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Individual-based models describing the migration and proliferation of a population of cells
frequently restrict the cells to a predefined lattice. An implicit assumption of this type of
lattice-based model is that a proliferative population will always eventually fill the lattice.
Here, we develop a new lattice-free individual-based model that incorporates cell-to-cell
crowding effects. We also derive approximate mean-field descriptions for the lattice-free
model in two special cases motivated by commonly used experimental set-ups. Lattice-free
simulation results are compared with these mean-field descriptions and with a corresponding
lattice-based model. Data from a proliferation experiment are used to estimate the parameters
for the new model, including the cell proliferation rate, showing that the model fits the data
well. An important aspect of the lattice-free model is that the confluent cell density is not
predefined, as with lattice-based models, but an emergent model property. As a consequence
of the more realistic, irregular configuration of cells in the lattice-free model, the population
growth rate is much slower at high cell densities and the population cannot reach the same
confluent density as an equivalent lattice-based model.
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1. INTRODUCTION

Discrete models are often used to study collective cell
migration [1–5] and collective cell growth processes [6–12].
These models produce detailed snapshots and movie-
based data that are easy to compare with experimental
images and time-lapse data [13]. There are two key classes
of random walk model that have been used to represent
collective cell migration and growth.

Lattice-based random walk models typically represent
the spatial domain as a one-, two- or three-dimensional
regular lattice, with lattice spacing D. Cell motility
events are usually represented by nearest-neighbour tran-
sitions, and cell proliferation events by placing new
agents on the lattice. Computationally, the evolution of
the system can be represented by a discrete time-stepping
mechanism, in which, during each time step of duration
t, each agent has problem-specific probabilities of
moving and of proliferating [13–18]. Alternatively, the
evolution of the system can be represented by a
continuous-time framework in which the waiting time
for a particular event to occur is sampled from some
problem-specific distribution [3,19,20].
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Classical lattice-based random walks are non-
interacting [1,19], meaning that each motility and
proliferation event is independent of the state of the
system. For example, an agent can move to a target site
that is already occupied or a proliferation event can
deposit a daughter agent at the same lattice site as the
parent agent. These simple mechanisms do not incor-
porate any form of agent-to-agent interactions since
multiple agents can reside on the same lattice site.
Therefore, non-interacting models are relevant only for
problems where the cell density is so low that cell-to-cell
contacts and crowding effects are unimportant.

Many relevant applications of collective cell migration
and proliferation involve situations with high cell densities
and many cell-to-cell contacts [21–23]. Contact effects,
such as contact inhibition of migration [24] and contact
inhibition of proliferation [21], can play a major role in
determining the behaviour of cell populations. In such
situations, the effects of cell-to-cell crowding are often
observed experimentally [22]. These observations have
motivated the development of interacting random
walk models that incorporate crowding effects to repli-
cate contact inhibition of migration and contact
inhibition of proliferation. Interacting lattice-based
This journal is q 2012 The Royal Society
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random walk models, also known as exclusion pro-
cesses [25], allow each lattice site to be occupied by,
at most, a single agent. The lattice spacing D is thought
of as being equivalent to the cell diameter [26]. Interact-
ing lattice-based random walks can be simulated in the
same way as a non-interacting random walk, except
that individual movement and proliferation probabil-
ities now depend on the state of the system. For
example, a motility event that would place an agent
on an occupied site would be aborted. These aborted
events are a simple way of representing crowding effects
in the system [16,20,26]. Interacting lattice-based
random walk models have been used to represent
many processes in cell biology, including cancer cell
migration [16,27], wound healing [8,28] and embryonic
development [13].

Recently, research has begun to focus on deriving
mean-field (continuum limit) descriptions of lattice-
based interacting random walk models. The mean-field
description most frequently takes the form of a partial
differential equation (PDE) for an agent density.
The ability to represent mathematically both the individ-
ual-level details and the population-level description of
the random walk process is important for two key
reasons. First, many experimental observations reflect
both individual-level and population-level data for the
same system [29]. Second, knowing the continuum-limit
PDE for the random walk process enables the use of
a range of mathematical tools (e.g. travelling wave
analysis and similarity solutions). These can often give
greater insight into the collective behaviour than
is possible with computational simulations of the
individual-based model alone. For example, Liggett [25]
showed that an unbiased interacting motility mechanism
can be described by the linear diffusion equation;
Deroulers et al. [16] showed that agent-to-agent contact
effects can lead to a nonlinear diffusion equation;
Simpson et al. [12] showed that combining proliferation
mechanisms with motility leads to a nonlinear
reaction–diffusion PDE that is a generalization of the
Fisher–Kolmogorov equation [30,31].

Lattice-free random walk models represent agent
motility and proliferation on a continuous domain
[32,33] and are more realistic than lattice-based models.
Lattice-free models allow the direction of movement to
be a continuous variable, rather than restricting agents
to a discrete set of directions corresponding to nearest-
neighbour lattice sites. This is more consistent with
observations of cell migration and proliferation, in
which individual cell movements and proliferation
events are not restricted to a lattice [18,34]. In two dimen-
sions, this means that each agent is allowed to move in
any direction u [ ½0; 2pÞ. Circular distributions are
used to draw random angles for either the direction of
movement or the turning angle at each step of a two-
dimensional random walk [3,33]. Lattice-free models
have been used extensively in studies of molecular
motion [35]. Most applications of lattice-free models to
processes in cell biology have been non-interacting,
which means that each discrete motility and proliferation
event is independent of the state of the system and crowd-
ing effects are neglected [32,33,35]. In order for lattice-
free models to be used for high-density applications in
J. R. Soc. Interface (2012)
cell biology, crowding mechanisms must be introduced
into the lattice-free framework.

The aim of this work is to compare lattice-based
and lattice-free interacting random walk models of cell
migration and proliferation. To achieve this, we intro-
duce both a lattice-based and a lattice-free model and
apply them to two standard experiments used in cell
biology. The first experiment, shown in figure 1a,b,
is a scratch assay experiment that involves placing a
population of cells on a two-dimensional substrate
and then scratching away part of the population to
reveal a sharp interface between the occupied region
and the cell-free region. The motility of the cell popu-
lation is characterized by measurements of the rate at
which the population spreads into the scratched region.
To characterize cell motility only, scratch experiments
are often conducted over short time scales (approx.
1 day) for which cell proliferation is minimal [27].
The second experiment we will consider, shown in
figure 1c,d, involves placing a sparse population of cells
uniformly on a two-dimensional substrate. The cells
then migrate and proliferate and the total number of
cells in the population increases until the popu-
lation eventually becomes confluent [22]. This kind of
proliferation experiment is usually conducted over
longer time scales (approx. 5–7 days) to give the cells
the opportunity to proliferate many times during
the course of the experiment. The data shown in
figure 1c,d illustrate the key role of crowding effects:
when the cell density is relatively low (figure 1c), the
cell trajectories recorded are quite long, whereas when
the cell density is higher (figure 1d), the cell trajectories
are much shorter. These observations indicate the
importance of contact inhibition of migration [24] in
this experiment. Similarly, growth rate data from the
experiments in figure 1c,d indicate that the population
growth rate decreases as the density increases [22].
This implies that contact inhibition of proliferation is
also important for these cells.

Here, we develop a new individual-based lattice-free
model for a population of motile and proliferative cells
with crowding effects. Bruna & Chapman [2] previously
developed a model of hard sphere diffusion allowing for
crowding effects. However, our approach differs from
this and from other previous lattice-free models [35,36]
as we allow agent proliferation (and agent-to-agent
interactions are handled in a different way from hard
sphere models [2]). We compare simulations of the
lattice-free model in the experimental scenarios described
above with simulations of a comparable lattice-based
model and with experimental data. A variety of lattice
types has been used in previous lattice-based modelling,
including hexagonal or irregular lattices [37–39]. How-
ever, we focus on a square lattice as a basis for
comparison with the lattice-free model as this is the
most commonly used lattice in cell-based applications
[13–15,18,19]. Where possible, we derive mean-field
descriptions of the lattice-free model and compare these
with averaged simulation results. Our work highlights
important similarities and differences between the lat-
tice-based and lattice-free approaches and demonstrates
key challenges in deriving mean-field descriptions for
interacting lattice-free models.
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Figure 1. Two canonical cell biology experiments. (a,b) Two snapshots of an unbiased scratch assay in which a dense population
of motile cells is placed on a two-dimensional substrate and a portion of the population (to the right of the dashed line) is
scratched away (reprinted with permission from the American Physical Society, Khain et al. [27]). After the scratch has been
made, the rate at which the cells move along the lateral coordinate into the scratched region is measured. These experimental
images correspond to U87 glioma cells with a cell diameter of 20 mm and the amount of time that elapsed between snapshots
(a) and (b) is 24 h [27]. (c,d) Two snapshots of a cell proliferation assay using mouse fibroblasts (reprinted from Chemical Engin-
eering Science, Tremel et al. [22], with permission from Elsevier). In these experiments, a sparse population of cells is initially
uniformly distributed in a culture system and then allowed to proliferate so that the population grows and eventually becomes
confluent. The amount of time that elapsed between snapshots (c) and (d) is approximately 50 h [22]. (Online version in colour.)
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2. TWO-DIMENSIONAL LATTICE-BASED
INTERACTING RANDOM WALK MODEL

2.1. Discrete model

We use a two-dimensional square lattice with spacing D.
Each site is indexed (i, j) where i, j [ Z , and each site
has position ðx; yÞ ¼ ðiD; jDÞ. In any one realization of
the discrete model, the occupancy of site (i, j) is �Ci;j ,
with �Ci;j ¼ 1 for an occupied site and �Ci;j ¼ 0 for a
vacant site.

If there are N(t) agents on the lattice, during the next
time step of duration t, N(t) agents are selected indepen-
dently at random, one at a time. When chosen, an agent
attempts to move with probability Pm [ ½0; 1�. We con-
sider the simplest form of motility in which the target
site is chosen at random without any directional bias.
For example, a motile agent at (x, y) will attempt to
step to either ðx + D; yÞ or ðx; y + DÞ, each with equal
probability 1

4. Since biological cells cannot occupy the
same position in space, motility events that would
place an agent on an occupied site are aborted.

Once the N(t) motility events are attempted,
another N(t) agents are selected independently at
random, one at a time. When selected, an agent
J. R. Soc. Interface (2012)
attempts to proliferate with probability Pp [ ½0; 1�. In
general, N(t) increases during each time step for
Pp . 0, and this computational approach is appropriate
for small values of Pp, where the increase in N(t)
per time step is small. Here, we consider the most
straightforward proliferation mechanism in which a pro-
liferative agent at (x, y) attempts to deposit a daughter
agent in one of ðx + D; yÞ or ðx; y + DÞ with equal
probability 1

4. Any attempted proliferation events that
would place a daughter agent onto an occupied site
are aborted.

This lattice-based model is the same as that of
Simpson et al. [12] and is called an exclusion process
since no two agents can occupy the same lattice site.
All lattice-based simulations are dimensionless in the
sense that we set D ¼ t ¼ 1, and we note that the simu-
lation results can be rescaled using appropriate length
and time scales for any particular application.
2.2. Mean-field model: a single
non-proliferative agent

For a single non-proliferative agent, the lattice-based
model reduces to a nearest-neighbour random walk in
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which crowding effects are absent. Standard arguments
relate the stochastic motility to a diffusion process in an
appropriate limit [40]. Since the motion of a single
agent is unbiased, it is straightforward to show that
the mean displacement per step is zero. An expression
for the mean-squared displacement (MSD) can be
derived by considering the x and y components of the
displacement in the ith step,

kðxi � xi�1Þ2l ¼ Pm

4
D2 þ Pm

4
D2

� �
¼ PmD

2

2

and kðyi � yi�1Þ2l ¼ Pm

4
D2 þ Pm

4
D2

� �
¼ PmD

2

2
:

9>>>>=
>>>>;
ð2:1Þ

Hence the total MSD per computational time step is
PmD

2 and the MSD per unit time is PmD
2=t. Holding

D2=t constant and letting D and t tend to zero jointly,
the probability density function for the position of
the single agent satisfies the two-dimensional linear
diffusion equation with diffusivity given by [40]

D ¼ Pm

4
lim
D;t!0

D2

t

� �
: ð2:2Þ
2.3. Mean-field model: a population of
interacting proliferative agents

To connect the discrete mechanism for a population of
interacting agents with a mean-field model, we average
the occupancy of site (i, j) over many statistically
identical realizations to obtain kCi;jl [ ½0; 1�. After aver-
aging, we form a discrete conservation statement
describing dkCi;jl, which is the change in average occu-
pancy of site (i, j) during the time interval from time t
to time t þ t. The discrete conservation equation
encodes all of the processes occurring in the discrete
simulations. In this case, we have

dkCi;jl ¼
Pm

4
ð1� kCi;jlÞ

X
kCi;jl� kCi;jl

h

� 4�
X

kCi;jl
� �i

þ Pp

4

X
kCi;jlð1� kCi;jlÞ;

ð2:3Þ

where we defineX
kCi;jl ¼ kCi�1;jlþ kCiþ1;jlþ kCi;jþ1l

þ kCi;j�1l: ð2:4Þ

The positive terms on the right-hand side of equation (2.3)
represent events that place an agent at site (i, j) (either by
movement or by proliferation), while the negative terms
represent events that remove agents from site (i, j)
(which can only occur by movement). Note that all terms
on the right-hand side of equation (2.3) are proportional
to terms such as ð1� kCi;jlÞ. This reflects the fact that
potential motility and proliferation events are only success-
ful if the target site is vacant.

To obtain the mean-field equation for the discrete
conservation statement, all terms in equation (2.3) are
expanded in a Taylor series about site (i, j). Dividing
J. R. Soc. Interface (2012)
the resulting expression by t and taking the limit as
D! 0 and t! 0, with D2=t held constant, gives the
following PDE for C(x, y, t) [3]:

@C
@t
¼ Dr2C þ lCð1� CÞ; ð2:5Þ

where the diffusivity is given by equation (2.2) and the
growth rate l by

l ¼ lim
t!0

Pp

t

� �
: ð2:6Þ

To obtain a well-defined continuum limit requires that
Pp ¼ OðtÞ so that l remains finite in the limit t! 0
[3,12,40].
3. TWO-DIMENSIONAL LATTICE-FREE
INTERACTING RANDOM WALK MODEL

3.1. Discrete model

Here, we develop a new individual-based model for cell
migration and proliferation that is free from lattice con-
straints but incorporates crowding effects. Agents can
occupy any location in two-dimensional continuous space,
provided there is sufficient room to do so. The position of
the centre of the ith agent is denoted ðxi; yiÞ for
i ¼ 1; . . . N . As with the lattice-based model, N(t) agents
are selected independently at each time step and, when
selected, attempt to move with probability Pm [ ½0; 1�.
We consider the simplest possible motility mechanism:
theagent attemptstomoveafixeddistanceD in a randomly
chosen direction u [ ½0; 2pÞ. For the purposes of incorpor-
ating crowding (exclusion) effects, we assume that each
agent is a circle of diameter D. These assumptions about
the step length and agent diameter mean that the lattice-
free model can be easily compared with the lattice-based
model. However, we note that it would be straightforward
to relax these assumptions and allow the step length, for
example, tobedrawnfromsomeprobabilitydistribution [3].
To enforce exclusion effects, any movement attempt in
which the agent’s attempted path

ðxi; yiÞ þ sDðcos u; sin uÞ; where s [ ½0; 1�;

passes within a distance D of another agent’s position is
aborted.

Once the N(t) motility events have been attempted,
another N(t) agents are selected independently and
attempt to proliferate with probability Pp [ ½0; 1�.
The agent attempts to divide into two daughter
agents, separated by distance D along an axis of ran-
domly chosen direction u [ ½0;p�. The proliferation
attempt is aborted if the path connecting the daughter
agents’ target positions,

ðxi; yiÞ þ
sDðcos u; sin uÞ

2
; where s [ ½�1; 1�;

passes within a distance D of another agent’s position.
Figure 2 illustrates the motility and proliferation
mechanisms of the lattice-free individual-based model.

The lattice-free proliferation mechanism is similar to
the lattice-based mechanism: in both models, the
parent agent and daughter agents are separated by a
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Figure 2. Schematic of the lattice-free model. (a) An
attempted motility event. (b) An attempted proliferation
event. In each case, the event will be aborted if there is
another agent that overlaps the dark grey area or, equiva-
lently, if there is another agent whose centre lies in the light
grey area, referred to as the excluded area.

column j column j + 1column j – 1

width Δ

x

y

Figure 3. Schematic used to derive the mean-field model for
the lattice-free motility mechanism in the special case where
the initial distribution of agents within the domain is, on aver-
age, independent of the vertical location. We divide the
domain into vertical strips, each of width D, and associate
each agent with the strip that contains the centre of that
agent. For example, the middle agent overlaps strips j 2 1
and j, but it is associated with strip j since the centre of the
agent lies in strip j.

Models of collective cell behaviour M. J. Plank and M. J. Simpson 2987
distance of D immediately after a proliferation event.
The lattice-free proliferation mechanism differs slightly
from the lattice-based mechanism since the parent
agent in the lattice-free model moves a distance D/2
during a successful proliferation event, whereas the
parent agent in the lattice-based model does not move.

There are other subtle differences between the lattice-
based and lattice-free models in terms of the mechanism
for aborting potential migration and proliferation events.
In the lattice-based model, the only condition that deter-
mines whether an event is successful is the occupancy of
the target site. In the lattice-free model, even if the target
location is vacant, an event will be aborted if the path
from the initial to the target location is obstructed by
another agent.

3.2. Mean-field model: a single non-proliferative
agent

For a single, non-proliferative agent, the lattice-free
model reduces to a lattice-free random walk without
agent-to-agent interactions [3]. As in the lattice-based
model, the motion of a single agent is unbiased and so
the mean displacement per step is zero. An expression
for the MSD can be derived by considering the x and
y components of the displacement in the ith step,

kðxi � xi�1Þ2l ¼ PmD
2

2p

ð2p

0
cos2 u du ¼ PmD

2

2

and kðyi � yi�1Þ2l ¼ PmD
2

2p

ð2p

0
sin2 u du ¼ PmD

2

2
:

9>>>=
>>>;

ð3:1Þ

This is the same as in the lattice-based case
(equations (2.1)). Hence, the MSD per unit time is
PmD

2=t, and the probability density function for the
position of the agent satisfies the two-dimensional linear
diffusion equation [40], with the same diffusivity (2.2)
as for the lattice-based model.

3.2.1. Mean-field model: a population of interacting
non-proliferative agents
We consider a special initial condition for a population
of non-proliferative agents where the distribution of
J. R. Soc. Interface (2012)
agents within the domain is, on average, independent
of the vertical location. This corresponds to the scratch
experiment in figure 1a,b. Under these conditions, the
two-dimensional motion can be quantified in terms of
the horizontal coordinate only [12,27,41].

To derive a mean-field description, we divide the
domain into vertical strips, each with width D, and
associate each agent with the strip that contains the
agent’s centre (figure 3). Let n̂j represent the total
number of agents in strip j and nmax the maximum
number of agents that can be placed within any strip.
We now develop a conservation statement for the
relative agent density nj ¼ n̂j =nmax ðnj [ ½0; 1�),
analogous to equation (2.3) for the lattice-based
model. The change in nj during a time interval of dur-
ation t is equal to the change in density associated with
events that move agents into strip j (from strips j + 1)
minus the change in density associated with events that
move agents out of strip j (into strips j + 1). To
account for crowding effects, we assume that the prob-
ability of an agent successfully entering strip j is
proportional to the available space, ð1� njÞ, in that
strip. Hence

dnj ¼ Pmbn j�1ð1� njÞ þ Pmbn jþ1ð1� njÞ
� Pmbnjð1� n jþ1Þ � Pmbnjð1� n j�1Þ; ð3:2Þ

where b is the probability that an attempted movement
would take an agent in strip j to strip j þ 1 (which by
symmetry is the same as the probability that the attempted
movement would take the agent to strip j 2 1). Incorporat-
ing b into the conservation statement allows for the fact
that not all successful motility events change the value of
nj. For example, one of the highlighted trajectories in
figure 3 would reduce nj and increase n j�1, whereas the
other would leave nj unchanged.
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Figure 4. An attempted proliferation event. In order for the
proliferation attempt to be successful, there must be no
agents whose centres are in the hatched area A. In this
example, there are a total of five agents and the area excluded
by these agents, E5, corresponds to the sum of the light and
dark grey areas. If there were a sixth agent, the probability
that its centre would lie outside A would be given by
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As with the lattice-based discrete conservation state-
ment, the nonlinear terms in equation (3.2) vanish.
Identifying the discrete occupancy of the jth column,
nj, with a continuous function C(x, t) and taking the
usual limit D; t! 0 with D2=t held constant leads to
the one-dimensional linear diffusion equation for the
vertically averaged density C(x, t),

@C
@t
¼ D

@2C
@x2 ; ð3:3Þ

with

D ¼ Pmb lim
D;t!0

D2

t

� �
: ð3:4Þ

The key result here is that the spatial distribution of
agents in the lattice-free model evolves according to a
linear diffusion equation. To be consistent with the dif-
fusivity in equation (2.2) for a single non-proliferative
agent, we must have b ¼ 1

4. We will confirm this by
comparing averaged simulation data with the solution
of equation (3.3) in §4.
equation (3.5), p6 ¼ ð1� E5 � AÞ=ð1� E5Þ, which is the
white area divided by the sum of the white and hatched
areas. (Online version in colour.)
3.2.2. Mean-field model: a homogeneous

population of interacting proliferative agents
We now consider a special initial condition in which the
distribution of agents within the domain is, on average,
independent of position. This corresponds to the exper-
imental set-up in figure 1c,d. In this special case, the
state of the system can be described by a spatially invar-
iant density function, CmðtÞ, representing the spatially
averaged density of agents within the domain [6,12].
To develop a mathematical model for CmðtÞ, we sup-
pose that the number of agents at time t is N(t) and let
V2 be the total area of the domain. We now estimate
the probability that a particular proliferation attempt
will be successful. This requires that there are no
other agents within a certain area, A, surrounding the
agent attempting to proliferate. If pi is the probability
that the centre of agent i is not in A, given that
agents 1 to i 2 1 are not in A, then we have

pi ¼
1� Ei�1 � A

1� Ei�1
; ð3:5Þ

where Ei is the proportion of the total area excluded by
the first i agents. The probability Ps that a proliferation
attempt will be successful is then the probability that
the centres of all N(t) agents lie outside A,

Ps ¼
YN ðtÞ�1

i¼1

1� Ei � A
1� Ei

: ð3:6Þ

Each agent excludes an area pD2 although the area
excluded by different agents can overlap (figure 4).
Hence, we may write a recurrence relation for Ei

Eiþ1 ¼ Ei þ pd2ð1� qiÞ; ð3:7Þ

where d ¼ D=V and qi is the expected proportion of
agent i’s excluded area that overlaps with the area
already excluded by the first i21 agents. The expected
overlap, qi, depends on short-range correlations in agent
locations arising from the restriction that no two agents
J. R. Soc. Interface (2012)
can be closer than a distance D apart. To make pro-
gress, we make the simplifying assumption that qi is
equal to the proportion of the total area that is already
excluded by the first i21 agents so that qi ¼ Ei. Given
that E1 ¼ pd2, the recurrence relation for Ei can then
be solved to give

Ei ¼ 1� ð1� pd2Þi: ð3:8Þ

For consistency with the lattice-based case, we define
the spatially averaged agent density Cm(t) to be d2NðtÞ,
so Cm(t) ¼ 1 is the same density as a fully occupied lat-
tice of spacing D. Provided that the domain size is large
ðd � 1), we can treat the spatially averaged agent
density as a continuous variable. Combining
equations (3.6)–(3.8) gives

dCm

dt
¼ lCm

YCm=d2�1

i¼1

ð1� pd2Þi � 2d2

ð1� pd2Þi
; ð3:9Þ

where, as before, l ¼ limt!0ðPp=tÞ.
It is worth noting that the agent density cannot

exceed the optimal hexagonal arrangement of circles
in the plane, which imposes an upper bound of
p=

ffiffiffiffiffi
12
p

� 0:91 on the proportion of area that can be
occupied. Since, in our notation, an agent density of
Cm(t) ¼ 1 corresponds to circles on a regular square lat-
tice (area coverage p/4), the upper bound on Cm(t) is
2=

ffiffiffi
3
p
� 1:15. Equation (3.9) cannot, therefore, be accu-

rate at high densities because its equilibrium increases
without bound as the domain size tends to infinity
ðd ! 0). Nevertheless, equation (3.9) may provide a
reasonable description of the population growth at
low-to-moderate agent densities. We will assess this
by comparing numerical solutions of equation (3.9)
with simulation results in §4.2.
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Figure 5. Non-proliferative simulations of the lattice-based model with D ¼ t ¼ Pm ¼ 1 and Pp ¼ 0. Agents are initially placed at
randomly chosen lattice sites in the region �20 � x � 20 and the initial average agent density within this region is C0 ¼ 0.6. Dis-
crete snapshots in (a–c) show agent locations t ¼ 0, 500 and 1000. Simulation data in (d), averaged over 100 identically prepared
realizations, show stochastic density profiles (red) superimposed on the solution of the appropriate continuum model (green),
given by equation (4.1) with D ¼ PmD

2=ð4tÞ. The arrows show the direction of increasing t. (Online version in colour.)
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4. RESULTS

We now compare averaged simulation data with the
solutions of the appropriate mean-field models for the
two scenarios illustrated in figure 1.
4.1. Non-proliferative simulations

To mimic a scratch assay geometry (figure 1a,b), we
consider two-dimensional cell motion with an initial
condition in which the distribution of agents within
the domain is, on average, independent of the vertical
location. Unlike the scratch assay in figure 1a,b,
where the initial population is adjacent to the left
boundary and spreads unidirectionally, we consider an
initial population of agents in the centre of the
domain, so that we will observe bidirectional spreading.
To achieve this, we initialize the simulations with a
fixed average agent density C0 [ ½0; 1� in the region
�x0=2 � x � x0=2 and no agents outside this region.
In the lattice-based simulations, initially each lattice
site in the region �x0=2 � x � x0=2 is occupied with
probability C0, independent of the other lattice sites
(figure 5a). In the lattice-free model, agents are placed
J. R. Soc. Interface (2012)
at random within the region �x0=2 � x � x0=2 so that
all agents are located a distance at least D from all
other agents (figure 6a).

For all simulations, we impose periodic boundary
conditions on all boundaries. However, our results are
insensitive to the boundary conditions applied to the
vertical boundaries because we only perform simu-
lations for relatively short periods of time so that the
agents never reach the vertical boundaries. Under
these conditions, the appropriate solution of
equation (3.3), on �1 , x , 1, is [42]

Cðx; tÞ ¼ C0

2
erf
�x0=2� xffiffiffiffiffiffiffiffi

4Dt
p

� �
þ erf

x0=2þ xffiffiffiffiffiffiffiffi
4Dt
p

� �� �
:

ð4:1Þ

Results in figure 5a–c show snapshots from a single
realization of the lattice-based model with an initial
density of C0 ¼ 0.6 and x0 ¼ 40. Results in figure 5d
show the column density of agents, further averaged
over 100 identically prepared realizations, compared
with equation (4.1) with D ¼ PmD

2=ð4tÞ. As expected,
the averaged simulation data are accurately predicted
by the linear diffusion equation [43].
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Figure 6. Non-proliferative simulations of the lattice-free model with D ¼ t ¼ Pm ¼ 1 and Pp ¼ 0. Agents are initially placed at
random in the region �20 � x � 20 and the initial average agent density within this region is C0 ¼ 0.6. Discrete snapshots in
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show stochastic density profiles (red) superimposed on the solution of the appropriate continuum model (green), given by
equation (4.1) with D ¼ PmD

2=ð4tÞ. The arrows show the direction of increasing t. (Online version in colour.)
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We now investigate corresponding simulations for
the lattice-free model. Agent density profiles are
obtained in the same way as in the lattice-based
model, by averaging the number of agents in vertical
strips of width D (figure 3) across an ensemble of 100
identically prepared realizations. Figure 6a–c shows
snapshots from a single realization of the lattice-free
model. We also plot equation (4.1) and find that the sol-
ution of the linear diffusion equation matches the
discrete data very well. This comparison confirms the
validity of the conservation argument in §3.2.1.

The results shown in figures 5 and 6 are for an initial
density of C0 ¼ 0.6. Starting the simulations with a
lower initial density results in an equally good match
with the mean-field diffusion equation. Initial con-
ditions with C0 . 0:6 are not readily achievable in the
lattice-free model; the reasons for this will be discussed
in the following section.

The key objective in performing scratch assays
(figure 1a,b) is to describe the motility of cells, which is
usually done by measuring the rate at which the leading
edge of the population moves after the scratch has been
made [21,28]. Mathematical models are applied to scratch
J. R. Soc. Interface (2012)
assays to quantify the cell motility rate so that predictions
about the migration of the cells can be made under differ-
ent conditions, such as a scratch assay performed for a
different amount of time or in a different geometry, e.g. a
circular scratch. One way to quantify cell motility using
the lattice-free model is to perform repeated simulations
of the discrete model to characterize the mean rate of
advance of the leading edge. This could then be used to
calibrate the value of Pm to match experimental
data [27]. Instead, our mean-field approach shows that
the average behaviour of the lattice-free model is given
by equation (3.3). This allows us to quantify cell motility
in terms of the diffusivity D, without the need for repeated
computational simulations.Once an estimate of D has been
made using experimental observations, predictions can be
made about the migration of the cells under different
conditions [44].
4.2. Proliferative simulations

We now consider simulations of a proliferation assay
analogous to the experimental set-up shown in
figure 1c,d. Simulations are initialized with a low
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density of agents, distributed randomly throughout the
domain. The biological time scale for cell proliferation is
much greater than the time scale for cell motility [12,41],
so we assume that the proliferation probability is much
smaller than the movement probability ðPm � Pp . 0Þ.
One important consequence of this separation of time
scales is that the spatial distribution of agents remains
approximately homogeneous: C(x, y, t) ¼
Cm (t) [6,12].

For the lattice-based mean-field model, a homo-
geneous distribution means that the spatial gradients
in equation (2.5) vanish so that we have

dCm

dt
¼ lCmð1� CmÞ: ð4:2Þ

Recent work has shown that, for typical values of the
cell diffusivity (1026 mm2 s21) [21,45], cell diameter
(20 mm) [27] and cell doubling time (18–20 h) [21,44],
the appropriate parameters in the discrete model are
Pm ¼ 1 and Pp ¼ 0:001 [12]. With these parameters,
figure 7a,b shows snapshots from a realization of the lat-
tice-based model. After a sufficient period of time, the
lattice becomes fully occupied. To quantify the growth
in agent numbers, we record the spatially averaged
agent density CmðtÞ ¼ NðtÞ=V2, where N(t) is the
total number of agents and V2 is the area of the
domain. Figure 7 shows the simulation data for Cm(t)
J. R. Soc. Interface (2012)
together with the logistic growth curve predicted by
equation (4.2), which matches the simulation data
very closely.

Equivalent simulation results for the lattice-free
model are shown in figure 8. In the early stages of the
experiment (up to approximately t ¼ 2000), the popu-
lation growth curve in figure 8c is very close to the
lattice-based result. This reflects the fact that, in the
absence of significant agent-to-agent crowding effects,
the lattice-based and lattice-free models behave simi-
larly. However, at later times, the agent density in the
lattice-free model grows much more slowly and does
not reach Cm(t) ¼ 1 (the density of a fully occupied
lattice), even after the much longer simulation time of
t ¼ 20 000. This reduced growth rate is a consequence
of the irregular, though more realistic, arrangement of
the agents in the lattice-free model (compare figure 7b
with figure 8b). Even at moderate densities, this irregu-
lar arrangement means that the probability of a
successful proliferation event is greatly reduced. In con-
trast, even at very high densities approaching Cm(t)¼ 1,
a vacant lattice site will always become occupied
eventually via a proliferating agent at one of the
nearest-neighbour sites.

Also shown in figure 8c is the numerical solution of
the mean-field equation (3.9) (see appendix A for
details of the solution method), which matches the lat-
tice-free simulation data well. This shows that, despite



t

1000

1

0

(a)

<C>
  C
  C

500
t

20 000

1

0

(b)

<C>
  C
  C

10 000

lattice-based

lattice-free

lattice-free

lattice-based

Figure 9. Results from both models with more rapid proliferation, D ¼ t ¼ Pm ¼ 1 and Pp ¼ 0:01. Agents are initially distributed
at random and the initial agent density is C0 ¼ 0.01. Here, we compare simulation data (dashed) and the solution of the relevant
mean-field equations for both the lattice-based (dotted) and lattice-free (solid) models. (a) Shows a close up of (b) for earlier times
(t � 1000). (Online version in colour.)

2992 Models of collective cell behaviour M. J. Plank and M. J. Simpson
the simplifying assumptions made to arrive at
equation (3.9), this mean-field model encompasses the
key processes in the lattice-free proliferation model. In
particular, equation (3.9) captures the long tail as the
population grows more slowly at higher densities.

Although we have demonstrated a good match
between individual-based simulations and mean-field
models for the biologically relevant parameter values
Pm ¼ 1 and Pp ¼ 0:001 in figures 7 and 8, it is well
known that the accuracy of the lattice-based mean-
field model decreases as the proliferation rate Pp

increases [6,8,12]. This is due to the formation of clusters,
as daughter agents are deposited near parent agents
more rapidly [27], which means that the assumption of
a spatially homogeneous population is no longer valid.
To test the behaviour of the models under these con-
ditions, we compare simulation data and mean-field
results for both models when Pp is increased by a
factor of 10 to Pp ¼ 0:01 (figure 9). The lattice-based
simulations reach confluence approximately 10 times
faster than in figure 7, but still match the logistic
growth curve well. The lattice-free model again grows
more slowly than the lattice-based model, with a very
long tail. The match between the lattice-free simulations
and mean-field model, equation (3.9), is good up to a
density of approximately Cm(t) ¼ 0.7. Above this den-
sity, the individual-based simulations grow more slowly
than predicted by equation (3.9). This is consistent
with the observation in §3.2.2 that equation (3.9) is
not expected to be accurate at high densities.
5. COMPARING LATTICE-BASED AND
LATTICE-FREE MODELS WITH
EXPERIMENTAL DATA

The results in §4.2 reveal a key difference between the lat-
tice-based and lattice-free models. In the lattice-based
model, the lattice rapidly becomes fully occupied and
no further proliferation is possible. The lattice-free popu-
lation grows much more slowly at moderate to high
densities and it is likely that it will never reach the
J. R. Soc. Interface (2012)
same confluent density as the lattice-based model. This
is an advantage of the lattice-free model because the
population carrying capacity, rather than being deter-
mined by an artificially imposed lattice, is an emergent
outcome of the model. There are also qualitative differ-
ences between the models in that the lattice-based
confluent population is always perfectly aligned on the
underlying lattice, whereas the lattice-free model predicts
a more random distribution of agents. We note that the
lattice-free arrangement (figure 8b) is visually a much
better representation of experimental results (figure 1d)
than the lattice-based arrangement (figure 7b).

We now ask whether these differences would lead us
to make different predictions about an experimental
system if we applied the two models to the same exper-
imental data. To explore this issue, we fit the mean-field
models, equations (3.9) and (4.2), to data from a pro-
liferation experiment [22]. The first 40 h of data
correspond to a settling phase during which there was
no significant change in density; similar to Tremel
et al. [22], we ignore these data and instead use the
post-settling data only. Using a standard curve-fitting
algorithm (Matlab LSQCURVEFIT, which uses the trust-
region-reflective optimization algorithm [46]), we
calibrated l, D and C(0) in equations (3.9) and (4.2)
to produce a least-squares fit to the experimental
data. The data and fitted model growth curves are
shown in figure 10 and the fitted parameter values
and least-squares residuals are given in table 1. Note
that the data and results in this section are dimensional;
dimensionless density C(t) is related to dimensional
densityĈðtÞ via CðtÞ ¼ D2ĈðtÞ.

The lattice-based model fits slightly better (lower
residual) than the lattice-free model, but the difference
in fit is relatively small and figure 10 shows that both
models produce a reasonable match to the data. The
lattice-based model predicts a cell diameter of 32 mm
and the lattice-free model predicts a cell diameter of
24 mm. The cells are packed more loosely in the
lattice-free model so, in order to achieve a given density,
it predicts a smaller cell size than the lattice-based



Table 1. Results of fitting the lattice-free and lattice-based mean-field models (equations (3.9) and (4.2), respectively) to
experimental data from a proliferation assay [22]. The three parameters shown in the table were adjusted to obtain a least-
squares fit of each model to the data. The final column shows the square root of the sum of squared residuals for each model.
The density values shown in the table are in units of cells mm22; these dimensional densities ĈðtÞ can be converted to
dimensionless density C(t) via CðtÞ ¼ D2ĈðtÞ.

cell diameter D initial density Ĉð0Þ proliferation rate l least-squares residual

lattice-based model 0.032 mm 43 cells mm22 0.095 h21 124 cells mm22

lattice-free model 0.024 mm 38 cells mm22 0.105 h21 153 cells mm22
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Figure 10. Average cell density against time: data from the
experiment of Tremel et al. [22] (points); growth curve pre-
dicted by the lattice-free model (solid); growth curve
predicted by the lattice-based model (dashed). Model par-
ameters, shown in table 1, were fitted using a least-squares
method (Matlab LSQCURVEFIT) to provide the best match to
the data. Note that the first 40 h of the Tremel et al. [22]
data, corresponding to the initial settling phase, were neg-
lected and are not shown here; in the graph, t ¼ 0
corresponds to the beginning of the growth phase. (Online
version in colour.)
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model. Nevertheless, both values are consistent with
experimental observations showing that the typical
fibroblast cell diameter is in the range 20–30 mm
(figure 1a,b) [22]. The lattice-free model estimates a
proliferation rate l that is approximately 10 per cent
higher than the lattice-based model. This is intuitively
reasonable since more proliferation events are aborted
in the lattice-free model than in the lattice-based
model, so the lattice-free model requires a higher rate
of attempted proliferation events to give a comparable
observed proliferation rate.

The most significant difference between the lattice-
based and lattice-free models again lies in the predicted
long-term behaviour of the population. Although both
models have reached similar densities (approx.
950 cells mm22) by t ¼ 70 h, the lattice-based model
is at 96 per cent of its maximum density (which is
987 cells mm22), whereas the lattice-free model is only
at 53 per cent of the density corresponding to a fully
occupied lattice of spacing D (which is 1786 cells mm22).
The lattice-based model, therefore, predicts that there
will be minimal growth beyond t ¼ 70 h, whereas the
J. R. Soc. Interface (2012)
lattice-free model predicts that significant growth will
occur beyond t ¼ 70 h (figure 10), with a slow approach
to carrying capacity. Unfortunately, Tremel et al. [22]
do not report any data beyond t ¼ 70 h, so it is difficult
to draw any conclusions about which of the two models
best represents long-term experimental data.
6. DISCUSSION

We have developed a new, discrete model for migration
and proliferation of a population of cells in a monolayer.
In contrast to the majority of previous discrete models,
this model is lattice-free, meaning that there is no
restriction on cells to occupy points on a predefined,
artificial lattice. This results in a much more realistic
configuration of cells (for example, compare figure 7b
with figure 8b).

Freeing cells from lattice constraints has some
surprising consequences for the population-level predic-
tions of the model. Most notably, it is impossible for the
population to reach the maximum density that would
be predicted by an equivalent lattice-based model.
This is because the cells are not perfectly aligned, but
are arranged in a more spatially random configuration.
Thus, the available space is used less efficiently and, as
the average density increases, it becomes increasingly
unlikely that a cell will have the space required to
divide into two daughter cells. Some models have used
a non-square lattice [16,37,38] to enable a more realistic
spatial configuration of cells. However, this approach
still has the disadvantage that the carrying capacity
of the population is predetermined by the arbitrary
choice of lattice.

The mean-field descriptions of the lattice-free model
developed in this paper make simplifying assumptions
about the spatial structure of the population. This has
enabled us to develop practical tools that can predict
average population-level behaviour. An important goal
for future work is a more rigorous derivation of the con-
tinuum limit of the lattice-free model, for example, by
using a spatial moment dynamics approach [6,43,47].
Nevertheless, we have shown that population-level
behaviour can be predicted in two special cases. First,
in the case in which there is no proliferation, the popu-
lation is well described by the linear diffusion equation.
Second, in the case in which the population is spatially
homogeneous, the average agent density may be approxi-
mated by an ordinary differential equation. This
equation predicts lower densities and a slower approach
to carrying capacity than the logistic growth equation,
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which is the equivalent mean-field description for the lat-
tice-based model.

We compared the predictions of the lattice-free
model with experimental data from a proliferation
assay [22]. Fitting the model parameters to the data
gives a fit that is comparable to that of the logistic
equation and predicts a similar (though slightly
higher) proliferation rate. However, the lattice-based
model predicts that the population has reached conflu-
ence at 70 h and there will be no further growth. The
lattice-free model predicts that the population will con-
tinue to grow beyond 70 h, though at a much reduced
rate. The significance of this difference is difficult to
assess using published data since most proliferation
experiments are aimed at measuring the growth rate
and hence focus on the early stages of the growth
curve rather than the later stages when the population
is approaching confluence.

Simulations of the lattice-free model are more com-
putationally intensive than the lattice-based model.
This is because, under the simulation method
implemented, each attempted movement or prolifer-
ation event requires the location of all other agents in
the population to be checked, so simulation time is pro-
portional to N(t)2. In contrast, the lattice-based model
only requires the status of the four nearest-neighbour
lattice sites to be checked, so simulation time is pro-
portional to N(t). In practice, this restricts the size of
population that can be simulated under the lattice-
free model. An important goal for the future is to
develop more efficient simulation algorithms, for
instance, by indexing which agents are in a given
region of the domain at a given point in time. This
will enable spatially variable processes to be studied;
for example, invasion waves of proliferating cells [44]
in the lattice-free framework.

The migration aspect of our lattice-free model is
similar to models of hard sphere suspensions [2,36].
The main difference between these previous approaches
and our lattice-free model is that our model includes cell
proliferation. Another difference is that hard sphere
models often assume elastic collisions [36] or only
check that the target site for a movement event is
vacant [48]. This mechanism would allow agents to
‘leapfrog’ over other agents, which is not biologically
realistic [49]. An important aspect of our model is
that an agent can only complete an attempted move
if the entire path from its initial to its target location
is clear of other agents.

Using a lattice-free framework enhances the realism of
the model by removing artificial constraints on the cells’
spatial distribution. Nevertheless, the model still makes
several simplifying assumptions. For instance, the cells
are treated as incompressible circles, whereas in reality
cells are not circular and can deform in shape to accom-
modate neighbouring cells. A cell attempting to move or
to proliferate is assumed to select a direction at random
and, if it encounters another cell in that direction, the
attempt is aborted completely. In reality, cells may exhi-
bit some global directional bias, for example, owing to
chemotaxis [17,19] or local persistence. A cell may also
adjust its direction or step length in order to complete
J. R. Soc. Interface (2012)
a movement or proliferation event. These extensions
will be addressed in future work.

In this paper, we have focused on the simplest poss-
ible lattice-free model to enable direct comparison with
a lattice-based equivalent. Removing lattice constraints
is a necessary prerequisite for tackling complex, inher-
ently non-lattice effects, such as shape deformation
and directional persistence.

M.J.P. and M.J.S. gratefully acknowledge the support of the
RSNZ Marsden Fund, grant no. 11-UOC-005.
APPENDIX A. METHOD OF NUMERICAL
SOLUTION OF ORDINARY DIFFERENTIAL
EQUATIONS

The lattice-free mean-field equation (3.9) for a homo-
geneous, proliferating population of cells was solved in
Matlab v. 7.10 using the ODE45 function. This function
implements the Dormand–Prince version of the
Runge–Kutta formulae, which uses fourth- and fifth-
order approximations in an adaptive step size routine [50].

To ensure that our numerical results are reproduci-
ble, we also used a standard fourth-order Runge–
Kutta method with a fixed step size dt. Using dt ¼ 50 or
dt ¼ 20 gave solutions that are indistinguishable from
the results presented in figures 8–10.

For equation (3.9) to be well defined, the upper limit
ðCm=d2 � 1) for the index i in the iterated product must
be an integer. We solved equation (3.9) in two ways:
(i) by rounding Cm=d2 � 1 to the nearest integer and
(ii) by taking the integer part of Cm=d2 � 1 (i.e. reducing
it to the nearest smaller integer). As a result of either of
these procedures, the rate of population increase,
dCm=dt; is discontinuous in Cm, implying that the sol-
ution Cm(t) is non-smooth. However, when the domain
is large relative to the agent diameter, we have d � 1
ensuring that the discontinuities are small in magnitude
and the solution appears smooth over the time scale of
interest. For the domain size used in figures 8–10, d ¼
0.02, and we found that the two rounding methods
described above produce identical results.
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