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We present a mathematical and a computational framework for the modelling of cell motility.
The cell membrane is represented by an evolving surface, with the movement of the cell deter-
mined by the interaction of various forces that act normal to the surface. We consider
external forces such as those that may arise owing to inhomogeneities in the medium and
a pressure that constrains the enclosed volume, as well as internal forces that arise from
the reaction of the cells’ surface to stretching and bending. We also consider a protrusive
force associated with a reaction–diffusion system (RDS) posed on the cell membrane, with
cell polarization modelled by this surface RDS. The computational method is based on an
evolving surface finite-element method. The general method can account for the large defor-
mations that arise in cell motility and allows the simulation of cell migration in three
dimensions. We illustrate applications of the proposed modelling framework and numerical
method by reporting on numerical simulations of a model for eukaryotic chemotaxis and a
model for the persistent movement of keratocytes in two and three space dimensions.
Movies of the simulated cells can be obtained from http://homepages.warwick.ac.uk/�
maskae/CV_Warwick/Chemotaxis.html.
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1. INTRODUCTION

Modelling the directional motility of cells is of great
importance especially because of the central role-directed
cell migration plays in several biological phenomena, such
as embryonic development, cancer, tissue development
and immune responses [1]. Broadly speaking, the motile
cycle of a cell consists of the following processes: polariz-
ation where the cell develops a front and a back through
the redistribution of proteins and lipids within the cell,
protrusion at the leading edge of the cell pushing the
front of the cell outwards, and retraction of the rear of
the cell towards the leading edge [2]. Although the main
aspects of the motile cycle appear deceptively simple, as
further details are added to the modelling, various com-
plexities arise. For example, in the case of chemotactic
eukaryotic cells, the molecular mechanisms that govern
gradient sensing and cell polarization are still not fully
understood [3]. Furthermore, it is difficult to quantify
the forces associated with motility and only recently has
experimental progress been made in this direction [4,5].
Direct numerical simulation of cell motility necessitates
the consideration of deformable surfaces [6,7] or multi-
phase flow models [8,9], both of which are computation-
ally challenging. Finally, the deformation of the cell
surface is linked to the dynamics of actin and other cell-
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resident proteins, and these dynamics must be coupled
in a consistent way with the evolution of the cell surface.

In this work, we present a mathematical framework for
the modelling of cell motility and a numerical method for
the simulation of such models. The approach we propose
uses ideas of existing two-dimensional models but gener-
alizes these and extends the modelling to the three-
dimensional setting. It consists of partial differential
equations, specifically those of reaction–diffusion type,
posed on the cell boundary coupled with an evolution
law for the cell membrane. Further, we discuss the
inclusion of external forces and illustrate this with a phe-
nomenological model for the interaction between a cell
and a obstacle. We present a numerical method, based
on evolving triangulated surfaces, that consists of an
evolving surface finite-element method [10] for the
approximation of the surface partial differential equation
and a parametrized finite-element method [11] for the
approximation of the surface evolution law.

It is our hope that the parametric approach we employ
will be more efficient than other standard approaches
such as phase field [6] or level set methods [12]. The
reasoning behind this statement is that our methodology
based on triangulated surfaces formulates the problem in
one dimension less than other approaches, in which
the equations are discretized in the embedding space.
See, for example [13–16] and references therein for
further discussion.

We consider two specific models for cell motility.
First, a model for eukaryotic chemotaxis. Aspects of
This journal is q 2012 The Royal Society
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chemotaxis, such as changes in direction owing to split-
ting and biased generation of pseudopods as well as
response to a changing chemotactic signal [17], are present
in this surface-based model. We also present simulations
of pseudopod-driven migration of a cell in three dimen-
sions. We next consider a surface-based model for the
persistent migration of fish keratocytes, presenting
numerical simulations in two- and three dimensions.
The surface-based model is able to capture the different
shapes that characterize migrating keratocytes and the
correlation between aspect ratio and cell speed [18].

A summary of the contributions of our study is as
follows. We derive a rigorous mathematical framework
for the modelling of cell motility and chemotaxis in
two or three space dimensions, our modelling includes
both surface tension and bending rigidity with volume
conservation and allows the inclusion of external
forces. We present a numerical method for the simu-
lation of the model. Equations for and on the surface
of the cell are discretized on a discrete surface. The effi-
cacy of our methodology is illustrated by computer
simulations of pseudopod-driven migration and persist-
ent migration in three space dimensions and the
simulation of cell migration in the presence of obstacles.

While a major part of this work is the investigation
of modelling generalizations through numerical simu-
lation, especially with respect to cell motility in three
dimensions, our intention is to present a general model-
ling framework and numerical method that will be a
potentially useful methodology for experimentalists
and theoreticians alike in future studies of cell motility.

The remainder of our discussion proceeds as follows.
In §2, we present our general modelling framework and
our modelling assumptions. In §3, we present a numeri-
cal method for the approximation of surface evolution
laws coupled with surface partial differential equations.
In §4, we report the results of numerical simulations of a
model for chemotaxis. In §5, we report the results of
numerical simulations of a surface-based model for the
persistent motion of cells such as fish keratocytes. In
§6, we discuss the implications of our findings in the
study of cell motility and possible applications of our
methodologies in future studies. We provide the techni-
cal details of our modelling and the numerical methods
we employ in the electronic supplementary material.
2. A SURFACE-BASED MODEL FOR CELL
POLARIZATION AND MOVEMENT

We consider models for cell motility and chemotaxis
that consist of a geometric evolution law for a hypersur-
face representing the cell boundary coupled to a spatial
pattern generator on the evolving surface describing
polarization of the cell. The particular form of the
spatial patterning mechanism we shall investigate is a
Turing pattern generator, i.e. a semi-linear reaction–
diffusion system (RDS). The use of Turing type systems
to model biological pattern formation phenomena is
widespread (see Murray [19] for a review), and recent
numerical studies of Turing type systems on evolving
surfaces show that while the key features of Turing
mechanisms persist, such as spontaneous pattern
J. R. Soc. Interface (2012)
formation and bifurcations owing to surface evolution,
the geometry of the evolving surface strongly influences
the patterns expressed [20,21]. We stress that our gen-
eral modelling strategy and the numerical methods we
employ can be generalized to other possible polarization
mechanisms, such as gradient-based models or excitable
network and wave-based models all of which effectively
couple surface partial differential equations to a surface
evolution law [3].
2.1. Geometric evolution model

The cell membrane is represented by an evolving hyper-
surface, with the movement of the cell determined by
the interaction of various forces that act normal to
the cell membrane. We consider external forces such
as a protrusive force associated with the RDS species
and a pressure that constrains the enclosed volume, as
well as internal forces that arise from the reaction of
the cells’ surface to stretching and bending. We use
the following force balance on the membrane, where
we neglect the inertia of the membrane:

0 ¼ ðFp þ F v þ F visc þ F ext þ F s þ FbÞn; ð2:1Þ

where n denotes the outward pointing unit normal
to the surface G. We account for the following force
contributions appearing in equation (2.1).

— A protrusive force depending on the densities of
chemical species resident on the membrane
(cf. equation (2.9)) is denoted by

Fp ¼ FpðaÞ: ð2:2Þ

In the subsequent numerical simulations, we make
the phenomenological modelling assumption that
the force is proportional to the species densities
and given by FpðaÞ ¼ kp � ka: The sign of the com-
ponent ðkpÞi of the vector kp governs whether the
i th species promotes protrusion (positive) or retrac-
tion (negative) of the cell membrane. For ðkpÞi . 0
such a force may model the protrusive force gener-
ated by cross-linked filamentary actin in the
vicinity of the cells’ surface, while ðkpÞi , 0 could
correspond to the contraction force generated by
actin bundles [22].

— Experimental studies suggest that while the cell sur-
face area may exhibit variability during movement,
the enclosed volume is relatively constant [18,23].
We take this fact into account as a hard constraint,
which means that the cell is able to immediately
counterbalance small volume changes on the time
scale of the RDS and the boundary evolution. In
the following, a corresponding Lagrange multiplier
will be denoted by l [ R. It can be interpreted as
a pressure difference between the interior and exterior
of the cell. The corresponding force simply reads

F v ¼ l:

Note that the Lagrange multiplier l is spatially
constant and therefore models a spatially uniform
force such that the enclosed volume is conserved.
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— We include a viscous force that opposes motion:

F visc ¼ �vV ; ð2:3Þ

where v . 0 is a kinetic coefficient and V is such that
Vn ¼ V , where V is the material velocity of the cell
boundary (which we assume to be normal to the cell
membrane). In the two-dimensional case, adhesion
and de-adhesion may be modelled as an effective fric-
tion, i.e. a force, of the form (2.3), proportional to the
local speed [22,24]. In the three-dimensional case, the
situation is more complicated and we intend to
address this subject in future work.

— We write F ext for any other external normal forces
acting on the cell boundary, where we have interaction
with the medium in mind. As a concrete example and
in order to illustrate the versatility of the proposed
approach for cell motility in the complicated environ-
ments encountered in vitro, in §4.1.3, we present a
simple phenomenological model for the movement of
cells in the presence of obstacle particles that the
cell cannot invade but that it may push out of its way.

— Resistance of the cell boundary to stretching may be
incorporated by means of a surface energy of the form:

Es ¼
ð
G

ks; ð2:4Þ

where k s . 0 can be interpreted as a surface tension.
The variation of the area functional is the mean curva-
ture (we refer to Deckelnick et al. [25] for details of a
derivation), hence the force arising from the surface
energy is given by:

F s ¼ �ksH ; ð2:5Þ

where H is the mean curvature of G.

— The lipid bilayer forming the basic component of the
cell membranes also resists bending. We consider the
established model of Helfrich [26] for the bending
energy:

Eb :¼
ð
G

k b

2
H 2; ð2:6Þ

where kb . 0 is the bending rigidity. The variation
of the bending energy yields the force contribution

Fb ¼ kb DGH þ H jrGnj2 �
1
2

H 3

� �
; ð2:7Þ

where rG and DG denote the surface gradient and
Laplace–Beltrami operator, respectively (electronic
supplementary material). We refer to Willmore
[27] for a derivation.

Summing up the forces with their specific choices
except for the external force, we obtain the following
equation for the evolution of the cell boundary:

vV ¼ ðkp � a � ksH þ k b DGH þ H jrG nj2
�

� 1
2

H 3Þ þ lþ F ext

�
n:

ð2:8Þ
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The variational formulation of the evolution law (2.8),
which we use to construct a finite-element discretization,
is given in the electronic supplementary material.

2.2. Cell polarization model

We consider an RDS posed on an evolving surface
{G ðtÞ}t . 0:

@†a þ arGðtÞ �V �DDGðtÞa ¼ f ðaÞ on G ðtÞ; t . 0;

ð2:9Þ

where a ¼ ða1; . . . ; amÞt , m is the number of chemical
species involved, ai denotes the density of the ith chemi-
cal species, V is the material velocity of the surface
(cf. (2.3)),

@†a :¼ @ta þV � ra; ð2:10Þ

is the material derivative with respect to the velocity V ,
D is a diagonal matrix of positive diffusion coefficients
and f ðaÞ is the reaction. For details of the derivation we
refer, for example, to Dziuk & Elliott [10] and Barreira
et al. [21]. We assume in the following that the evolving
hypersurface is closed so that no boundary condition is
required. For the initial condition, we write

að�; 0Þ ¼ a0ð�Þ on G ð0Þ: ð2:11Þ
3. DISCRETIZATION

Here, we describe the numerical methods we shall employ
for the approximation of models for cell motility of the
form described in §2. We keep the exposition relatively
non-technical referring the interested reader to the elec-
tronic supplementary material for the technical details.
We decouple the approximation of the surface evolution
and the RDS by treating the RDS concentration expli-
citly in the surface update step. The numerical method
is based on approximating the surface G(t) with a trian-
gulated surface Gh(t), which stems from the method
described in the seminal paper of Dziuk [28].

3.1. Definition (triangulated surface)

A triangulated surface Gh is a polygon or a polyhedron
for d ¼ 2 or 3, respectively, with linear edges for d ¼ 2
and planar faces for d ¼ 3, such that

Gh ¼ <s[Th s; ð3:1Þ

where Th consists of a finite number of closed intervals
(d ¼ 2) or a finite number of closed non-degenerate tri-
angles (d ¼ 3). For the simulations on surfaces (d ¼ 3),
we make use of a quadratic triangulated surface. That is,
a surface that consists of curvilinear triangles each of
which is the image of a reference triangle under a quad-
ratic map as illustrated in figure 1. We will use Gh to
denote both a triangulated surface and a quadratic tri-
angulated surface interchangeably. So as no confusion
arises, we stress that for the approximation of smooth
curves, we consider triangulated (polygonal) discrete
surfaces and for the approximation of smooth surfaces
(d ¼ 3) we consider quadratic triangulated surfaces.
For details on triangulated surfaces, quadratic



Figure 1. Snapshots of the triangulation during a simulation
of cell motility using a quadratic triangulated approximation
to a surface. (Online version in colour.)
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triangulated surfaces and approximation results, we
refer to the earlier studies [10,29–32].

The evolution law (2.8) is discretized using a surface
finite element described in detail in the electronic sup-
plementary material. The method is based on the
parametric finite-element methods for fourth-order geo-
metric evolution equations derived in Dziuk [33] and
Barrett et al. [11]. Under the proposed method, the
movement of the nodes of the triangulation satisfies
the evolution law in the normal direction and includes
a tangential velocity (that leaves the evolution law
unchanged), which gives highly desirable mesh-proper-
ties in practice. Figure 2 illustrates an example of the
robustness of the proposed scheme in the approximation
of large deformations over schemes where nodes are
moved solely in the normal direction.

To approximate the RDS posed on the evolving sur-
face, we employ a surface finite-element method based
on the evolving surface finite-element method proposed
by Dziuk & Elliot [10], where we account for the tan-
gential velocity induced by the surface update scheme.

We also describe, in the electronic supplementary
material, a framework for the inclusion of stochastic exter-
nal signals into the model. In particular for the subsequent
simulations of chemotaxis, we include a signal that is
J. R. Soc. Interface (2012)
modelled by independent stochastic differential equations
posed in each element (interval or triangle) which we
approximate using the Euler–Maruyama method.
3.2. Software

The numerical methods were implemented using the
adaptive finite-element toolbox ALBERTA [34] and the
linear systems were solved using UMFPACK [35], a
direct solver for sparse linear systems.
4. MODELLING PSEUDOPOD-DRIVEN
CHEMOTAXIS

We investigate a model for eukaryotic chemotaxis orig-
inally proposed by Meinhardt [36]. The original model
was posed at the discrete level and consisted of a three
species RDS with a spatially varying local activator, a
spatially varying local inhibitor, and a spatially constant
global inhibitor. Meinhardt proposed that such a model
could account for the polarization of chemotactic cells
and the subsequent relocation and splitting of activator
peaks in response to changing external signals. He did
not, however, consider the mechanical aspects of the evol-
ution of the cell membrane. Neilson et al. [7] investigated
a continuous form of the model where the three species
were all spatially dependent, approximating the model
equations with a surface finite-element method for the
RDS approximation and a level set method for the sur-
face update. They have conducted detailed comparisons
of their simulations using a level set method with exper-
iments [37], as well as some preliminary investigations
into robust computational methods, specifically
short-time simulations using a surface finite-element
method [16]. All their modelling and simulation was con-
ducted in two dimensions, the model we consider extends
the previous work by increasing the dimension, account-
ing for the bending energy and modelling obstacles.

In the original model posed by Meinhardt, the
spatial independence of the global inhibitor is used in
the derivation of the model. Since the global inhibitor
is spatially constant, its concentration can be obtained
by averaging, i.e. the use of a non-local term (the mean
value of the local activator). We, therefore, consider the
following transformation of Meinhardt’s model from the
spatially discrete fixed surface setting to a continuous
evolving surface:
@†a1 þ a1rGðtÞ �V � D1DGðtÞa1 ¼ g
ðr1 þ sÞða2

1=a2 þ b1Þ
ðs3 þ a3Þð1þ s1a2

1Þ
� r1a1

� �
;

a2 ¼ 1
jGðtÞj

ð
GðtÞ

a1;

and
@†a3 þ a3rGðtÞ �V � D3DGðtÞa3 ¼ gðb3a1 � r3a3Þ; on GðtÞ; t . 0

að�; 0Þ ¼ a0ð�Þ on G0:

9>>>>>>>>>=
>>>>>>>>>;

ð4:1Þ
Here the ri, si and bi’s are material parameters, g is a
scaling parameter that governs the overall timescale of
the reaction rate and the term s(x,t) models both the
underlying noise from the external media and a noisy
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Figure 2. Snapshots of the mesh during two simulations of cell motility using a scheme that moves the nodes only in the normal
direction and the scheme that includes a tangential velocity. The large deformations result in meshes that are not suitable for
computation with the former approach necessitating a remeshing step, while with the latter approach the mesh quality remains
good throughout. (a) Movement in normal direction only; (b) tangential redistribution scheme. (Online version in colour.)

Table 1. Parameter values for numerical experiments of the movement of two-dimensional cells with the Meinhardt kinetics,
equation (4.1).

reaction kinetic parameters

D1 D3 g r1 r3 S1 S3 B1 B3

1.0 7.0 2:5� 104 2� 10�2 13� 10�3 1� 10�4 0:2 0.1 5� 10�3
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chemotactic signal. The term involving the chemotactic
signal feeds multiplicatively into the autocatalytic term
in the activator equation. Weak signals are amplified
owing to autocatalysis, thus the model provides a mech-
anism for gradient sensing of small chemotactic
gradients. The RDS is coupled to the surface evolution
law solely through the activator concentration a1, which
promotes protrusion of the cell membrane. Adopting
the notation of §2, the contribution of the RDS species
to the evolution law (cf. (2.2)) reads

Fp ¼ kp � a ¼ ðkpÞ1a1: ð4:2Þ

In fact, the activator and inhibitor are in phase and
this is one potential drawback of the Meinhardt model
as it presents no obvious mechanism for coupling sur-
face concentrations to retraction of the cell membrane.
One can show that the model (4.1) is equivalent to
the model considered by Neilson et al. if the diffusivity
of the global inhibitor in the Neilson model is suffi-
ciently large relatively to the diffusivity of the other
two species [38].

We model the stochastic term s(x,t) in equation (4.1) as
the sum of an underlying noise term htðxÞ owing to, say,
heterogeneity in the medium and a term RtðxÞ that
models the cells’ sensing of the chemotactic signal, i.e.
sðx; tÞ :¼ ðRtðxÞ þ htðxÞÞ. The underlying noise term
(present in all the simulations) satisfies the following
Ornstein–Uhlenbeck (mean-reversion) stochastic process:

dht ¼ �ht dt þ 2� 10�4 dWt ; ð4:3Þ

where Wt denotes the Wiener process. We discretize in
space by assuming h is constant over each finite element,
and the Euler Maruyama method is used to approximate
J. R. Soc. Interface (2012)
the solution numerically (for details see the electronic sup-
plementary method).

4.1. Results

For the results on curves, we took the unit circle as the
initial steady state and used the reaction kinetic par-
ameter values given in table 1. The parameter values
are those Meinhardt used in his original study rescaled
such that the diffusivity of the activator is 1.0, the
only parameter we have tuned is the saturation of the
activator concentration s1, which is smaller to account
for dilution in the activator concentration owing to
domain growth. For all the simulations on curves, we
used the same equidistributed initial mesh with 1024
d.f. (further refinement did not change the solutions
qualitatively) and a timestep of 1025. The central proces-
sing unit (CPU) times of all the calculations on curves is
in the order of minutes, for example, the two simulations
reported in figure 3 had CPU times of just over 2000 s.

4.1.1. Random migration
Figure 3 shows the centroid trajectories of five cells
migrating under two different geometric evolutions,
surface tension evolution (ks ¼ 25; k b ¼ 0; ðkpÞ1 ¼ 1:5)
and combined surface tension-elastic evolution
ðk s ¼ 23; kb ¼ 3; ðkpÞ1 ¼ 2), with no chemotactic
signal and different realizations of the noise term. In
both cases, the cells initially polarize and then migrate,
with roughly two pseudopods at the front of the cell at
any given time. The cells change direction via splitting
and decay of pseudopods with one pseudopod splitting
and persisting while the other decays. This leads to
the characteristic linear motion over short times
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Figure 3. Centroid trajectories of five cells migrating in the absence of a chemoattractant under different geometric evolution
laws. In both cases, we see motion in a straight line for short times punctuated by sharp changes in direction corresponding
to pseudopod splitting/decay. (a) Spider plots of cell centroid trajectories over the interval [0, 1.], under conserved surface tension
evolution; for parameter values see table 1 and the text. (b) Spider plots of cell centroid trajectories over the interval [0, 1.], under
a combination of surface tension and elastic evolution; for parameter values see table 1 and the text.

Table 2. Physically relevant parameter values for simulations on curves.

parameter value physical interpretation

r0 1 initial radius of cell sets a length scale of 4 m
ðkpÞ1 1.5–2 coefficient of protrusive forcing term implies a timescale of � 1800 s
D1 1.0 implies a diffusivity of 2:22� 10�3 mm s�1

D3 7.0 implies a diffusivity of 1:55� 10�2 mm s�1

ks � 25 assuming a surface tension of 1 pN, this sets a kinetic scale for the simulations
kb 3 implies a bending rigidity of approximately 1:92 pNmm2
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interspersed with sharp changes in direction corre-
sponding to a pseudopod splitting/decay event,
similar to that observed by Neilson et al. [7]. Under sur-
face tension evolution, the cells maintain a
characteristic shape (two pseudopods at the front of
the cell with a valley between them), while the intro-
duction of bending rigidity generates a greater variety
of cell shapes and the cell no longer has a characteristic
shape with varied banana-like shapes evident (the cell
shapes resemble those in the simulations presented in
figure 5). From the simulations, we observe that the
diluting effect of protrusion plays an important role in
destabilizing activator peaks and pseudopod splitting.
By this, we refer to the fact that the formation of an
activator peak results in protrusion of the cell mem-
brane, which in turn leads locally to an decrease in
activator density (as protrusion may be viewed as volu-
metric expansion). As the local maxima corresponding
to the activator peak is reduced most at the tip of the
peak, where protrusion is largest, this has the effect of
increasing the propensity of activator peaks and hence
pseudopods to split.

We may proceed to estimate some of the parameter
values using available experimental data, which is readily
available for dictyostelium cells [2]. The typical radius of
a cell cross section is 4 mm, which sets the length scale for
the computations. The maximum actin polymerization
velocity (which is related to the non-dimensional
J. R. Soc. Interface (2012)
parameter ðkpÞ1) is approximately 0.1 m s21, thus the
value of ðkpÞ1 together with the maximum density of a1

in the simulations (approx. 30) sets the timescale for
the simulations. Typical values of the surface tension
are 10 pN mm21, assuming a cell height of 0.1 mm, this
sets a kinetic scale for the simulation. The remaining
physically elevant parameters may thus be estimated
and are given in table 2. Note that the timescale we
refer to in table 2 corresponds to one unit of compu-
tational time. The length of the simulations in figure 3
is one computational time unit or 30 min in actual time
and corresponds to roughly 20 pseudopod lifetimes
(each change in direction in figure 3 represents a pseudo-
pod splitting/decay event), thus the timescale of an
individual pseudopod is around 90 s.

We note that other choices of the material par-
ameters, specifically weaker surface tension, gives cells
with more elongated shapes, larger protrusions, and
cell bodies that appear less rounded.
4.1.2. Migration in the presence of a chemoattractant
We now include a chemoattractant in the model. We
use the stochastic receptor model proposed by Neilson
et al. [7] to model the noisy chemotactic signalling.
For completeness, we state the essential details. At time
t [ ð0;T �, they model the cells sensing of the chemotac-
tic signal Rt with an Ornstein–Uhlenbeck stochastic
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Figure 4. Centroid trajectories of five cells migrating leftwards in the presence of a linear chemoattractant gradient under
conserved surface tension evolution with varying signal strength (r).
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process of the form:

dRt ¼ uðm� RtÞdt þ s dWt ; ð4:4Þ

where Wt denotes the Wiener process, mðx; tÞmodels the
strength of the chemotactic signal, uðx; tÞ the rate of
reversion to the mean m, and sðx; tÞ the variance. The
mean m is local and prescribed by the model, while the
rate of reversion to the mean and variance is local too
as they are chosen such that u ¼ 1/(1 2 m) and s ¼

cm1/2 (for details, see Neilson et al. [7, §6.2.2]). To com-
pare with Neilson et al. [7, §6.2.5], we model the signal
such that if a chemoattractant is present, the mean m

varies from the base signal strength (at the back of the
cell) of 0.5 to 0.5 þ r at the front, where r . 0 represents
the signal strength. For a given signal direction ds, the
position of the rear of the cell xr is such that
xr � ds ¼ minGðx � dsÞ. We have also conducted exper-
iments where m ¼ expð�cjx � xcjÞ, where xc denotes
the location of a static point source of chemoattractant
and observe similar results. We discretize (in space) by
assuming the meanm is constant over each finite element,
and hence u and s are also constant on each finite
element.

Figure 4 shows the trajectories of the centroids of five
cells migrating leftwards in a linear chemotactic gradi-
ent of varying strength under conserved surface
tension evolution (ks ¼ 25; kb ¼ 0, ðkpÞ1 ¼ 1:5Þ. The
results are similar under the other geometric evolution
considered (ks ¼ 22; kb ¼ 3; ðkpÞ1 ¼ 2) and are not illus-
trated. The migration of the cells with only the base
signal and the signal strength set to zero is reported
in figure 5a. We observe no clear directional preference
similar to the migration observed in the absence of
a chemoattractant. As the signal strength is increa-
sed (at a signal strength of 0.04 around 8% of
the base signal), the cells start to exhibit a clear direc-
tional preference and successfully navigate up the
chemotactic gradient. In table 3, we report on chemo-
taxis measures of 100 cells migrating under the six
different signal strengths shown in figure 4. We state
J. R. Soc. Interface (2012)
the average value over the 100 simulations (for each
signal strength) of the following quantities, all evalu-
ated at t ¼ 0.5.

— The chemotactic index (CI), defined as the cosine of
the angle between a line connecting the present pos-
ition of the cell centroid to the starting point and a
line directly up the chemotactic gradient [39].

— The persistence length (PL) of the centroid trajec-
tory in the x- and y-directions. The persistence
length is taken to be the displacement in the
chosen direction divided by the total length of the
trajectory of the cell centroid [40].

— The squared displacement of the cell centroid from
its initial position.

— The speed of the cell.

The data suggest that as the strength of the
chemotactic signal is increased, the cells exhibit greater
propensity for persistent migration up the chemical
gradient with chemotactic indices similar to those
observed experimentally in the case of Dictyostelium
cells [39; 0.71–0.94]. The persistence length in the
x-direction (up the chemotactic gradient) also increa-
ses with the signal strength, while the persistence
length in the y-direction is reduced. We also note
increasing the signal strength leads to larger dis-
placements. The results suggest that for values of r �
0.06, the cell is able to migrate successfully up the
chemical gradient with all the reported statistics con-
verging to similar means for further increases in the
signal strength. The (physical) cell speeds are similar
to those observed in migrating leukocytes [41, table 1]
and Dictyostelium cells [39] (in both cases reported
in mm min21).

We now investigate the ability of this model to cap-
ture the ability of a cell to respond to a changing
chemotactic signal. We use the same stochastic receptor
model for the chemotactic signalling but now we change
the direction of the signal at various stages in the evol-
ution. Figure 5a,b shows snapshots of the cells shaded



(a) (b)

Figure 5. Response to a changing chemotactic signal. Initially, there is no signal with arrows indicating the time at which a signal
is introduced and the signal direction. Note the two figures are not on the same scale and the cells have the same enclosed volume.
(a) Chemotactic motion of a cell under conserved surface tension evolution, for parameter values, see table 1 and text. Cell out-
lines shown every 0.1 units of computational time over the interval [0, 1.8]. (b) Chemotactic motion of a cell under a combination
of surface tension and elastic evolution with volume conservation, for parameter values, see table 1 and text. Cell outlines shown
every 0.075 units of computational time over the interval [0, 1.725]. (Online version in colour.)

Table 3. Mean and s.d. (in parentheses) of chemotaxis measures at t ¼ 0:5 for 100 cells migrating as in figure 4.

signal strength CI PL (x) PL (y)

0 n.a. 0.4336 (0.2346) 0.4601 (0.2442)
0.02 0.7196 (0.2877) 0.4938 (0.2188) 0.3418 (0.1999)
0.04 0.9423 (0.0742) 0.6968 (0.1177) 0.2005 (0.1163)
0.06 0.9888 (0.0133) 0.8510 (0.0511) 0.1088 (0.0685)
0.08 0.9860 (0.0120) 0.8490 (0.0350) 0.1288 (0.0676)
0.10 0.9898 (0.0141) 0.8489 (0.0272) 0.0987 (0.0734)

signal strength squared displacement (arb. units) speed (arb. units) speed (mm s�1)

0 37.052 (14.5937) 20.056 (1.9781) 0.0445
0.02 34.430 (13.5045) 19.799 (2.8624) 0.0440
0.04 44.655 (11.9692) 20.077 (2.8633) 0.0446
0.06 66.011 (10.3248) 21.156 (1.9327) 0.0470
0.08 66.491 (6.8996) 21.524 (1.9714) 0.0478
0.10 67.387 (8.8005) 21.435 (2.1560) 0.0476
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by activator concentration under the two different
geometric evolutions (k s ¼ 25; kb ¼ 0,ðk pÞ1 ¼ 1:5 and
k s ¼ 22; k b ¼ 3; ðkpÞ1 ¼ 2) in response to a changing
chemotactic signal. Initially, we include only the base
signal with noise, i.e. the signal strength is set to zero.
At the times in the evolution at which the arrows
appear in the figure, we change the direction of the
signal, with signal strength r ¼ 0.1, to the direction
indicated by the arrows. We see that under both
geometric evolutions, the cell successfully responds to
the changing signal, exhibiting a clear directional
preference for movement in the direction of higher
chemoattractant concentration. As a final example of
response to a changing signal, we consider the case
where the signal direction is changed by 1808. The
results of such a simulation are shown in figure 6. We
observe the cell successfully responds to the change in
signal direction and does so via turning gradually
through 1808. This corresponds to the so-called ‘hops’
J. R. Soc. Interface (2012)
(consecutive right/right or left/left splitting of
pseudopods) that are an important mechanism for the
reorientation of Dictyostelium cells moving in a direction
more than 908 off the chemotactic gradient [42, fig. 4].
Under this model, we have however, thusfar, not
observed the formation of de novo pseudopods towards
the direction of increasing chemoattractant, which are
another significant mechanism for major directional
corrections [42].
4.1.3. Migration in the presence of obstacles
We now include an external force in the evolution law,
which arises from a model for the migration of cells
through a field of obstacles. We model the obstacle
particles as rigid spherical bodies. The obstacle–cell
interaction is described by a phenomenological repul-
sive force that points in the direction normal to the
cell membrane with no tangential component. Unlike



Figure 6. Response to a changing chemotactic signal. In this
example, the direction of the chemotactic signal is changed by
1808.Weobserve that the cell turns through1808 and successfully
responds to the changing signal, migrating up the new chemotac-
tic gradient. Cell outlines shown every 0.1 units of computational
time over the interval [0, 1]. (Online version in colour.)
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the models proposed by Hecht et al. [43] and
Grima [44], the obstacles and the cell both move
owing to mechanical interactions.

Let No [ N denote the number of obstacles with
centres fmigNo

i¼1 and radii frigNo
i¼1. For the force acting

on a point x [ GðtÞ on the cell boundary owing to the
interaction with obstacle i we postulate

F o;i ¼ maxð0; ðrið1þ eÞ � jmi � xjÞÞððmi � xÞ � ð�nÞÞ

� fi
jmi � xj � ri

; ð4:5Þ

where fi . 0 is a material coefficient and 1 . 0 is a
thickness parameter: the force is zero if the distance
between the cell membrane and the obstacle boundary
is bigger than 1ri. The force becomes infinite as this
distance approaches zero and then dominates any
other forces on the cell membrane, thus preventing
intersection of the cell and the obstacle. The external
force acting on the cell boundary is given by:

F ext ¼
XNo

i¼1

F o;i: ð4:6Þ

For the obstacle particles, we postulate a viscous
motion law, too, where the reaction forces from the
cell boundary �F i;o and obstacle–obstacle interactions
are taken into account. We postulate

vi ṁi ¼ �
ð
GðtÞ

F i;on dS þ
X
j=i

F j;i: ð4:7Þ

Here, the vi . 0 are positive kinetic coefficients
related to the mass of the particle, the first term on
the right-hand side modelling the cell–obstacle inter-
action isð

GðtÞ
F i;on dS ¼

ð
G

maxð0; ðrið1þ eÞ � jmi � xjÞÞ

� ððmi � xÞ � nÞ fi
jmi � xj � ri

ndS ;

ð4:8Þ
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and F j;i is the force from particle j exerted on particle i
for which we postulate

F j;i ¼ maxð0; ð1þ eÞðri þ rjÞ � jmi �mj jÞ

� f ji

jmi �mj j � ðri þ rjÞ
ðmi �mjÞ;

ð4:9Þ

where the f ji ¼ fij . 0 are material coefficients. Note
that in the absence of the cell, the initial location of
the obstacles is such that the sum of the forces F j;i

yields zero so that the particles do not move. Moreover,
we have the following balance of forces exerted by the
cell on the obstacles and forces on the cell membrane
owing to the obstaclesð

G

ðF extnÞ þ
XNo

i¼ 1

ð
G

ð�F i;onÞ þ
X
j=i

F j;i

 !
¼ 0:

Figures 7 and 8 show a series of snapshots of cell
migration through a field of obstacles, with parameter
values as in table 1 and the two previously considered
geometric evolutions. Our numerical experience suggests
that under the simple model of cell obstacle interactions
we have employed, the increase in computational time,
even with a large number of obstacles, from the case of
no obstacles is negligible. We include the forcing terms
in the evolution law for the cell membrane and the
obstacle centres given by equations (4.6)–(4.9), with
parameter values 1 ¼ 0:1; fi ¼ fij ¼ 100 for all i, j and
vi ¼ ri=100. We observe that the cell successfully
migrates through the field of obstacles maintaining the
characteristic shape as it deflects the obstacles. Our
numerical experiments suggest that this behaviour is sen-
sitive to the parameter values chosen in the repulsive
potential (4.5). In particular, if we set the kinetic coeffi-
cient related to the mass of the obstacles vi cf. equation
(4.8) to be comparable in magnitude to the kinetic coef-
ficient related to the mass of the cell (1 by assumption),
which means the obstacles inhibit more strongly the pro-
trusion of pseudopods, then pseudopod splitting no
longer occurs and the cell exhibits persistent motion in
the direction of an obstacle (not reported).
4.1.4. Migration of cells in three space dimensions
We now present results for the motion of three-
dimensional cells in the absence of a chemoattractant.
We took the unit sphere as the initial steady state and
used the reaction kinetic parameter values given in
table 4. We selected a timestep of 1025 and used the
adaptive strategy described in the electronic sup-
plementary material with parameters NH ¼ 0.5, Nh ¼

0.75, MH ¼ 0.25 and Mh ¼ 0.5. We considered an
evolution law of the form (2.8) with parameters
ks ¼ 25; kb ¼ 0; ðkpÞ1 ¼ 0:5. As in table 2, we give a
physical interpretation of the parameter values in
table 5, assuming the radius of the spherical cell at
rest is 1.17 mm. The model for the random signalling
was the same as the model used in the two-dimensional
case. Snapshots of the cell surface shaded by activator
concentration are reported in figure 9. We see qualitat-
ively similar behaviour to the case of curves with
protrusion of activator peaks leading to pseudopod
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Figure 7. Undirected migration (i.e. migration in the absence of a chemoattractant) in the presence of obstacles of a cell under
conserved surface tension evolution; for parameter values see table 1 and text. (Online version in colour.)
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formation and the rest of the cell retracting behind the
pseudopods. We also observe pseudopod splitting as the
cell changes direction via biased generation and retrac-
tion of existing pseudopods. The simulation is
considerably more challenging than the curve case con-
sidered previously and the total CPU time of the
simulation was just over 27 h.
5. MODELLING THE PERSISTENT MOTION
OF KERATOCYTES

We present a model based on the general modelling fra-
mework described in §2 that seeks to capture the
persistent motion of fish keratocytes. The cells deform
rapidly into a temporally persistent shape and once in
this shape move at a constant speed without changes
in direction. Keren et al. [18] conducted an analysis of
the shapes taken by moving keratocyte cells and propose
a simple phenomenological model to account for the
observed movement and cell shapes. Their results
suggest that the steady-state shapes of the cell are
J. R. Soc. Interface (2012)
broadly described by two modes and that cell shape,
specifically the aspect ratio (length/width), is strongly
correlated with the speed of motion. They also examined
the actin distribution within the cell. Branched actin fila-
ments promoting protrusion are concentrated at the fast-
moving front and retraction promoting actin bundles are
concentrated at the rear. The steady state appears stable
to perturbations and if movement of the cell is disrupted,
the cell rapidly regains its previous shape and speed of
movement, usually moving in a new direction.

The observed behaviour of spontaneous polarization
and subsequent development of a steady state stable to
perturbations suggests a Turing type mechanism coupled
to a surface evolution law could accurately capture the
observed dynamics. Shao et al. [22] considered a mem-
brane subject to surface tension, bending rigidity and
forcing with volume conservation. The forcing strength
was dependent on the concentrations of a two component
RDS posed in the bulk of the cell. They present compu-
tational results, for two-dimensional cells with weak
volume conservation (enforced via penalization), based
on a phase-field method. Ziebert et al. [6] present a



(a)

(g) (h) (i)

(b) (c)

t = 0 t = 0.15 t = 0.25

t = 0.375 t = 0.5 t = 0.6

t = 0.75 t = 0.875 t = 1

(d) (e) (f)

Figure 8. Undirected migration in the presence of obstacles of a cell under a combination of conserved surface tension and elastic
evolution; for parameter values see table 1 and text. (Online version in colour.)

Table 4. Parameter values for numerical experiments of the movement of three-dimensional cells with the Meinhardt
kinetics (4.1).

reaction kinetic parameters

D1 D3 g r1 r3 s1 s3 b1 b3

10 70 5� 104 2� 10�2 13� 10�3 1� 10�4 0.2 0.1 5� 10�3

Table 5. Physically relevant parameter values for simulation of migration of a cell in three dimensions.

parameter value physical interpretation

r0 1 initial radius of cell sets a length scale of 1:17mm
ðkpÞ1 0.5 coefficient of protrusive forcing term implies a timescale of approximately 230 s
D1 10 implies a diffusivity of 5:95� 10�2 mm2 s�1

D2 70 implies a diffusivity of 4:17� 10�1 mm2 s�1

ks � 25 assuming a surface tension of 10 pNmm�1, sets kinetic scale
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t = 0.075 t = 0.085 t = 0.09

t = 0.095 t = 0.1

Figure 9. Migration in the absence of a chemoattractant of a three-dimensional cell under conserved surface tension evolution; for
parameter values see table 4 and text. (Online version in colour.)

Table 6. Parameter values for numerical experiments of
keratocyte movement with the RDS (5.1).

reaction kinetic
parameters surface evolution parameters

D1 D2 g k1 ks kb ðkpÞ1 ðkpÞ2
0.5 50 10 0.1 2 2 22 1

3038 Modelling cell motility and chemotaxis C. M. Elliott et al.
model for keratocyte movement, again based on a phase-
field method, where they couple the surface evolution to a
vector field that seeks to describe the polarization of the
actin network. Studies suggest that branched filamen-
tary actin and actin bundles are concentrated primarily
near the cell membrane near areas of protrusion and
retraction, respectively, while away from the cell surface
the actin is in a remodelling phase between that of
branched and bundled actin [18,45,46]. This suggests a
surface model where the pattern formation process occur-
ring on the cell membrane itself may be appropriate. We
propose the activator-depleted substrate model [47]:

@†a1 þ a1rGðtÞ �V � D1DGa1 ¼ gðk1 � a1 þ a2
1a2Þ;

@†a2 þ a2rGðtÞ �V � D2DGa2 ¼ gðk2 � a2
1a2Þ;

onGðtÞ; t . 0 and að�; 0Þ ¼ a0ð�Þ on G0:

9=
;
ð5:1Þ

We first present results for curves, with material
and RDS parameters given in table 6. We considered an
initially circular cell with radius 1 centred at the origin.
The initial condition for the RDS was taken as the lin-
early stable steady state a0

1 ¼ k1 þ k2; a0
2 ¼ k2=ða0

1Þ
2

with a symmetry breaking perturbation of the form
maxð1� 10�4x1; 0Þ added to the initial condition of
the a2 species. The specific form of the initial condition
leads to cells that migrate only along the x-axis (we ver-
ified that the choice of other initial conditions only
changed the direction of the movement). The
J. R. Soc. Interface (2012)
hypothesis of Keren et al. [18] is that variability in the
actin dynamics is the major factor governing the
observed variations in shape and speed. To investigate
this hypothesis, we propose that the a1 species in the
RDS (5.1) corresponds to the density of retraction pro-
moting actin bundles, while the a2 species corresponds
to the density of protrusion promoting actin filaments,
which is similar to the model considered in Shao et al.
[22]. We can model variable actin dynamics by chan-
ging the constant k2 which can be interpreted as the
growth rate of actin filaments. Increasing k2 leads to
higher concentrations of a2 relative to a1, and thus
should lead to faster moving cells with stronger forcing
at the front.

In all the simulations on curves, we used an initially
equidistributed mesh with 1024 d.f. and a fixed time-
step of 1023. The CPU times were on the order of
seconds with a typical simulation taking approximately
200 s. Figure 10a,b shows, for different values of k2, the
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Figure 10. Initial position (at t ¼ 0 right-hand cell) and persistent keratocyte-like migration of cells (at t ¼ 5). The parameter k2 ¼

0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8 reading from right to left for the seven polarized (left hand) cells (cf. equation (5.1)) with the remaining
parameters given in table 6. (a) Activator (a1) concentrations; (b) substrate (a2) concentrations. (Online version in colour.)
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Figure 11. The speed of the cell centroid and aspect ratio both versus time of the cells shown in figure 10. We observe a positive
relationship between aspect ratio and speed. (Online version in colour.)
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initial position of the cells at time 0 and the cell pos-
itions and surface RDS concentrations at time 5 (by
which time all the cells have reached a steady state
with constant speed and time independent RDS con-
centrations). We see faster cell speeds and larger
aspect ratios for increased values of k2, similar to the
models where the RDS is posed in the bulk [22]. The
shapes of the cells at steady state also resemble those
observed experimentally [18]. In particular, we see the
rounded ‘D’ shape in the right most cell corresponding
to k2 ¼ 0.6, and the much more elongated ‘canoe’
shape in the left most cell corresponding to k2 ¼ 1.8.
We report on the aspect ratio AR ¼ ðl2=l1Þ1=2, as con-
sidered in Ziebert et al. [6], where for i ¼ 1,2, li is as
follows (the li’s are the eigenvalues of the diagonal
2 � 2 variance matrix of the cells centroid):

li ¼
1
3

ð
G

ðxi � xc
i Þ

3
ni ds;

where xc
i is the ith coordinate of the cells centroid. We

also report on the deviation from reflection symmetry
of the migrating cells as considered in Ziebert
J. R. Soc. Interface (2012)
et al. [6]. This is measured by the following quantities
(the non-zero components of the skewness tensor of
the cells centroid scaled by a constant factor):

h1 ¼
1
4

ð
G

ðx1 � xc
1Þ

4
n1 ds

� �1=3

ðl1 þ l2Þ�1=2;

h2 ¼
1
2

ð
G

ðx1 � xc
1Þ

2ðx2 � xc
2Þ

2
n1 ds

� �1=3

ðl1 þ l2Þ�1=2:

Figure 11 shows plots of the speed of the cell cen-
troids and the aspect ratio of the cells both against
time. We clearly see the positive relationship between
aspect ratio and cell speed evident in the experimental
studies. In physical units, the range of the speed at
steady state of the cells shown in figure 10 is 0.178–
0.445 mm s21}. Both the speed and aspect ratios are
similar to those observed in the experimental results
reported in Keren et al. [18, fig. 4b]. Figure 12 shows
values of the asymmetry measures against time. We
see that the cells travelling at a slower speed exhibit
larger deviations from reflection symmetry. This is in
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Figure 12. Asymmetry measures versus time of the cells shown in figure 10. We observe larger deviations from reflection sym-
metry in the cells travelling at slower speeds. As the cells attain persistent shapes, the values converge to a steady state.
(Online version in colour.)

Table 7. Physically relevant parameter values for simulation of keratocyte movement in two-dimensions.

parameter value physical interpretation

r0 1 initial radius of cell sets a length scale of 4 m
ðkpÞ2 1 coefficient of protrusive forcing term implies a timescale of approximately 45 s
D12 0.5 implies the diffusivity of actin filaments of 4:44� 10�2 mm s�1

D2 50 implies the diffusivity of actin filaments of 4:44 mm s�1

k2 0.6–1.8 implies an actin filament growth rate of 1:33� 10�2 � 4� 10�2 s�1

ks 2 assuming a surface tension of 1pN, sets the kinetic scale
kb 2 implies a bending rigidity of approximately 16 pNmm2

Table 8. Parameter values for numerical experiments of three-dimensional keratocyte movement with the RDS (5.1) and
surface evolution law (2.8).

reaction kinetic parameters surface evolution parameters adaptive strategy parameters

D1 D2 g k1 k s kb ðkpÞ1 ðkpÞ2 NH Nh MH Mh

1 100 20 0.1 1 1 20.7 0.35 0.5 1 0.25 0.5
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contrast to the results obtained under the model con-
sidered in Zibert et al. [6, fig. 4], where h1 does increase
as the speed of the cells decreases, but h2 is positively cor-
related with speed. We note that for the first two
simulations k2 ¼ 0:6 and 0:8, h2 is negatively correlated
with speed. As an ellipse satisfies h1 ¼ h2 ¼ 0, it is not
clear that the faster moving cells with larger aspect
ratios, but more elliptical profiles, should exhibit larger
deviations from reflection symmetry. We also observe
that after a brief initial stage in which all the reported
values oscillate, the values converge to a steady state as
the cells travel in a persistent fashion with a fixed shape
and a constant speed.

We also report on simulations of three-dimensional
keratocyte motion. We took the unit sphere as the
initial cell shape, the same initial conditions for the
RDS concentrations as in the curve case, a fixed time-
step of 1024 and remaining parameter values for both
the surface evolution and adaptive strategy as given in
J. R. Soc. Interface (2012)
table 8. The CPU times were on the order of minutes
with a typical simulation taking approximately 2000 s.
Proceeding as in §4, we give physical interpretations of
the parameter values for curves and surfaces in tables 7
and 9, respectively. Figure 13a,b shows a similar exper-
iment to the one carried out for curves now on
surfaces, specifically we report for different values of k2,
the initial position of the cells at time 0 and the cell pos-
itions and surface RDS concentrations at time 5 (by
which time all the cells have reached a steady state
with constant speed and time-independent RDS concen-
trations). The gross behaviour is the same as the curve
case, in that as the parameter k2 is increased from 0.6
to 1, the cells move faster at steady state and appear
more elongated. Figure 14 shows plots of the speed of
the cell centroids and the surface area of the cells both
against time. We plot the surface area as it is pro-
portional to the two, roughly equal, aspect ratios in the
(x, y)-and (x, z)-directions. We observe the same positive
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Figure 13. Initial position (at t ¼ 0 right-hand cell) and persistent keratocyte like migration of cells (at t ¼ 5). The parameter
k2 ¼ 0.6, 0.7, 0.8, 0.9, 1.0 reading from right to left for the five polarized (left hand) cells (cf. equation (5.1)), for the remaining
parameter values, see table 8. (a) Activator (a1) concentrations; (b) substrate (a2) concentrations. (Online version in colour.)

2 4 60

1

2

3

4

5

6

7

8

sp
ee

d

time
0 2 4 6

12.50

12.55

12.60

12.65

12.70

12.75

12.80

12.85

12.90

12.95

13.00

su
rf

ac
e 

ar
ea

time

k2 = 0.6 k2 = 0.7 k2 = 0.8 k2 = 0.9 k2 = 1.0

(a) (b)

Figure 14. The speed of the cell centroid and cell surface area both versus time of the cells shown in figure 13. We observe a
positive relationship between surface area and speed. (Online version in colour.)

Table 9. Physically relevant parameter values for simulation of keratocyte movement in three dimensions.

parameter value physical interpretation

r0 1 initial radius of cell sets a length scale of 1.17 mm
(kp)2 0.35 coefficient of protrusive forcing term implies a timescale of approximately 4 s
D1 1.0 implies the diffusivity of actin bundles of 0.342 mm2 s21

D2 100 implies the diffusivity of actin filaments of 34.2 mm2 s21

k2 0.6–1.0 implies an actin filament growth rate of 0.15 � 1021–0.25 s21

ks 1 assuming a surface tension of 10 pN mm21, sets the kinetic scale
kb 1 implies a bending rigidity of approximately 13.69 pN mm

Modelling cell motility and chemotaxis C. M. Elliott et al. 3041
relationship as in the curve case, with both surface area
and speed converging to steady states. We have also ver-
ified that the aspect ratios converge to steady states with
the aspect ratio in the (y, z)-direction approaching
1. Note for larger values of k2, the cells developed a
self-intersection which is inadmissible under our model-
ling as it would correspond to a change in topology in
the physical setting. Scenarios where one wishes to con-
sider a topological change, or respectively, methods
J. R. Soc. Interface (2012)
that avoid topological change, are a subject of our
current research.
6. CONCLUSION

In this work, we have presented a computational
framework for the modelling of cell motility. We pro-
pose a simple and consistent means of coupling cell
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movement with gradient sensing, polarization using
surface partial differential equations (PDEs), and exter-
nal forces. Our methods can be generalized to the
modelling of more complex phenomena such as adhesion
and crawling on a substrate or cell–cell interactions and
we illustrate one such generalization with a concrete
example of migration in the presence of obstacles.

A contribution of our study is the description of a
numerical method for the simulation of cell movement
that can account for the large deformations that arise
in simulations of cell motility and that can be applied
to the study of three-dimensional cell migration. The
model equations consist of PDEs for and on surfaces
and the numerical method seeks to approximate these
equations on a discrete surface. Thus both the continu-
ous and discrete problems are posed in one dimension
less than the underlying spatial dimension, which in
the case of the discrete problem typically means fewer
degrees of freedom are needed than would be the case
for embedded methods [10,13–16]. On curves, our
experience is that the method maintains a mesh suitable
for computation without the use of remeshing or adap-
tive mesh refinement. For the simulations of cell
migration in three dimensions, we occasionally observed
deterioration in the mesh quality, even with the redistri-
bution of the vertices implicit in our numerical scheme,
necessitating spatial adaptivity. An area of our ongoing
research is the investigation of numerical methods
robust to large deformations in the cell surface.

We consider a pseudopod-centred model for chemo-
taxis similar in form to that considered in Neilson et al.
[37]. Unlike compass models [39], which are reasonable
for cells with flexible polarity where a large gradient
may induce pseudopods at any position on the cell mem-
brane, pseudopod-centred models [17] are suitable for
strongly polarized cells, where pseudopods are generated
preferentially at the front with directional bias, owing to
a chemotactic gradient, restricted primarily to small
changes in direction [42]. The major contributions and
imports of our study are the inclusion of bending rigidity,
the inclusion of external forces, the observation that
the gross behaviour, of pseudopod splitting, observed
in Neilson et al. [37] for two-dimensional cells persists
in three-dimensional simulations, and that the model
remains qualitatively unchanged when one considers a
two-component RDS, with a spatially constant global
inhibitor, rather than a three component RDS with a bio-
logically implausible non-local term. Our computational
method based on surface finite elements extends the
method in Neilson et al. [16] and is an alternative
to the level set method considered in Neilson
et al. [7,37]. The simulations illustrate that the model is
capable of reproducing aspects of pseudopod-driven cell
migration, described in Insall [17], in both two and
three space dimensions. We report on many widely used
chemotaxis measures and observe values similar to exper-
imental observations. We also note that the simulations
exhibit a dilution effect at the tip of a pseudopod,
where the local maxima corresponding to an activator
peak is reduced. This suggests experimental investigation
of the relative importance of mechanical effects of mem-
brane protrusion on the distribution of cell-resident
proteins is warranted.
J. R. Soc. Interface (2012)
We also investigated a model for the motion of fish
keratocytes. The model appears to reproduce some
experimental observations of the shapes of motile kera-
tocyte cells and the experimental observation of the
correlation between cell shape and speed [18]. The com-
putational model in Keren et al. [18] reproduces the
velocity–aspect ratio relationship. However, unlike our
model, both polarization and cell shapes are not expli-
citly modelled, with a parabolic actin profile at the
leading edge assumed and the shape of the cell rear neg-
lected. Studies [6,22] propose models where polarization
is modelled by equations in the bulk of the cell which
are coupled to an evolution law for the cell surface.
The import of our study is to show that a surface
RDS coupled to a surface evolution law gives qualitat-
ively similar results. A further contribution is the use
of surface finite elements rather than the phase-field
method considered in Ziebert et al. [6] and Shao et al.
[22]. This allows simulation of three-dimensional kerato-
cyte migration, in which studies [6,22] both note is
computationally expensive with the phase-field method-
ology. We do observe minor differences from Ziebert
et al. [6], for example, in the measures of deviation
from reflection symmetry.

Our numerical experience suggests that some aspects
of cell migration and chemotaxis can be captured by the
Schnakenberg RDS, equation (5.1). This RDS is con-
siderably simpler from a mathematical analysis
viewpoint than say the Meinhardt model, equation
(4.1). One can show that the model is well posed on
evolving (planar) domains [48], which is an open ques-
tion even on fixed domains for the Meinhardt model. As
the two components are out of phase, the model lends
itself naturally to the case of a species that promotes
protrusion (e.g. actin) and another that promotes
retraction (e.g. myosin).

In this work, it is our intention to present a frame-
work for future modelling rather than suggest any
definitive models for cell migration. We hope that
future studies will employ the framework we have set
out to refine existing models for cell motility and
make predictions based on numerical simulations that
can be used to direct and inform experimental studies.

This research has been supported by the UK Engineering and
Physical Sciences Research Council (EPSRC), grant no. EP/
G010404.
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