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Knowledge of feeding rates is the basis to understand interaction strength and subsequently the stab-
ility of ecosystems and biodiversity. Feeding rates, as all biological rates, depend on consumer and
resource body masses and environmental temperature. Despite five decades of research on functional
responses as quantitative models of feeding rates, a unifying framework of how they scale with body
masses and temperature is still lacking. This is perplexing, considering that the strength of functional
responses (i.e. interaction strengths) is crucially important for the stability of simple consumer–
resource systems and the persistence, sustainability and biodiversity of complex communities. Here,
we present the largest currently available database on functional response parameters and their scaling
with body mass and temperature. Moreover, these data are integrated across ecosystems and metabolic
types of species. Surprisingly, we found general temperature dependencies that differed from the
Arrhenius terms predicted by metabolic models. Additionally, the body-mass-scaling relationships
were more complex than expected and differed across ecosystems and metabolic types. At local
scales (taxonomically narrow groups of consumer–resource pairs), we found hump-shaped deviations
from the temperature and body-mass-scaling relationships. Despite the complexity of our results, these
body-mass- and temperature-scaling models remain useful as a mechanistic basis for predicting the
consequences of warming for interaction strengths, population dynamics and network stability
across communities differing in their size structure.

Keywords: functional response; warming; body size; interaction strength; metabolic theory;
allometric scaling
1. INTRODUCTION
Feeding rates are closely related to interaction strengths
[1,2], and thus any motivation for measuring interac-
tion strengths, such as understanding the stability
of populations and communities [3–6], the flows of
energy in ecosystems [7] and the functional conse-
quences of biodiversity loss [8], applies equally to
estimating feeding rates. In particular, a mechanistic
understanding of how temperature affects feeding
rates will provide critically important information on
the consequences of global warming for population
and community characteristics [9–12]. In this study,
we show how functional responses, i.e. quantitative
r for correspondence (brall@gwdg.de).

tribution of 17 to a Theme Issue ‘Climate change in size-
ed ecosystems’.

2923
models of interaction strengths, depend on temperature
as well as consumer and resource body sizes.

Interaction strengths describe how changes in biomass
of one species affect other species’ biomass densities [13].
Although non-trophic interactions can be important
drivers of population and community dynamics [14],
important aspects of interaction strengths are driven by
feeding interactions [2]. The strengths of these feeding
interactions are highly variable across spatial and tem-
poral gradients [15,16]. Functional responses capture
some of this variability by describing how feeding rates
vary with resource abundance (figure 1a,b): as such the
common notion of a weak or strong interaction is
resource-dependent and related to functional response
parameters [4]. For example, high attack rates imply
high feeding rates (all else being equal) and thus strong
interactions. Hence, functional responses determine
interaction strengths in analyses of consumer–resource
This journal is q 2012 The Royal Society
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Figure 1. Conceptual visualization of theoretical aspects. (a) Attack rates determine the initial increase in feeding rate at low
resource abundance (aN, black arrows). At low resource densities, increasing attack rates (all else equal) correspond to higher
feeding rates (red arrow). (b) Decreasing handling times lead to an increase in overall feeding rate (red arrow, horizontal lines

correspond to maximum feeding rates Fmax � 1/h). Feeding rates additionally depend on consumer and resource body size (c)
and temperature (d). On a global interspecific scale, the rates (here exemplified using the attack rate) increase linearly with
consumer mass in a log–log space (c). Within particular taxonomic groups, hump-shaped relationships are expected
(orange, blue and red humps). Assuming a constant resource mass and an increasing consumer mass leads to different opti-
mal body-mass ratios forming a plethora of small humps along the line of the global model (orange humps). Assuming a

constant body-mass ratio and an increasing resource mass leads to different optimal predator masses (grey arrow from the
blue to the red hump). Similarly, species have different thermal windows (d). To detect these multiple overlaying humps,
we adopted a nested statistical design that first investigates the global relationships and, in a second step, the humps as residual
deviations from the global model.
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population dynamics [17–20], the stability of complex
food webs [20–23] and structural patterns of food
webs [11,24,25].

Measuring a functional response requires sufficiently
replicated feeding rates across a gradient of resource
densities. Even for a small food web such as Broadstone
Stream [26], comprising 131 species with 891 trophic
interactions, quantifying functional responses for each
of these interactions would be logistically impossible.
Instead, systematic scaling relationships of functional
responses with organism size [19,24,27] and tempera-
ture [11,28–30] can provide estimates of interaction
strengths. Here, we present a novel and extensive
analysis of the allometric and temperature scaling of
functional responses, test their universality across
ecosystems and metabolic types of species and check
their consistency with theoretical expectations. These
relationships will be, for example, useful for parametriz-
ing models of community responses to biodiversity loss
and environmental change [12].

(a) The anatomy of the functional response

The functional response describes the relationship
between the per capita feeding rate of a consumer i,
Fij (individualsi s21) and the density Nj (individualsi

m22 or 23), of the resource j being fed on. Density is
measured in units of per metre squared or cubed,
depending on whether the consumer is foraging on a
surface or in a volume. The parameters of a functional
response model (sensu Holling [31]) are attack rate,
Phil. Trans. R. Soc. B (2012)
aij (m2 or 3 s21), and handling time, hij (s). Attack
rates describe the initial increase in a functional
response (figure 1a, black arrows), whereas handling
time limits the maximum feeding rate (figure 1b, hori-
zontal asymptotic lines), which yields a hyperbolic
Holling type II curve [31]:

Fij ¼
aijNj

1þ aijhijNj

: ð1:1Þ

Biologically, handling time describes the time a consu-
mer needs to fight, subdue, ingest [31] and digest a
resource item [32]. The attack rate is the rate of suc-
cessful attacks (also termed capture rate [33],
instantaneous rate of successful search [31], maximum
filtration rate [34] or maximum interaction strength
[4]) and includes processes such as searching (e.g.
movement), detection, encounter and success of the
attack [27]. Some functional responses in our database
exhibited a sigmoid shape (type III, not shown), where
the attack rate increases with resource density, a / Nq,
with a nonlinearity described by q [21,35,36]. We fol-
lowed Englund et al. [30] and used the attack rate at
the half saturation density to include type III func-
tional responses in our analyses.
(b) Body-mass dependence

Since the nineteenth century, biologists have reported
biological rates to scale nonlinearly with organism
body mass (i.e. allometric scaling) [37]. Allometric
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scaling of metabolic rates is perhaps the most widely
studied [38–40], though other quantities have
received considerable attention, e.g. growth rates,
death rates and population abundances [38,39]. The
size dependence of functional responses has been
investigated for different specific taxonomic groups
[36,41,42], but there is a lack of a unifying framework,
and limited data collation over ecosystem types and
physiological blueprints. In the following, we develop
a null hypothesis for the allometric relationships for
handling time and attack rate.

Handling times: We recast the functional response
following Koen-Alonso [33] to the form of

Fij ¼ Fij;max f ðaij ;NjÞ; ð1:2Þ

where Fij,max ¼ 1/hij (figure 1b, asymptotic lines) is the
maximum feeding rate, and fij ¼ aijNj /(Fij,maxþ aijNj) is
a non-dimensional feeding level taking values between
0 and 1 that describes the proximity to maximum
feeding capacity of the consumer [43]. Handling
time as used here is a phenomenological description,
including both physical handling (i.e. attacking, over-
whelming and chewing a resource) and digestion
[32,44]. Metabolic theory suggests that metabolic
rate scales with a 3/4 power law of body mass [38].
Therefore, to persist, a predator at least needs to
balance its food intake rate (via Fij) to the metabolic
rate, meaning that Fij,max should share scaling relation-
ship with metabolic rate, which subsequently means
that handling time should scale as

hij ¼
1

Fij;max

/m�0:75
i : ð1:3Þ

Besides the Metabolic Theory of Ecology, other frame-
works invoke more flexible theories that predict
exponents from 0.66 to 1 for metabolic rates [45,46],
leading to a continuum of expectations for the handling
time scaling in the range from 20.66 to 21.

Resource size naturally also influences handling
time, as it takes longer to handle larger prey. Classi-
cally, many bioenergetic models [19,20,22,23] and
older functional response studies [34] assumed that
resource mass is linearly proportional to digestion
time leading to an isometric scaling. However, there
is a more complex interplay between the degree to
which time is devoted to ingestion and the subsequent
digestion of the resulting resource pieces [32]. In the
extremes, assuming that resource mass is negligible
for the consumer, handling time does not depend on
resource mass. Overall, this means that the resource-
scaling exponent is expected to be in the range from
0 to 1:

hij ¼ h0m
�ð0:66 to 1Þ
i m0 to 1

j ð1:4Þ

Attack rates describe the feeding rate at low resource
density where handling time is negligible (Fij! aijNj

for Nj! 0 [4]). As a null model, we assume that the
possibility of encounter of two individuals (consumer
and resource) is proportional to the area or the
volume that is searched per unit time while ignoring
any movement of the resource (zero resource mass
scaling) [47]. Following McGill & Mittelbach [47],
Phil. Trans. R. Soc. B (2012)
we assume the speed of movement to scale with a
1/4 exponent [39]. The area or volume that is searched
per unit time is given by the locomotive rate (distance
per time, see exponent for movement) and (i) the
visual search width for surface animals (assumed pro-
portional to body length: 1/3 exponent) or (ii) the
visual search area by animals hunting in volumes
(assumed proportional to squared reaction distance:
two-third exponent) [47]. Subsequently, the expected
scaling exponents for consumer mass become 0.58
(1/4 þ 1/3) and 0.92 (1/4 þ 2/3) for consumers in
two- and three-dimensional environments, respectively
[47]. The visibility of the resource increases with
resource body mass with a 1/3 to a 2/3 power law in
dependence if the environment is two- or three-dimen-
sional [47]. Moreover, typically environments are not
purely two- or three-dimensional due to habitat
structure [47] leading to a broad continuum of
possible slopes:

aij ¼ a0m0:58 to 0:92
i m0:33 to 0:66

j : ð1:5Þ

Analogies similar to speed of movement and reac-
tion distance/area apply for animals with different
feeding strategies (e.g. filtrators, sit-and-wait, noctur-
nal or olfactorial consumers); different exponents
may naturally be achieved. Furthermore, this simple
null hypothesis neglects all behavioural aspects.
(c) Temperature dependence

Biological rates depend not only on body masses but
also, as all chemical reactions, on temperature. The
Metabolic Theory of Ecology [38] extends the allo-
metric descriptions of metabolic rate, I, with the
addition of the Arrhenius temperature dependence
[48–50] such that: I ¼ I0m0:75e

EI(T�T0)=kTT0 ; where EI

(eV) is the activation energy describing the exponential
increase in the metabolism with temperature, k
(eV K21) the Boltzmann constant, T (K) is the absol-
ute temperature and T0 sets the intercept of the
temperature relationship at T0, rather than at zero
Kelvin [11,29]. By applying the same idea to the hand-
ling time and attack rate relationships, equations (1.4)
and (1.5) yield

hij ¼ h0m
�ð0:66 to 1Þ
i m0 to 1

j eEhðT�T0Þ=kTT0 ð1:6Þ

and

aij ¼ a0m0:58 to 0:92
i m0:33 to 0:66

j eEaðT�T0Þ=kTT0 ; ð1:7Þ

where Eh and Ea refer to the activation energy of hand-
ling time and attack rates, respectively. Gillooly et al.
[50] argue that for metabolic rates the expected range
of activation energies fall in the range of 0.6–0.7 eV,
as this is the average of all biochemical reactions. For
simplicity, many studies normalize or test their data
using the value of 0.65 (see Brown et al. [38] for an
example). Other theories predict a larger range of poss-
ible activation energies ranging from 0.46 to 0.96 [51].
As the maximum feeding rate is the inverse of the hand-
ling time (see above), we expect an activation energy of
from 20.96 to 20.46 for handling time. As there is no
conceptional background for the temperature depen-
dence of attack rate or movement, we use as a null
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expectation the average biological activation energy of
0.65 eV (ranging from 0.46 to 0.96 [51]) for the
attack rate.
(d) Deviations from the global models: going to

the extremes

Besides the log-linear ‘global’ models, many case
studies document hump-shaped relationships for
attack rates with consumer size or body-mass ratio
[36,41,52–55] (figure 1c, humps). Also, humps with
increasing temperature were reported for attack rates
[56] and maximum feeding rates [57] as summarized
by Englund et al. [30]. Especially, for attack rates in
dependency of the body-mass ratio, humps are often
reported [36,41,52–54], whereas they appear only in
approximately 40 per cent of all studies for temperature
[30]. Additionally, the parameters describing the
humps such as optimal foraging mass ratio vary across
consumer–resource pairs [52] and the shape of the
humps with increasing temperature (also known as
thermal windows [58,59]) even varies with ontogenetic
stage. Moreover, these humps are hidden within a large
scatter of data points (figure 1c) and can vary in width
(figure 1d). Here, analyses of hump-shaped relation-
ships were constrained to studies that were designed
to investigate scaling with body mass or temperature.
(e) Expectations

We compiled and analysed the largest database of
functional responses currently available. We investi-
gated how handling times and attack rates depend on
consumer mass, resource mass and temperature.
Moreover, we collected data on the metabolic group
of the consumers (endotherm vertebrates, ectotherm
vertebrates, invertebrates and unicells), and the eco-
system types (freshwater, marine and terrestrial
ecosystems), following Brose et al. [60]. With this
dataset, we test the scaling relationships of attack
rates and handling time with temperature, consumer
and resource masses as described earlier. These ana-
lyses are carried out at global (pooling all data) and
local resolutions (more fine-grained analyses).
2. METHODS
(a) Data collection

We searched ISI Web of Science and Google Scholar
for the keywords ‘functional response’, ‘feeding rates’
with ‘prey/resource density’ and ‘non linear interaction
strength’. Additionally, we searched bibliographies of
found publications for further literature. We included
studies that provided information only about (i) temp-
erature; (ii) consumer and resource identity; and
(iii) the spatial size of the experimental units. If infor-
mation on body masses was not provided, we searched
for secondary literature to find average length or body
masses of the species. If only length was given, we used
allometric equations to calculate the mass of the
organisms according to Peters [39]. We used studies
that provided attack rates and handling times of type
II and type III functional responses estimated via
(i) Holling’s functions [31], (ii) Rogers random
equation [61,62], or (iii) time-series analyses (mainly
Phil. Trans. R. Soc. B (2012)
occurring in Hansen et al. [34]). If a study included
data that were not statistically analysed to provide
values for attack rates or handling times, we refitted
the data with Rogers random equation or Holling’s
function. The final functional response database
included 648 functional responses from 86 studies
including unicells (n ¼ 22), invertebrates (n ¼ 472),
ectotherm vertebrates (n ¼ 143) and endotherm ver-
tebrates (n ¼ 11) from marine (n ¼ 86), freshwater
(n ¼ 273) and terrestrial (n ¼ 288) ecosystems.
(b) Statistical procedures

We used the log-linear version of (1.6) and (1.7) yielding

lnðaijÞ ¼ lnða0Þ þ bilnðmiÞ þ bj lnðmjÞ þ Ea

ðT � T0Þ
kTT0

ð2:1Þ

and

lnðhijÞ ¼ lnðh0Þ þ cilnðmiÞ þ cj lnðmjÞ þ Eh

ðT � T0Þ
kTT0

;

ð2:2Þ

to fit a linear model to the data. Units were K for T, mg
for m, s for hij, m2 or 3 for aij and we set T0 to 293.15 K.
We applied a ‘random intercept model’ [63] using mixed
effect models with a maximum-likelihood estimator
(function ‘lme’ with ‘method ¼ML’ within the ‘nlme’
package [64] of the statistics program R [65]). To correct
for differences between studies such as length of the
experiment, moisture, pH, experimental procedure and
the foraging dimension (two- versus three-dimensional),
we used the study identity as a random factor in the
handling-time model and a nested formulation of
dimension/study identity as random factors in the
attack-rate model. However, we could not apply a
random intercept and slope model, because none of
the studies included all three continuous variables
(body mass of resource, consumer and temperature),
and the majority of studies only provided few data points.

We fitted (2.1) and (2.2) starting with a model includ-
ing free allometric slopes and a free activation energy and
a full model including interactions of metabolic ecosys-
tem type (including all possible combinations of
ecosystem types with species metabolic types) with allo-
metric slopes and activation energy. Then, we used the
automated ‘stepAIC’ function [66]. This function adds
or deletes automatically interactions or parameters
from or to a model until the lowest AIC (Akaike infor-
mation criterion) is reached, in order to find the most
parsimonious model. We started with both models
described earlier to avoid a local minimum.

Subsequently, we tested for hump-shaped devi-
ations from the global model in allometry (figure 1c)
and temperature (figure 1d) dependence. These devi-
ations are assumed to occur at a narrow taxonomic
range in allometry [52] and (at least for metabolism
and growth) for temperature [58,59]. Moreover,
these humps may be overlaid by the general global
intra-taxonomic trend (figure 1c). Hence, we used
only studies that were designed to investigate allo-
metric or temperature scaling of functional response
parameters. Hence, we saved residuals of the most
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Figure 2. Effects of temperature, consumer body mass and resource body mass (x-axis) on attack rates (a–c) and handling
times (d– f ) as estimated by the most parsimonious models. The y-axis refers to the partial residuals that only show the
effect of either temperature, body mass of the consumer or body mass of the resource while being corrected by the other effects.
The black dashed lines display the expected null hypothesis and the solid orange line shows the regression of rate versus
temperature; the group-dependent regressions are explained in the legend (b).

Scaling of feeding rates B. C. Rall et al. 2927
parsimonious models and built (i) subsets only includ-
ing studies that measured functional responses across a
body mass gradient of a close taxonomic group with at
least five measurements, and (ii) a subset including
studies measuring functional responses on a tempera-
ture gradient with at least four functional responses.
We fitted polynomial models, including a linear and
a quadratic term to these subsets:

1m ¼ lnð1m0Þ þ lnðRÞ þ ðlnðRÞÞ2 ð2:3Þ

and

1T ¼ lnð1T0Þ þ TC þ T 2
C; ð2:4Þ

where 1m and 1T are the residuals from the body mass
studies and from the temperature models, respectively,
R is the consumer–resource body-mass ratio and TC is
the temperature in degree Celsius. We used the body-
mass ratios instead of consumer or resource masses to
normalize the independent variable. To correct for
different linear deviations from the global intraspecific
model while focusing on hump deviations, we applied
a mixed effects model to the residual data. We used a
‘random intercept and slope model’ ([63], with ln(R)
or TC as random slope) using mixed effect models
with a maximum-likelihood estimator (function ‘lme’
with ‘method ¼ML’ within the nlme package [64] of
the statistics program R [65]) and the identity of the
study as the random effect influencing the intercept
and the linear slope of the model.
Phil. Trans. R. Soc. B (2012)
3. RESULTS
(a) Global relationships

Across the entire dataset, higher temperatures were
associated with higher attack rates and lower handling
times (figure 2 and table 1). There was no evidence
that the temperature scaling varied among metabo-
lic and ecosystem types. Interestingly, attack rates
increased less steeply than expected (figure 3a and
table 1) and handling times decreased less than
expected (figure 3d and table 1).

Also across the entire dataset, increases in consu-
mer mass were associated with increased attack rates
and decreased handling times (figures 2 and 3b,e).
The scaling exponents, however, differed across meta-
bolic and ecosystem types (figure 3b,e and table 1).
The mass scaling exponents of freshwater ectotherms
and unicells and terrestrial invertebrates deviated from
expectations (0.58 and 0.92; figure 3b). Moreover, scal-
ing exponents for consumer mass and handling time
were lower than expected for freshwater and marine
ectotherms and terrestrial invertebrates (figure 3e).

The scaling of attack rateswith resource masswas most
often shallower than expected (figures 2c and 3c), marine
unicells exhibited significantly negative exponents. The
exponent of terrestrial endotherms was most consistent
with the prediction of 0.33 to 0.66, and the exponent dis-
tributions of the four other groups overlap the predicted
range (figure 3c). All exponents estimated for the depen-
dence of handling time on resource mass were lower than
unity, and, as expected, we found a continuum of possible
slopes ranging from 0 to 1 (figure 3f and table 1).
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Together, these results suggest some general
trends: (i) temperature influences functional response
parameters less strongly than expected by metabolic
theory, (ii) attack rates exhibited exponents deviating
form theoretical predictions, and (iii) handling times
decreased less with consumer mass and increased less
with resource mass than expected.

(b) Local relationships

Attack rates followed hump-shaped relationships
with increasing consumer–resource body-mass ratios
(figure 4a, see legend for statistical outputs), whereas
we found no significant deviation from the global
model for the temperature dependence of attack
rates (figure 4b). Handling times followed a negative
hump-shaped relationship with increasing consu-
mer–resource body-mass ratios (figure 4c) and
temperature (figure 4d).
4. DISCUSSION
Knowledge on the scaling of feeding interactions with
species’ body masses and environmental temperature
is crucial to explain and predict population stability
and community persistence in nature. We analysed
the currently largest database on functional respon-
ses including 648 entries from 86 studies. We found
that functional responses followed universal scaling
relationships with temperature, whereas body-mass
dependencies, from analyses of diverse taxa ranging
over nearly 20 orders of magnitude in body mass,
varied among metabolic groups and ecosystem types.
In addition to these results, more fine-grained residual
analyses revealed hump-shaped relationships between
(i) attack rates and handling times with consumer–
resource body-mass ratios and (ii) handling times
and temperature. Together, these results yield novel
empirical relationships and scaling models relating
consumer–resource interaction strengths to their
body masses and the environmental temperature.
These findings could fuel a new generation of popu-
lation dynamic models. In addition, however, the
systematic deviations from predictions also stress the
need for novel mechanistic interaction models that
go beyond simple and somewhat phenomenological
metabolic considerations [47].

(a) Temperature dependence

Consistent with prior functional response studies
[28,30], we found that the activation energies of attack
rates (0.42) and handling times (20.30) were lower
than those found for metabolism (0.38–0.80 for invert-
ebrates [67], 0.43–0.79 for unicells to mammals [50]).
This suggests that feeding increases less strongly with
temperature than metabolism, which supports prior
conclusions that consumer biomass should decrease
with warming [10]. Interestingly, this implies that
warming should decrease interaction strengths at
per capita (lower individual consumption rates relative to
metabolism) and at population levels (lower consumer
population densities). While these weaker interaction
strengths may imply a higher stability of populations
and more persistent communities [3,4,68], they may
also cause consumer starvation [10,69].
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Consistent with previous studies [30,56,57], our
results suggest that the temperature dependence of
functional response parameters is more complex than
simple Arrhenius terms. While the positive quadratic
deviation we found in the residual analyses for hand-
ling time supports these prior conclusions, we found
no hump-shaped relationship of attack rates with
increasing temperature. These and similar additional
complexities found for metabolic scaling and growth
rates [67,70] imply that temperature effects on
organismic biology may go beyond simple thermodyn-
amics [58,59]. Ultimately, more complex models
accounting for biological processes under the influence
of temperature need to be developed.
(b) The allometry

We found systematic scaling relationships of handling
times and attack rates with consumer and resource
masses. However, these empirical relationships differed
significantly from predictions by simple concepts based
on the allometry of metabolism and from more complex
models based on visibility and movement. Focusing on
the three groups that had the highest number of data
points (n.100, terrestrial invertebrates, freshwater
invertebrates and ectotherm vertebrates) reveals that all
three groups exhibited exponents generally lower than
expected by theory (0.58 for two-dimensional searchers
to 0.92 for three-dimensional searchers; table 1 and
figure 3 [47]). Also, the exponents for resource mass
were lower than expected, only the exponent for
Phil. Trans. R. Soc. B (2012)
terrestrial invertebrates was not different from 0.33.
These two observations suggest that the scaling of
attack rates with consumer and resource masses implies
more than simple changes in movement speed, visual
search width or area and visibility. One potential expla-
nation for the disparity between theoretical predictions
and empirical data could be that many of the studies
included here added habitat structure and this may
lead to the breakdown of the model predictions [47].
In addition to encounter, realized attack rates also
depend on the success rates [27], and the interplay of
these two components can yield hump-shaped relation-
ships between attack rates and consumer–resource
body-mass ratios [36,41,52]. Strikingly, our residual
analyses confirmed these hump-shaped deviations
from the allometric scaling models [36,41,52].

The handling times were expected to follow �2
3

to 21
power-law relationships with consumer mass [38,45,46].
We found that only half of the groups tested fall into this
range, whereas the others were systematically higher.
Interestingly, the groups represented by most data (n .

100, freshwater ectotherm vertebrates, invertebrates
and terrestrial invertebrates; table 1) showed smaller
exponents. We found a variety of exponents for the
relationship between handling time and resource mass
ranging from zero to unity. Traditionally, assuming two
resource items each of 1 g will take the same time to
handle as one resource of 2 g led to linear scaling
models in functional response studies and theoretical
models [19,20,22,23,34]. However, assuming digestion
processes to be dependent (i) on the degree the resource
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is broken down into pieces or (ii) that digestion takes place
only on the surface of the resource item, this relationship
can be dampened. Moreover, handling not only includes
digestion of the resource but also aspects of subduing that
additionally could influence the exponent (see Jeschke
et al. [32] for a detailed discussion on the components
of handling time). Assuming that the time to subdue
a resource is constant and independent of resource mass
implies that it takes longer to handle two small resources
than one large, because the time to subdue the resource is
needed only once. Moreover, the large variation in the
resource–mass slopes across the different combinations
of ecosystem and metabolic types might be caused by
substantial variation in morphological traits (e.g. external
versus internal digestion, swallowers versus chewers) of
the resource that is independent of allometry.
5. CONCLUSIONS
Altogether, our study enables a detailed understanding
of the complex implications of warming for natural com-
munities in experiments and field observations. The
statistical models presented will also provide information
for more detailed parametrizations of population
dynamic [8,19–23,29] and topological [11,24] models
that could be used to predict the effects of temperature
change on ecological communities (but see Binzer
et al. [71] for an applied example).
Phil. Trans. R. Soc. B (2012)
Moreover, the hump-shaped deviations from the
global scaling models generalize the findings of
recent studies [36,52,54,55,72] across ecosystem
types. Interestingly, this more fine-tuned approach to
predicting interaction strengths allows a more quanti-
tative understanding of interaction strengths and the
consequences of consumer loss for ecological commu-
nities and their functioning [73]. Future extensions of
this approach may unravel systematic shifts in these
humps such as those caused by different optimal
body-mass ratios of consumers with different feeding
strategies [36,52]. This will provide a novel mecha-
nistic approach towards integrating phylogenetic
constraints with allometric scaling of physiological
parameters to predict species’ interaction strengths.

Our results have important implications for food-web
structure and stability. Regarding food-web structure,
the stronger temperature scaling of attack rate than
handling time predicts a decrease in connectance with
increasing temperature, assuming that consumers act
independently to maximize the rate at which they gain
energy [11], but see Lurgi et al. [74] for a review on
this topic. Because a decrease in connectance is
expected to stabilize population dynamics, we might
expect, therefore, stabilizing effects of increases in temp-
erature. Two other drivers of population stability and
community persistence are (i) the ratio of the maximum
feeding rate to the metabolic rate and (ii) the ratio of the
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half saturation density to the resource density of the
system [19,20]. Our results imply that the ratio between
the maximum feeding rate (the inverse of handling time,
see §1 and Koen-Alonso [33]) and the metabolic rate
should decrease with warming, which generalizes
studies of terrestrial and marine arthropods [10,28,75]
and suggests that population and food-web stability
should increase [19,20]. Interestingly, our results also
imply that the half saturation density (a21 h21, see
Koen-Alonso [33]), expressing the efficiency of consu-
mer attacks, decreases less steeply with warming
(activation energy: 20.12) than population densities
(activation energy: 20.71 [76]), which should also
lower feeding rates. Both effects should lead to a
strong decrease in interaction strength with warming
as documented in a study of a rocky intertidal commu-
nity [77]. Ultimately, this decrease in interaction
strength may lead to consumer starvation [10,19,20],
suggesting that higher trophic levels may be most
prone to extinctions as shown in a microcosm study
[69]. Our detailed analyses of how interaction strengths
depend on temperature in size-structured systems may
thus provide critically important predictions on the
implications of climate change for natural ecosystems
[12,71,78–80].
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