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We propose a methodology for extracting social network structure from spatio-temporal data-
sets that describe timestamped occurrences of individuals. Our approach identifies temporal
regions of dense agent activity and links are drawn between individuals based on their co-
occurrences across these ‘gathering events’. The statistical significance of these connections
is then tested against an appropriate null model. Such a framework allows us to exploit the
wealth of analytical and computational tools of network analysis in settings where the under-
lying connectivity pattern between interacting agents (commonly termed the adjacency
matriz) is not given a priori. We perform experiments on two large-scale datasets (greater
than 10° points) of great tit Parus major wild bird foraging records and illustrate the use
of this approach by examining the temporal dynamics of pairing behaviour, a process that
was previously very hard to observe. We show that established pair bonds are maintained
continuously, whereas new pair bonds form at variable times before breeding, but are charac-
terized by a rapid development of network proximity. The method proposed here is general,
and can be applied to any system with information about the temporal co-occurrence of

interacting agents.

Keywords: network analysis; spatio-temporal data streams;
animal social networks

1. INTRODUCTION

We use the terms graph or network to describe the sim-
plified version of the pattern of interactions in a system,
such as an animal population, where nodes are
individual entities and edges represent some form of
association, interaction, similarity or behavioural corre-
lation between nodes. In the same way that a map is a
simplified (though useful) version of a landscape, a net-
work describes the topology of a real-world system by
focusing on the connectivity patterns of its individual
components [1].

The key motivation for employing network analysis
tools is that the web of interconnections between
individuals can provide insights into the underlying
mechanisms that govern the system under study [2]. For
example, in an ecological context, the position and role
of animals in the network may have important fitness
consequences [3] both for the individual and the
population as a whole [4]. Additionally, the network
paradigm gives us the flexibility to look at the system at
various resolutions and model any type of interaction;
sexual, cooperative, competitive, etc [4].
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Despite the advantages of the network paradigm and
the wealth of analytical and computational tools for net-
work analysis [5—8], the problem of capturing any given
system as a graph is not always trivial. Not all systems
possess an obvious ‘web-like’ structure (such as the
Internet), where the interconnections between participat-
ing entities are apparent from direct observation
(computers that are connected through physical cables).
Additionally, collected data (from field studies, sensor
observations, World Wide Web, etc.) may not capture
the associations between the observed agents, thus no
relational structure can be directly defined. For example,
in systems, such as animal populations, the underlying
network of social affiliations needs to be inferred through
proxies such as the behaviour (mobility patterns, foraging
habits, etc.) of individual animals.

This work focuses on the problem of finding the
underlying social network structure of a population
that can only be observed through the spatial trajectories
of its individual members. We use as a case study a
setting where individual wild birds are marked with
transponder devices and through appropriate logging
hardware we are able to identify their position at various
sites in their natural habitat. The observation data
collected in this manner consist of a long stream of time-
stamped records, where no obvious interaction or social
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affiliation is apparent. By assuming that social structure
is a latent factor that affects the way birds visit locations
(in the sense that socially affiliated individuals have simi-
lar mobility patterns), we propose a methodology that
extracts a social network from such a spatio-temporal
data stream. Although we demonstrate our method in
an ecological context, our approach can be generalized
to any setting where agents perform timestamped
‘check-ins’ at various locations.

The paper is organized as follows. In §2, we outline
our experiment settings and discuss our data format. In
§3, we present our contribution, which is a methodology
for extracting network structure from timestamped
observation data. In §4, we apply our method to the
wild bird dataset and show that the extracted networks
reflect actual processes that take place in the population,
by focusing on mating pair formation. We conclude this
paper in §5 by discussing the next steps of our research,
both in terms of method development and data collec-
tion extensions. The Matlab code that implements the
methods presented in the paper is made available!
to the community.

2. DATA COLLECTION

This work lies within the context of a large ongoing
study of the great tit Parus major population at
Wytham Woods near Oxford, UK. Thousands of indi-
vidual birds are marked with transponders and a grid
of sensor-enabled locations generates hundreds of thou-
sands of records each winter. At each one of the 67
locations in the forest, there is a feeder that acts as an
attraction point for foraging individuals. By placing
appropriate logging hardware at the feeder, we are
able to record the presence of each individual bird.
Owing to equipment constraints, there were only 16 log-
gers available at any time, and these were thus rotated
around the 67 locations following a structured random-
ized design, so that each of eight approximately equally
sized sections of the site always had two active loggers
in it. More details on our experiment set-up is provided
in the electronic supplementary material.

The data generated from this scheme consist of a
long stream of timestamped observations as shown in
table 1. Each row represents a single record that cap-
tures the ID of the bird along with the time and
location where the foraging event took place. In this
format, shown in table 1, our data stream is only a
transactions table in a relational database context,
which restricts our analysis to a handful of relatively
simple counting operations such as finding the total
appearances of a given bird, total birds that visited a
specific feeder, etc.

What we are interested in is to find an appropriate
mapping of this spatio-temporal stream to a relational
space, where social affiliations between individuals are
revealed by the similarity of their feeder visitation pat-
terns. We seek to characterize the overall social network
of the population of marked birds and explore the
ability of this approach to recover relationships between
mated pairs of individuals observed independently

!See http://www.robots.ox.ac.uk/~parg/software.html.
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Table 1. Sample format of our data.

bird ID timestamp location ID
N199642 1/9/2007 10.02:15 (am) la
TES0535 1/9/2007 10.02:30 (am) la
V260952 1/9/2007 10.02:30 (am) 2b
V260952 1/9/2007 10.02:45 (am) 2b
N199642 (am) 1lc

1/9/2007 10.12:15

during breeding season data collection. We further wish
to explore the temporal dynamics of the formation of
mated pairs. In biological terms, the process by which
pairs of individuals develop relationships that lead to
mating is poorly understood in most natural populations,
since the majority of work involves observations of pairs at
the time of breeding, after pair formation has occurred. As
a consequence, we have little knowledge of when such
relationships form, and when they become distinguishable
from other social relationships between individuals.

In §3, we introduce a method, based on the above
goals, that extracts network structure given such
spatio-temporal data. In §4, we present the application
of this approach to the P. major dataset.

3. NETWORK INFERENCE FROM
SPATIO-TEMPORAL DATA

3.1. The time-window problem

A typical approach for building a network from data
such as those presented in §2 would involve discretizing
the stream using a fixed aggregation or time window At
and assuming that if two individuals are recorded
within an interval At¢ then there is a link between
them in the network [9—13]. The most obvious problem
with this approach is that of finding the appropriate size
for the time window. An inappropriately small At may
lead to a network that does not capture important con-
nections, while a very large At would overload the graph
with ‘junk’ links.

Using our wild-bird data as an example, we take a
single day’s worth of observations (in a format similar
to the one shown in table 1) and split that stream into
time intervals of size At. We then place links between
the N individual birds (nodes) based on the number of
times they were recorded within a temporal distance of
At. We seek to examine the changes that take place in
the network as we vary the time window size by monitor-
ing the network load (NL), which is the fraction of M links
in the network over all possible pair combinations
L(N? — N) of N nodes.” We can see in figure la that
NL increases along with the size of At, because more
links are placed between nodes. An example of how net-
work topology changes for various selections of time
window size is shown in figure 15, while Krings et al.
[13] have performed similar experimentation considering

’In this example and throughout this paper we are considering
networks that are undirected with nodes that have no self-edges.
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Figure 1. (a) We plot the network load for various time window sizes, spanning from 10 s to half an hour. We can see that
especially for early increases of At, there is a large inclusion of links in the network. We also mark three cases of different time
window sizes (dashed vertical line) and show in (b) how the graph topology changes based on the At value. (Online version in

colour.)

more network metrics such as average degree, average
weight, clustering coefficients, etc.

Between all these different network topologies that
result from varying At, there is no direct way of showing
which one is the most appropriate. Additionally, even if
we had some prior knowledge on the appropriate time
window size or even a specific quality function for find-
ing its optimum value, we have still made the strong
assumption that At is fized throughout the data
stream. This corresponds to the belief that the ‘inter-
action radius’ between individuals is constant across
our observation period and is not affected by temporal
changes in the overall system.

In the current work, we shall pursue a different
approach for building networks from spatio-temporal
records, which exploits the inhomogeneous density pro-
file of our data stream thus avoiding schemes such as
multiple runs [13] in order to select an appropriate At.
This methodology, which we will call GmuMvEvents
(Gaussian mixture model for event streams) is comple-
mented with an appropriate null model that allows us

J. R. Soc. Interface (2012)

to distinguish between links that denote social tie and
the ones that result from coincidence.

3.2. Identification of gathering events

Let our spatio-temporal data D, a sample of which we
showed in table 1, be represented in the form
D = {b,, tz,éz}zzzl, where Z is the total number of
records or tuples in our database (e.g. the number of
rows of table 1). If we take a single tuple {b,,t,,£,},
we read it as ‘the bird b, appeared at time %, at the feed-
ing location ¢,”. Note that {tZ}ZZ:1 denotes event time;
therefore, for every timestamp t,, there is a correspond-
ing bird appearance b,. Additionally, given a specific
bird i out of total N birds, there can be many records
z for which b,= i, as a single individual may appear
many times in the data. Our goal is to find an appropri-
ate mapping from the stream D to an adjacency matriz
A € RV where a;; # 0 denotes a link between birds
1 and j. To keep the notation uncluttered, from now on
we will focus on the case of a single location and show
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Figure 2. We plot bird arrivals as recorded at a specific location over the course of 3 h period. We can see that the visitation profile
is temporally focused, consisting of bursts of bird activity. Our goal is to identify such regions of increased observation density and
examine which individuals participate in these gathering events. (Online version in colour.)
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Figure 3. We calculate the time difference 6(¢,) = t, — t,_; between every pair of consecutive observations at each location in our
two data streams (seasons 2007—2008 and 2008—2009) and plot the histogram of those values on a logarithmic scale. The 8(¢,)
that refer to pairs where z — 1 is the last observation of day d — 1 and z the first observation of day d have been omitted, in order
to avoid bias in the results (there is no bird feeding activity during night-time). Open circles, dataset 2007—2008; plus symbols,

dataset 2008—2009. (Online version in colour.)

later that results can be easily generalized to the
multi-site case.

Consider the plot of figure 2, which illustrates how
bird arrivals at a particular feeding location are
spread throughout a small sample of our observation
timeline. Each stem represents an actual sensor capture
of a specific bird b, at time ¢,, We can see that the
records are not uniformly spread across time, but they
are ‘packed’ in small observation-dense regions.
Indeed, if we take the whole data stream and extract
the histogram of the time differences 8(¢,) = ¢, — t,_;
between every pair of consecutive observations, as
seen in figure 3, we find a broad power-law tail with
exponent ~2.5 for §(¢,) > 800. This non-Poissonian
decay of inter-record timestamps, along with the fact
that most 6(t,) take small values, implies that the
observation profile comprises temporally focused

J. R. Soc. Interface (2012)

bursts of recording activity, which can be seen as
flocks of foraging individuals.

Our main hypothesis is that birds not only visit the
feeder as part of such small flocks but also have a pre-
ference to the members of the flock they choose to
forage with. Such regions of increased observation den-
sity can be viewed as K gathering events of socially
affiliated birds. We seek to cluster our Z observations
in a way such that closely appearing individuals,
based on their arrival timestamp ¢,, are assigned to
the same gathering event k.

We perform this clustering scheme using a Gaussian
mixture model, with an appropriate configuration that
allows us to automatically infer the effective number
K of events/clusters (see the electronic supplementary
material). The result is described by an observation-
to-cluster responsibility matriz I' € R?*X | where 7 is



Inferring social network structure 1. Psorakis et al.

3059

(q) the bird-to-event bipartite
network B € RV*K
individuals events
[—>
[I— 1
W/

!

data density profile

the bird-to-bird social

)
network A € RVxN

Figure 4. Our method identifies gathering events from the bursts in our observation stream as seen in (a). Then individuals are
assigned to such events creating a bipartite network. In part (b), we recover the bird-to-bird social network, via an appropriate
one-mode projection, based on the co-participation of individuals to these events. (Online version in colour.)

the total number of bird observations, K the number of
clusters and the elements {7y,;, ¥,s, - - -, Y.x | 0f each row
denote a membership score of a single observation z to
an event k.

As there is a one-to-many correspondence between a
given bird ¢ and timestamps t,, a single bird can be
recorded many times in the observation stream or, in
other words, there are many tuples {t,,b,} for which
b, = i. Therefore, we seek to map the observation-to-clus-
ter matrix I'€ R?*® to a bird-to-cluster matrix
B € RV, We start by taking each row v, = {y,}r_,
of I' and set the largest element to 1 and all the others
to zero. This allows us to describe participation scores
Y., and all the other measures we derive from them, as
integer-valued occurrences. For each individual bird
i € {1,..., N}, we identify the subset Z; of rows vy, of
I that correspond to observations regarding 7. We thus
set each row b; of B as the sum b; =3 .- v,. The
resulting matrix B € RV*X can be seen as a represen-
tation of a bipartite or two-mode network that is a
graph with two types of nodes; N birds and K events,
as shown in figure 4a. Each element b; denotes the
number of times each bird was observed at a specific
foraging group.

3.3. Building the social network

The bipartite network we extracted in §3b and shown in
figure 4a describes the event participation structure of
the bird population, which is the weighted allocation
of N birds to K foraging events, encoded by
B € RY*X. Although this finding is important by
itself, as it allows us to quantify the structure of such
small foraging groups in terms of the number, individ-
ual characteristics, relatedness of their members etc,
we seek to move one step further and extract the

J. R. Soc. Interface (2012)

bird-to-bird social network based on the mutual
participation of individuals to such events.

Therefore, we seek to define an appropriate one-mode
projection B € RV — A € RVY shown in figure 4,
so that a link a; between a pair ¢, j in the resulting
network will express how strongly the two birds forage
together. We start by defining co-occurrence of individ-
uals 7 and j as the number of times they were recorded in
the same foraging group. Thus, given the event member-
ship profiles b; and b; for 4 and j, respectively, we define
the total co-occurrences a;; as aj; = Z,{;l min (b, bjr),
where K is the number of foraging groups and aj; is effec-
tively the link weight between ¢ and j in the resulting
social network described by the adjacency matrix
A € R™¥, Note that other association indices, such
as the ones presented in Ginsberg & Young [14] can be
used depending on the problem context.

3.4. Co-occurrences: social tie versus
coincidence

The next issue we seek to address is the statistical sig-
nificance of the extracted link weights. Building the
adjacency matrix A € RV in the manner described
in §3a makes the very strong assumption that if two
individuals participate in the same gathering event,
they have some form of social affiliation. This assump-
tion, known in the animal social network literature as
the Gambit of the Group (GoG) [15], may lead us to
adjacency matrices encumbered with ‘junk’ links, pro-
duced by co-occurrences that happened by chance.
Such coincidences are also frequent in settings where
there are natural peak-hours in the data collection
period and also when the sensor hardware act as attrac-
tion points, as, for example, the bird feeders in our
study. Hence, we seek to define an appropriate null
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model that describes how ‘statistically surprising’ a
given link weight would be, if there was no underlying
social preference in the foraging habits of the bird popu-
lation. From previous sections, we have discussed that
observations occur in bursts (as shown in figure 2)
that denote small foraging groups of birds that arrive
together at the feeders. This is captured by the bird-
to-event matrix B € RV*X | where each element by, in
the row vector b; denotes the number of times bird ¢
appeared at the gathering event k.

Consider each row vector b; as a draw from a multi-
nomial distribution M(n;, p;), with parameters
n; = Zszl by and py. = bi/n;. The values of the par-
ameter vector {pik}le can be viewed as a preference
profile of a bird i to each foraging event k. If our hypoth-
esis that social affiliation between birds affects event
membership holds, then closely interacting birds 4, j will
have similar preference profiles p; and p;.

Let us now propose an element shuffling o of p; so
that p; — o(p,) and draw a new event occurrence vector
bgo from the multinomial distribution M (n;, o(p;)).
Performing this permutation and sampling scheme inde-
pendently for all birds ¢ € {1,..., N} leads to a new
bird-to-event  bipartite  network  described by
B € RM*X This new matrix B preserves many
key characteristics of the original data, among them
the event membership structure, because bird appear-
ances remain concentrated in K regions of increased
observation density. Quantities such as the number of
individuals N, and the total records n;, of bird 7 in the
data are also retained.

The key difference introduced in B is that,
although a bird’s uneven participation preference p,
across foraging groups is preserved (as the permuted
o(p;) has the same entropy as p;), the shuffling o
‘breaks’ all correlations between b; and b; induced by
latent social affiliation between individuals 7 and j.
In other words, under our null model, birds still
forage in small groups, but with no social preference
to which other members of the group they will forage
with. We repeat this process R-times and for each gen-
erated bird-to-event matrix B” we extract the bird-
to-bird matrix A using the same one-mode projection
presented in §3c. By generating multiple instances of
A9 in this manner, we are effectively drawmg samples
from the ensemble or family of graphs G that contains
all possible network configurations generated by the
null model. Our goal is to examine if our observed
network A is an unlikely case of Q(U).

The randomization process generates R values of the
weight of each link between ¢ and j. From the histogram,
we get the empirical distribution P(a;|Hy) that denotes
the probability of having a link of weight a; given that
the null hypothesis H, holds. We examine how statisti-
cally surprising is each observed link a; by performing
a hypothesis test, given an appropriate significance
level a, by examining the likelihood p = P(z > a;|H)
of co-occurrences as large as a;. Note that the key
point of a null model is that co-occurrences happen
between individuals, but not as a result of an underlying
social structure. In other words, the links in A are
independent under Hy, hence P(A|Hy) = [],; P(ay|Ho).

J. R. Soc. Interface (2012)

Thus, our significance test lies in examining how well
this independence assumption can explain the observed
co-occurrences encoded in each link of A.

3.5. Integrating information from multiple
locations

We briefly expand on our graph inference scheme to the
multi-location setting. For each record {t,, b, ¢.} in our
data stream, we now have an additional term
¢, € {1,...,L} that denotes the index of the location
where observation z took place.

We start by segmenting our data D = {t,, b,, Zz}le
into L streams, so that each D) contains records refer-
ring only to location ¢. For each DY), we perform the
network extraction process as presented in §3b, ¢ leading
to L adjacency matrices A0 RN’XM where Ny < N,
the subset of birds recorded at locatlon £. Slgnlﬁcance
tests, as described in §3d, are performed independently
for each ¢, in order to preserve the unique visitation and
location load statistics of each site.

Each matrix AY) € RV generated in this scheme
captures a subset of the overall connectivity profile in
the population. As the interpretation of link weight
is the number of co-occurrences between two
1nd1v1duals the overall a; is simply the summation

Z[ 1 a j> over multiple sites.

In 84, we will demonstrate how these methodologies

are applied to the wild-bird dataset described in §2.

4. RESULTS
4.1. Application on the wild-bird dataset

We apply GyMMEvents on the dataset of wild-bird fora-
ging records presented in §2. Our observations consist of
two main streams: D7g that covers the activity of
N; g =770 birds from August 2007 to March 2008 and
Dg o that spans from August 2008 to March 2009 and
contains Ngg = 753 birds.

Instead of applying our method to the whole two-
season data stream directly, we start by breaking it
down into 24 h segments. Our aim is to produce a collec-
tion of network snapshots that would allow us to study
the day-by-day changes in the population’s sociality. An
example of the observation data is shown in figure 5a,
where we can see the isolated observation-rich regions
(blue stem lines) that refer to each particular day. Note
that the night period (no-observation zones in between
days) acts as a natural separator in our data stream, as
no bird foraging activity takes place during that time.

We proceed by breaking down each daily segment
of our data into sub-streams that correspond to L
different feeding locations, shown in figure 5b for 9
September 2007. We then apply GummEvents to each
location ¢ separately, as co-occurrences need to be
defined both in terms of temporal and spatial proxi-
mity. On each one of those feeder-specific streams for
that day, our method identifies bursts in the obser-
vatlon density profile and builds a bipartite network

) between birds and gathering events as shown in
ﬁgure 5c. The weight of each link b ) denotes the
number of times bird ¢ appeared in the gathering
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Figure 5. In (a), we show a segment of our data stream profile for a duration of 4 days. We pick a single day ‘data-chunk’ of
observations and break it down into separate streams that refer to bird records at each particular location, as shown in (b).
For each location-specific stream, we use our method to identify gathering events, as shown in coloured nodes on the right of
the bipartite graph in (c). We assign birds (black nodes on the left of the graph) into such events based on their participation
strength. We project the bird-to-event bipartite graph of (¢) into an one-mode network based on co-occurrences in gathering
events, as shown in (d). We remove any links (marked with double lines) that can be explained away by the null model.

(Online version in colour.)

event k. Based on §3¢, we then perform one-mode pro-
jection of this bipartite network into a bird-to-bird
social network, shown in figure 5d, described by the
adjl?cency matrix A, The weight of each link al(-f ) =

i min(bgi,), bgék)) denotes the total number of co-
occurrences between bird ¢ and j across all K gathering
events that took place at location ¢. The statistical
importance of each ay) is then tested against
the null model we formulated in §3d, where all
links below the significance threshold (marked with
double lines in figure 5d) are removed. For our signifi-
cance test, we used R=10" samples of the null
ensemble along with a standard « = 0.05 importance
threshold.

We repeat this process for all L locations and based
on §3e, we combine all site-specific adjacency matrices
A9 to a single one A; that captures the population-
wide social structure on the given day 7. An example
is shown in figure 6, where we have summarized the

J. R. Soc. Interface (2012)

subgraphs (such as the one shown in figure 5¢) from
all L =13 locations shown in figure 5b into a single,
global network that describes wild-bird social organiz-
ation on 9 September 2007. We repeat the process for
all T'24 h segments of our data stream, we get a stack
of adjacency matrices {At}tT: , that represent daily
snapshots of the wild-bird social network.

From an implementation perspective, GmMEvents
runs L times for each day-segment of the data stream.
For each location ¢, R randomizations of the bird-to-
event incidence matrix B are generated and for each
one we perform one-mode projection in order to sample
the weight distributions for each link pair 4, j. Although
it may appear computationally prohibitive for large data-
sets, our method is able to analyse 2 years’ worth of data
that correspond to about 1 million observations in
approximately 6 h, run on a modern 8-core machine
under a Matlab implementation. This is due to the fact
that our method itself is executed on multiple small
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Figure 6. The Wytham woods Parus major wild bird social
network at 9 September 2007, with N = 240 nodes, M = 491
edges, created by integrating all location-specific subgraphs
shown in figure 5d. Note that not all 770 birds of the 2007—
2008 season have been recorded during that day and also indi-
viduals no connections have been removed from the network.
(Online version in colour.)

sub-streams (that refer to different locations per day) and
can be directly parallelized. Our R randomization/
sampling schemes are also independent by definition, so
they can run concurrently on different processing units.
More details on computational issues are discussed in
the electronic supplementary material and our source
code documentation.

4.2. Using GmMMmEvents to study the dynamics of
mating pair formation

In this section, we examine the validity of the graphs we
extracted in §4a using GMMEvents. As the ground truth
network is not available to us in such settings, we
cannot directly compare our inferred topologies with
some form of given solution. Although tests on simu-
lated data streams have been performed (see the
electronic supplementary material), our aim is to exam-
ine how well our dynamic network reflects meaningful
quantities from our application-domain perspective.
We make use of an additional dataset, compiled from
an independent field study at Wytham woods, which
provides wild-bird mating records for each season. Such
pedigree dataset logs the IDs of individuals that formed
a breeding pair each year. Some bird pairs persist over
several seasons while others last for only 1 year owing
to either divorce or fatalities. We assume that if the
extracted network structure is valid, then breeding indi-
viduals will be closely connected, either in terms of a
direct link or being in the same social circle. Although
looking for direct links between mated individuals is an
obvious choice, it is a very strict case and thus very sen-
sitive to missing data and noise. Therefore, our approach
is to examine if breeding pairs belong more frequently
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and consistently than random into social circles that
denote birds with similar foraging patterns.

Our first objective is to identify such social circles in
our population. In figure 6, where we have visualized
the network structure of the wild-bird population for a
specific day, we can see certain regions in the graph
(shown in different colour) where nodes are more densely
connected with their immediate neighbours than the rest
of the population. Such ‘hot-spots’ of increased link pres-
ence are called modules or communities in the network
analysis jargon [7,16]. For each daily network described
by A, we extract such communities using a non-negative
matrix factorization (NMF) approach [17].

We find that the majority of mated pairs in network
communities are connected through a direct link in
77.26 per cent of cases for the 2007-2008 data and
71.57 per cent of cases for the 2008—2009 data. Reach-
ability through a path of two links is reported for the
14.74 per cent of cases in 2007-2008 and 17.06 per
cent of cases in 2008—2009. The average path length
between two members, for the cases where both of
them are observed in the data, is 1.33 (2007-2008)
and 1.46 (2008-2009) with median value of 1 in both
datasets. Finally, there are still cases (8% in 2007-
2008 and 11.37% in 2008-2009) of pairs where their
geodesic distance spans from three to six edges but
still belong to the same community.

We monitor bird membership within these groups
using a binary matrix C;, where each element c;; =1
denotes that birds 4, j appeared in the same community
at day t. This leads us to a new collection of co-member-
ship matrices {Ct}tT: , that encode temporal changes in
the way birds participate with each other in communities.
From a summation across ¢, we get a matrix C® € RV
where each element c; denotes the total number of days
in the season where the pair i, j participated in the
same community. In figure 7, we plot a histogram of
all co-membership values (y-axis on a logarithmic scale)
based on two matrices C® that refer to bird co-member-
ship values in field seasons 2007—2008 and 2008—2009,
respectively. We can see that for both seasons, the vast
majority of pairs have never participated in the
same group and the distribution is heavily skewed. This
implies a strong preferential mechanism in the population,
where random individuals rarely belong to the same
social circle.

We now examine if the above distribution holds for
certain sub-category of pairs in the network, which we
know a priori are connected with actual social ties.
This prior information is provided by the pedigree data-
set we mentioned previously, which gives a list of node
dyads 1, j that denote breeding individuals. In this list,
we also distinguish between mated pairs that were
formed during our observation season, called new
pairs, and others that already existed before, called
old pairs. In figure 8, we plot the cumulative distri-
butions F(c;), where c¢; are values co-membership
matrix C® and i, j can be (a) any node pair (blue cir-
cles, stem), (b) a new pair (green squares, stem) and (c)
old pair (red triangles, stem). In figure 8a, we plot the
distributions that refer to the 2007—-2008 season, with
N = 217 individuals, from which we have 49 new pairs
and 20 old pairs. For season 2008-2009, shown in
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Figure 8. We plot the cumulative co-membership distributions for three different dyad types: random pairs, mating pairs formed
in previous seasons and pairs that formed in the current season. Although for the majority of random bird pairs in the network co-
membership values are concentrated around zero, breeding individuals tend to participate much more frequently into the same

flocks. (Online version in colour.)

figure 8b, we have N = 203 individuals that include 48
new pairs and 10 old pairs.

We can see that for both seasons presented in figure 8,
the distributions that refer to mated pairs differ
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significantly from the one for random ones, with p-values
less than 10" under a Kolmogorov—Smirnov test [18]
with 5 per cent precision level for both seasons. In contrast
to the random case, where values c; are mostly zero,
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Figure 9. We compare the co-membership distributions P(c;|{4,j} = random pair) versus P(c;|{1,7} = old pair) (red triangles,
line) and P(c;|{%,j} = random pair) versus P(c;|{t,7} = new pair) (green squares, line) in a month-by-month basis, using a Kol-
mogorov—Smirnov test. Values above the proposed a = 0.05 significance threshold imply that the two distributions under
comparison are similar. We can see that from very early in the year old pairs differentiate themselves from random, by starting to
participate frequently in the same communities. On the other hand, members of new pairs in the beginning of the year treat each
other as random, while preferential mechanism that makes them flock together, starts to build-up during early winter. (a,b) Triangles
with solid line, random versus old pairs; squares with solid line, random versus new pairs. (Online version in colour.)

co-membership for mated pairs achieves larger values, thus
denoting stronger and consistent graph proximity. The
differences between old and new pairs are also revealed
between their respective cumulative distributions (green
squares, stem and red triangles, stem), where old pairs
achieve higher co-membership values owing to the fact
that they existed before new pairs where formed, thus
they had more opportunities during the season to
participate in the same foraging flocks.

We have already seen that co-membership distributions
differ between various pair types. We will now examine
when  that differentiation takes place during
the observation season. We start by breaking down the
observation period into eight months. For each month,
we used the respective daily networks in order to find
the three co-membership distributions of interest. We
then compared P(c¢;|{4,j} = random pair) versus
P(cq|{4,5} = old pair) and P(c;|{%,j} = random pair)
versus P(c;|{4,7} = new pair), by calculating the p-value
under a Kolmogorov—Smirnov test with a proposed
significance level 0.05. In figure 9, we can see that at

J. R. Soc. Interface (2012)

the beginning of the season, new pairs have similar
co-membership patterns to random ones, as they have
not been formed at such early point. But as we move
through the year, this similarity drops and from
the ‘cloud’ of random associations, breeding relationships
emerge. On the other hand, old pairs that have been already
formed from previous seasons have a consistent non-
random co-membership pattern, even from very early
points in the season.

5. DISCUSSION AND FUTURE WORK

The network paradigm is a powerful tool for studying
real-world complex systems. As there is an extensive tool-
set of methods and algorithms for network analysis, in
this work we have focused on the problem of constructing
the network in the first place. In many applications, the
collected data capture the behaviour of the system in
some manner, like the spatial trajectories of participating
agents, but not the underlying relations between them.
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We address this issue by assuming that mobility patterns
of individuals may be correlated based on some form of
underlying social connection. By identifying obser-
vation-dense regions in the data stream, which can be
seen as gathering events of affiliated individuals, we
propose a methodology of drawing links between
agents based on their co-participation into those events.

Traditional approaches [9—12] to constructing social
networks from spatio-temporal data involve discretizing
the observation stream based on some fixed time
window At and drawing links between individuals when
they lie within such ‘interaction-radius’. Our method
overcomes the practical difficulties of such time-slicing
approach in cases when we have no prior knowledge of
how big or small the time window size should be, thus
having to perform multiple runs across various At and
select the appropriate one based on some ad hoc quality
function. Additionally, we have proposed an appropriate
null model, which allows us to examine if the co-occur-
rence of individuals into gathering events are a result
of a latent social tie, or coincidence. Our null model
retains the ‘bursty’ nature of the data stream but
breaks all correlations between the individuals’ appear-
ance patterns through an appropriate randomization.

We applied GmMmEvents into two large-scale data-
sets that provide wild-bird foraging records. We
showed that the inferred network topologies reflect
mating pair formation events that take place in the
population, where breeding individuals tend to
belong into the same foraging groups more often
that random dyads. We also showed that the dynamics
of community structure in the system reveal how
newly formed pairs initially have a random-like behav-
iour, while as we approach the mating season they
start to participate more often than random into the
same communities.

The communities identified here are based on tem-
poral occurrence at feeding stations, and while the
data analysed here are extensive, they are incomplete,
as observations are made for only a proportion of the
time, and only for feeding-related activity. While more
complete data would be expected to result in more com-
pletely connected communities (both in terms of link
number and connection strength), it is not necessarily
the case that all communities would ultimately be
fully connected. For example, communities might be
comprised of pairs of individuals that avoided each
other (e.g. territorial males, competing females) relative
to the other members of the community, even though
they have links via other individuals. As expected for
individuals linked via a network, there is a variety of
direct and indirect ways that individuals within and
between communities might influence each other. In
the case of the present network, we might expect that
an important source of direct effects lies in the flow of
information between community members about the
presence of food, but such information will also spread
indirectly to other individuals via network links
between communities [19]. Numerous other effects
might also be considered. For example, like many ani-
mals, small passerine birds give alarm calls that alert
other individuals about the presence of predators [20].
While the individuals in the same community may be
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expected to be nearest to a focal individual, other
linked communities may also be influenced directly by
this sort of behaviour, and the overall inter-community
network may serve as a hypothesis for the likelihood of
such effects being transmitted between individuals. So
far all feeding sites have been analysed in isolation
until the last stage. Site-specific network adjacency
matrices are extracted and tested for significance
whence they are all combined to one single adjacency
matrix. An alternative to this spatial aggregation over
sites would be temporal aggregation. In this approach,
temporal data could be aggregated and behaviour and
feeding sites analysed directly. While such an analysis
may account for popular feeders, it would not achieve
the high temporal resolution of the existing approach.
For instance, using a temporal aggregation strategy, a
group of birds feeding in the morning and one in the
evening would all be treated as one single group when
the times of their feeding site visitation clearly suggest
otherwise. A proper resolution of this conflict may
require a full spatio-temporal clustering stage and
another bespoke hypothesis test to detect both spatially
and temporally insignificant events. Such a multi-
variate approach would alleviate the necessity to
account for spatial correlations during hypothesis test-
ing which otherwise would be extremely hard to
extract from data. Thus, in our future work, we will
focus on a full spatio-temporal analysis of bird behav-
iour and the development of clustering models that
combine data of different characteristics, such as the
bursty behavioural and the continuous spatial data.

The next stages of our research consist of two main
modules. From the perspective of the model, we seek
to extend the way we define the link a;; between two
individuals at time ¢ so that we take into account
prior knowledge from previous observations. This has
the advantage of capturing the uncertainty over the
link weight, detect abrupt changes in the network top-
ology and handling missing observations in a principled
manner. From an ecological point of view, we currently
run an improved scheme of our data collection, where
we have sensors at each feeding location. This gives us
the advantage of looking at the data at much greater
resolutions thus having a more accurate view of the
overall bird population’s foraging patterns.

Although the methodology we presented is applied to
animal observation records, it can be extended to any
system where agents perform check-ins at certain locations
and such observations are not uniformly spread in data
stream, but temporally focused. We believe methodologies
and theoretical results derived from the study of animal
social networks will benefit the wider field of network
analysis, as individuals can be monitored from the
beginning to the end of their lifespan, there are no privacy
issues associated with data collection and understanding
the dynamics of animal interactions provides an insight
into the behaviour and evolution of complex systems.
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