levels below
(figure 2). These trophic cascades generally structure
biomass distributions across populations in different
ecosystem types [79]. Warming generally increases the
individual consumption rates [10,15], which may
explain the intensified trophic cascade in the planktonic
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Figure 4. Warming modifies the community size structure. (a) Warming decreases individual and population-averaged body
masses. (b) This decreases the trophic positions of the populations within the food web thus leading to food webs with

lower average trophic levels and more omnivory.

food web of a pond mesocosm experiment [17]. How-
ever, the lack of a warming effect on the benthic
trophic cascade in the same experiment illustrates that
species interactions are often driven by more complex
constraints than simple metabolic changes.

One issue specific to terrestrial ecosystems is that
effects of warming on size structure may differ between
the below- and above-ground compartments. While
small species profit from warming in the above-ground
part, increasing temperatures may benefit larger species
in the below-ground realm [8]. This is exemplified in
this theme issue for the boreal-temperate ecotone of
the Great Lakes Region, USA, [8], where moose repla-
cement by small deer is associated with changes
in below-ground communities from small mesofaunal
detritivores to dominance by larger earthworms. Inter-
estingly, these changes in the size structure may
impose top-down control on plant communities and
thus indirectly determine the community structure [8].

In addition, warming may induce more subtle indir-
ect effects that do not involve species’ extinctions. For
instance, warming causes shifts in species’ phenologies,
which can lead to trophic cascades if consumer and
resource phenologies become temporally desynchro-
nized [80]. This concept is supported by analyses of a
10-year-dataset of a host—parasitoid network with
aphids as the basal species [18]. Distinct seasonal pat-
terns in parasitoid activity suggest how climate change
may alter feeding behaviour thus modifying the indirect
interaction network. The analyses show how climate
change may shift behavioural patterns with a strong
feedback on biological control [18].

Another aspect of indirect effects is warming-induced
shifts towards lower individual body sizes in top-
predator populations. These shifts in population size
structure change consumption strengths [10] and thus
induce cascading effects on lower trophic levels without
extinctions of top predators in a marine experiment
[14]. In that experiment, an allometrically induced cas-
cade was transmitted over four trophic levels and
ultimately caused an increase in algal biomass. Interest-
ingly, this suggests that warming may have profound
consequences for ecosystem functioning prior to extinc-
tions [14]. In the same vein, an aquatic mesocosm
experiment demonstrated that long-term changes in
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the size structure had knock-on effects on community
metabolism and biogeochemical fluxes that were
stronger than the direct consequences of warming [9].

Thus, in the short-term, warming will induce
physiological and behavioural responses that manifest
as altered consumption patterns [10]. The resulting
shifts in the size structure of the community towards
populations of smaller individuals can induce trophic
cascades that modify biomass distribution across
size classes and trophic levels [14]. These modifi-
cations can lead to the loss of existing interactions
and the emergence of novel ones, leading to different
food-web structures [7]. Hence, understanding the
interplay of direct warming effects with indirect effects
of modified community size structures may provide a
generalized understanding of climate change impacts
on natural communities. Overall, these studies suggest
that warming of ecosystems should lead to accelerated
feeding rates and consequently stronger top-down
control over short time-scales, whereas food-web re-
organization may ultimately lead to weaker top-down
control of smaller consumers with more intra-guild
predation (figure 4).

5. WARMING AND BOTTOM-UP CONTROL
Increases in atmospheric carbon dioxide will modify the
growth conditions for autotrophic plant species. Plant
species generally respond to increased carbon supply
by a higher production rate and higher carbon contents
in their tissue, which modifies their stoichiometry (e.g.
higher C/N and C/P ratios) [81]. Among many other
major impacts of climate change, both higher pro-
duction rates and lower stoichiometric quality of the
basal plant species may impose bottom-up control on
natural communities.

Changes in basal resource quality can greatly modify
the feeding and growth conditions for herbivores [82]
and detritivores [19]. Understanding bottom-up conse-
quences of climate change thus requires bridging the
gap between metabolic theory, which quantifies effects
of environmental temperature on physiological proces-
ses, and stoichiometric theory, which conceptualizes
constraints of elemental concentrations on growth.
Moreover, the reaction of terrestrial decomposers
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to variation in resource stoichiometry depends on meta-
bolic constraints [19]. While small-bodied decomposers
and cool temperatures lead to avoidance of poor
resources, increases in decomposer body mass or temp-
erature cause higher metabolic rates, which triggers
compensatory feeding on poorer resources. Strikingly,
this implies that warming may lead to stronger decompo-
sition of the poorest resources, which may accelerate the
release of carbon from terrestrial pools [19].

Increased productivity at the base of food webs can
increase the energy supply for higher trophic-level con-
sumers, thus supporting more diverse communities, but
it can also destabilize dynamics [71]. In consequence,
low- and high-productivity communities may gain and
lose, respectively, species by these enrichment effects.
Crucially, these enrichment effects on complex commu-
nities can vary dramatically with the size structure of the
community [71]. One contribution to this theme issue
uses food-chain models to study the interactive effects
of nutrient enrichment and warming in communi-
ties with and without size structure [11]. Warming
induces inverse enrichment effects in size-structured
communities leading to lower biomass densities and
dampened oscillations. Surprisingly, classic paradox of
enrichment effects can thus be diminished by warming,
which is consistent with recent experimental data [83].
However, the stabilizing effects of warming are much
more pronounced in size-structured (consumers larger
than their resources) compared with unstructured com-
munities (consumer and resources similarly sized) [11].

These theoretical model analyses are consistent
with the results of a freshwater experiment in which
warming reduced enrichment effects on benthic and
pelagic autotrophs while strengthening the top-down
effects of fish species [17]. In a field manipulation of
the temperature and nitrogen load experienced by
a host—parasitoid food web, however, increasing temp-
erature or nitrogen yielded higher host densities and
consequently more generalized feeding by parasitoids.
Interestingly, increasing temperature and nitrogen
simultaneously did not yield an additive response in
host density or parasitoid generality, suggesting that
they do not interact linearly [20]. Differences in
whether warming counteracts enrichment [17] or if
both effects are non-additive [20] may be explained
by the presence of a strongly size-structured preda-
tor—prey community in the aquatic experiment of
the former and the lack thereof in the host—parasitoid
community of the latter study as suggested by model
analyses [11]. Interestingly, the size structure of
host—parasitoid communities may be strengthened by
warming [18,20], which may modify interactions
with enrichment. In conclusion, understanding
how warming modifies bottom-up control by basal
resource quality (i.e. stoichiometry) or quantity (i.e.
productivity) depends strongly on the size structure
of the community.

6. WARMING AND ECOSYSTEM STABILITY

Although the consistent size structure of communities
has been studied over several decades [38,39,56,
84,85], its importance for their dynamic stability has
been unravelled only more recently [61,64,68,69,
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75,86]. Decreasing metabolic rates with increasing
body masses and trophic levels yield patterns of
weaker interactions at the top [86]. These systematic
patterns in interaction strengths across trophic levels
places communities in a domain of relatively high stab-
ility that corresponds to natural body-mass patterns
[61]. Accounting for effects of warming on metabolic
rates yields similar stability domains for simulated
food chains across a temperature axis [11]. This study
demonstrated that warming can dampen population
oscillations by reducing predator—prey interaction
strengths. Surprisingly, this finding contrasts with
prior model analyses demonstrating that warming
should destabilize population dynamics [87,88]. In con-
trast to those prior studies, Binzer et al. [11] use
empirical relationships between the populations’ bio-
logical rates and warming [10]. However, decreases in
interaction strengths with warming, which stabilize
population dynamics, may ultimately cause predator
starvation [28]. The stability implications of warming
may thus represent a double-edged sword [11]. Simi-
larly, synthetic models of size-spectrum communities
and ocean-biogeochemical processes can be used to pre-
dict the consequences of warming for community-level
patterns such as primary and fish production in
marine ecosystems [13]. Interestingly, fish production
depends more on primary production than on direct
effects of temperature, thus stressing the importance
of thermal bottom-up cascades (figure 2) in marine sys-
tems. Predicted declines of 30—-60% in fish production
will impose severe threats on the security of the future
food supply [13]. These studies suggest that warming
may have complex effects on community-level pat-
terns (figure 1d) that feed back to determine
population persistence, with high-trophic-level species
being most threatened.

7. WARMING AND SPATIAL PROCESSES

While top-down and bottom-up control, as well as
food-web stability, structure local communities, eco-
systems are also affected by spatial processes. In
particular, habitat fragmentation is one of the major
global-change drivers of ecosystem changes, and dis-
persal of individuals between local communities may
have severe implications for their structure and func-
tioning. While fragmentation effects on communities
have been intensively explored [89-91], interactions
between warming and fragmentation have received
less attention. Generally, warming should increase
movement rates of ectotherm organisms [4], which
should lead to higher dispersal rates between local
habitats. However, warming may also increase the hos-
tility of the landscape matrix surrounding the local
habitats thus yielding higher extinction rates during
dispersal. In an analysis of a spatially and dynamically
explicit metacommunity model, community persist-
ence was highest at intermediate levels of dispersal
[12]. Persistence decreased towards low dispersal
rates, because local bottom-up extinction cascades
were not balanced by re-invasions. However, high dis-
persal rates also decreased persistence due to high
mortality experienced by the dispersing individuals
[12]. Perdomo et al. [22] complement this theoretical
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approach by addressing interactions between habitat
fragmentation and warming in a laboratory experiment
with moss communities. They applied a temperature
shock event and studied the recolonization of the
micro-arthropod communities on satellite islands from
a source mainland at different temperatures. The study
highlights the value of dispersal for the recovery of habi-
tat patches affected by catastrophic climatic events, and
shows that community assembly can depend on the
degree of habitat isolation and on temperature. Interest-
ingly, communities impacted by these stressors showed
size-structures unlike those seen in field communities:
A few large, prey species became highly dominant in
abundance [22]. This illustrates that warming may
strongly interact with spatial processes such as dispersal
in structuring ecological communities.

8. CONCLUSIONS

The contributions to this theme issue demonstrate that
warming will have strong implications for ecological
communities. Warming directly accelerates individual
metabolic rates [2-5,15,92], which causes increased
feeding rates [10,15]. Over the short term, this can
lead to increased top-down control and trophic cas-
cades. However, increases in feeding rates with
warming are generally weaker than those of metabolism
[15,28,29], which should lead to reduced consumer
densities and long-term reductions in top-down control
and trophic cascades. Interestingly, experimental results
are mixed, with increases and decreases of trophic cas-
cade strength in the planktonic and benthic food web,
respectively [17]. Moreover, shifts in the body-mass dis-
tributions of populations can be triggered by warming or
drought of freshwater ecosystems [17,73,93]. These
modifications in the community size structure can
relax top-down control causing modifications in pri-
mary production [14], secondary production [13],
community metabolism and biogeochemical fluxes
exceeding the direct consequences of warming [9].

In addition, warming also interacts with the commu-
nity size structure in determining bottom-up control.
While warming ameliorates nutrient enrichment effects
in size-structured communities, this effect disappears
in communities with less variance in body size such
as host—parasitoid systems [11,17,20]. Moreover,
compensatory feeding on stoichiometric poor resources
may be increased by decomposer body mass as well
as warming leading to accelerated release of CO,
from soil ecosystems, particularly in size-structured
communities [19].

The results presented in this theme issue suggest that
warming modifies the size structure of communities with
effects on top-down and bottom-up control that exceed
the direct temperature effects. These indirect warming
effects can lead to severely changed community
compositions [7,8,22], food-web topologies [16,21],
predator—prey size ratios [21], network dynamics [11]
and drastically altered ecosystem functioning [9,13]. Inte-
gration of temperature effects with modifications of the
community size structure can thus yield a more mechan-
istic and predictive understanding how global warming
may restructure ecosystems. The interplay between
conceptual, theoretical and empirical approaches
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addressing the consequences of warming in this theme
issue may serve as a role model for future interdisciplinary
projects tackling other implications of climate change.
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